Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » IX: A Protected Dataplane Operating System for High Throughput and Low Latency
Tweet

connect with us

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

Authors: 

Adam Belay, Stanford University; George Prekas, École Polytechnique Fédérale de Lausanne (EPFL); Ana Klimovic, Samuel Grossman, and Christos Kozyrakis, Stanford University; Edouard Bugnion, École Polytechnique Fédérale de Lausanne (EPFL)
Best Paper at OSDI '14: Link to Paper

Abstract: 

The conventional wisdom is that aggressive networking requirements, such as high packet rates for small messages and microsecond-scale tail latency, are best addressed outside the kernel, in a user-level networking stack. We present IX, a dataplane operating system that provides high I/O performance, while maintaining the key advantage of strong protection offered by existing kernels. IX uses hardware virtualization to separate management and scheduling functions of the kernel (control plane) from network processing (dataplane). The dataplane architecture builds upon a native, zero-copy API and optimizes for both bandwidth and latency by dedicating hardware threads and networking queues to dataplane instances, processing bounded batches of packets to completion, and by eliminating coherence traffic and multi-core synchronization. We demonstrate that IX outperforms Linux and state-of-the-art, user-space network stacks significantly in both throughput and end-to-end latency. Moreover, IX improves the throughput of a widely deployed, key-value store by up to 3.6 and reduces tail latency by more than 2.

Links

Paper: 
Paper (HTML): 
Slides: 
  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us