Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • SOUPS 2016
      • HotCloud '16
      • HotStorage '16
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
    • Call for Practitioner Talks
  • Sponsorship
  • About
    • Organizers
    • Help Promote!
    • Questions
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner
Industry Partner

help promote

USENIX ATC '16

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Replex: A Scalable, Highly Available Multi-Index Data Store
Tweet

connect with us

Replex: A Scalable, Highly Available Multi-Index Data Store

Authors: 

Amy Tai, VMware Research and Princeton University; Michael Wei, VMware Research and University of California, San Diego; Michael J. Freedman, Princeton University; Ittai Abraham and Dahlia Malkhi, VMware Research

Awarded Best Paper

Abstract: 

The need for scalable, high-performance datastores has led to the development of NoSQL databases, which achieve scalability by partitioning data over a single key. However, programmers often need to query data with other keys, which data stores provide by either querying every partition, eliminating the benefits of partitioning, or replicating additional indexes, wasting the benefits of data replication.

In this paper, we show there is no need to compromise scalability for functionality. We present Replex, a datastore that enables efficient querying on multiple keys by rethinking data placement during replication. Traditionally, a data store is first globally partitioned, then each partition is replicated identically to multiple nodes. Instead, Replex relies on a novel replication unit, termed replex, which partitions a full copy of the data based on its unique key. Replexes eliminate any additional overhead to maintaining indices, at the cost of increasing recovery complexity. To address this issue, we also introduce hybrid replexes, which enable a rich design space for trading off steady-state performance with faster recovery. We build, parameterize, and evaluate Replex on multiple dimensions and find that Replex surpasses the steady-state and failure recovery performance of Hyper- Dex, a state-of-the-art multi-key data store.

Amy Tai, VMware Research and Princeton University

Michael Wei, VMware Research and University of California, San Diego

Michael J. Freedman, Princeton University

Ittai Abraham, VMware Research

Dahlia Malkhi, VMware Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Tai PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

Award: 
Best Paper
  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us