SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores


Alexander Conway, Rutgers University and Vmware Research; Abhishek Gupta, DropBox; Vijay Chidambaram, University of Texas at Austin and VMware Research; Martin Farach-Colton, Rutgers University; Richard Spillane, VMware; Amy Tai and Rob Johnson, VMware Research


Modern NVMe solid state drives offer significantly higher bandwidth and low latency than prior storage devices. Current key-value stores struggle to fully utilize the bandwidth of such devices. This paper presents SplinterDB, a new key-value store explicitly designed for NVMe solid state drives.

SplinterDB is designed around a novel data structure (the STBε-tree), that exposes I/O and CPU concurrency and reduces write amplification without sacrificing query performance. STBε-tree combines ideas from log-structured merge trees and Bε-trees to reduce write amplification and CPU costs of compaction. The SplinterDB memtable and cache are designed to be highly concurrent and to reduce cache misses.

We evaluate SplinterDB on a number of micro- and macro-benchmarks, and show that SplinterDB outperforms RocksDB, a state-of-the-art key-value store, by a factor of 6–10x on insertions and 2–2.6x on point queries, while matching RocksDB on small range queries. Furthermore, SplinterDB reduces write amplification by 2x compared to RocksDB.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {254368,
author = {Alexander Conway and Abhishek Gupta and Vijay Chidambaram and Martin Farach-Colton and Richard Spillane and Amy Tai and Rob Johnson},
title = {SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores},
booktitle = {2020 {USENIX} Annual Technical Conference ({USENIX} {ATC} 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {49--63},
url = {https://www.usenix.org/conference/atc20/presentation/conway},
publisher = {{USENIX} Association},
month = jul,

Presentation Video

Download Video