Check out the new USENIX Web site.

Home About USENIX Events Membership Publications Students
FAST 2002 Abstract

A framework for evaluating storage system security

Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan Hewlett-Packard Laboratories


There are a variety of ways to ensure the security of data and the integrity of data transfer, depending on the set of anticipated attacks, the level of security desired by data owners, and the level of inconvenience users are willing to tolerate. Current storage systems secure data either by encrypting data on the wire, or by encrypting data on the disk. These systems seem very different, and currently there are no common parameters for comparing them. In this paper we propose a framework in which both types of systems can be evaluated along the security and performance axes. In particular, we show that all of the existing systems merely make different trade-offs along a single continuum and among a set of related security primitives. We use a trace from a time-sharing UNIX server used by a medium-sized workgroup to quantify the costs associated with each of these secure storage systems. We show that encrypt-on-disk systems offer both increased security and improved performance over encrypt-on-wire in the traced environment.
  • View the full text of this paper in HTML and PDF. Until January 2003, you will need your USENIX membership identification in order to access the full papers.
    The Proceedings are published as a collective work, © 2002 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.

  • To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 27 Dec. 2001 ml
Technical Program
FAST 2002 Home