Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • SOUPS 2016
      • HotCloud '16
      • HotStorage '16
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
    • Call for Practitioner Talks
  • Sponsorship
  • About
    • Organizers
    • Help Promote!
    • Questions
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner
Industry Partner

help promote

USENIX ATC '16

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Unlocking Energy
Tweet

connect with us

Unlocking Energy

Authors: 

Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis, École Polytechnique Fédérale de Lausanne (EPFL)

Abstract: 

Locks are a natural place for improving the energy efficiency of software systems. First, concurrent systems are mainstream and when their threads synchronize, they typically do it with locks. Second, locks are well-defined abstractions, hence changing the algorithm implementing them can be achieved without modifying the system. Third, some locking strategies consume more power than others, thus the strategy choice can have a real effect. Last but not least, as we show in this paper, improving the energy efficiency of locks goes hand in hand with improving their throughput. It is a win-win situation.

We make our case for this throughput/energyefficiency correlation through a series of observations obtained from an exhaustive analysis of the energy efficiency of locks on two modern processors and six software systems: Memcached, MySQL, SQLite, RocksDB, HamsterDB, and Kyoto Kabinet. We propose simple lock-based techniques for improving the energy efficiency of these systems by 33% on average, driven by higher throughput, and without modifying the systems.

Babak Falsafi, École Polytechnique Fédérale de Lausanne (EPFL)

Rachid Guerraoui, École Polytechnique Fédérale de Lausanne (EPFL)

Javier Picorel, École Polytechnique Fédérale de Lausanne (EPFL)

Vasileios Trigonakis, École Polytechnique Fédérale de Lausanne (EPFL)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {196292,
author = {Babak Falsafi and Rachid Guerraoui and Javier Picorel and Vasileios Trigonakis},
title = {Unlocking Energy},
booktitle = {2016 USENIX Annual Technical Conference (USENIX ATC 16)},
year = {2016},
isbn = {978-1-931971-30-0},
address = {Denver, CO},
pages = {393--406},
url = {https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi},
publisher = {USENIX Association},
month = jun,
}
Download
Falsafi PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us