Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
14th USENIX Security Symposium — Abstract

Pp. 225–237 of the Proceedings

On the Effectiveness of Distributed Worm Monitoring

Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, Computer Science Department Johns Hopkins University


Distributed monitoring of unused portions of the IP address space holds the promise of providing early and accurate detection of high-profile security events, especially Internet worms. While this observation has been accepted for some time now, a systematic analysis of the requirements for building an effective distributed monitoring infrastructure is still missing. In this paper, we attempt to quantify the benefits of distributed monitoring and evaluate the practicality of this approach. To do so we developed a new worm propagation model that relaxes earlier assumptions regarding the uniformity of the underlying vulnerable population. This model allows us to evaluate how the size of the monitored address space, as well the number and locations of monitors, impact worm detection time. We empirically evaluate the effect of these parameters using traffic traces from over 1.5 billion suspicious connection attempts observed by more than 1600 intrusion detection systems dispersed across the Internet.

Our results show that distributed monitors with half the allocated space of a centralized monitor can detect non-uniform scanning worms in half the time. Moreover, a distributed monitor of the same size as a centralized monitor can detect the worm four times faster. Furthermore, we show that even partial knowledge of the vulnerable population density can be used to improve monitor placement. Exploiting information about the location of the vulnerable population leads, in some cases, to detection time that is seven times as fast compared to random monitor deployment.

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until August 2006, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 3 Aug. 2005 ch
Technical Program
Security '05 Home