Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
FAST '04 — Abstract

Pp. 45-58 of the Proceedings

Buttress: A toolkit for flexible and high fidelity I/O benchmarking

Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram Swaminathan, Hewlett-Packard Laboratories


In benchmarking I/O systems, it is important to generate, accurately, the I/O access pattern that one is intending to generate. However, timing accuracy ( issuing I/Os at the desired time) at high I/O rates is difficult to achieve on stock operating systems. We currently lack tools to easily and accurately generate complex I/O workloads on modern storage systems. As a result, we may be introducing substantial errors in observed system metrics when we benchmark I/O systems using inaccurate tools for replaying traces or for producing synthetic workloads with known inter-arrival times.

In this paper, we demonstrate the need for timing accuracy for I/O benchmarking in the context of replaying I/O traces. We also quantitatively characterize the impact of error in issuing I/Os on measured system parameters. For instance, we show that the error in perceived I/O response times can be as much as +350% or -15% by using naive benchmarking tools that have timing inaccuracies. To address this problem, we present Buttress, a portable and flexible toolkit that can generate I/O workloads with microsecond accuracy at the I/O throughputs of high-end enterprise storage arrays. In particular, Buttress can issue I/O requests within 100µs of the desired issue time even at rates of 10000 I/Os per second (IOPS).

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until March 2005, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2004 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 17 March 2004 aw
Technical Program
FAST '04 Home