Albis: High-Performance File Format for Big Data Systems


Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach, and Bernard Metzler, IBM Research, Zurich


Over the last decade, a variety of external file formats such as Parquet, ORC, Arrow, etc., have been developed to store large volumes of relational data in the cloud. As high-performance networking and storage devices are used pervasively to process this data in frameworks like Spark and Hadoop, we observe that none of the popular file formats are capable of delivering data access rates close to the hardware. Our analysis suggests that multiple antiquated notions about the nature of I/O in a distributed setting, and the preference for the "storage efficiency" over performance is the key reason for this gap.

In this paper we present Albis, a high-performance file format for storing relational data on modern hardware. Albis is built upon two key principles: (i) reduce the CPU cost by keeping the data/metadata storage format simple; (ii) use a binary API for an efficient object management to avoid unnecessary object materialization. In our evaluation, we demonstrate that in micro-benchmarks Albis delivers 1.9-21.4x faster bandwidths than other formats. At the workload-level, Albis in Spark/SQL reduces the runtimes of TPC-DS queries up to a margin of 3x.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {216059,
author = {Animesh Trivedi and Patrick Stuedi and Jonas Pfefferle and Adrian Schuepbach and Bernard Metzler},
title = {Albis: {High-Performance} File Format for Big Data Systems},
booktitle = {2018 USENIX Annual Technical Conference (USENIX ATC 18)},
year = {2018},
isbn = {978-1-939133-01-4},
address = {Boston, MA},
pages = {615--630},
url = {},
publisher = {USENIX Association},
month = jul

Presentation Audio