Practical Security Analysis of Zero-Knowledge Proof Circuits

Authors: 

Hongbo Wen, University of California, Santa Barbara; Jon Stephens, The University of Texas at Austin and Veridise; Yanju Chen, University of California, Santa Barbara; Kostas Ferles, Veridise; Shankara Pailoor, The University of Texas at Austin and Veridise; Kyle Charbonnet, Ethereum Foundation; Isil Dillig, The University of Texas at Austin and Veridise; Yu Feng, University of California, Santa Barbara, and Veridise

Abstract: 

As privacy-sensitive applications based on zero-knowledge proofs (ZKPs) gain increasing traction, there is a pressing need to detect vulnerabilities in ZKP circuits. This paper studies common vulnerabilities in Circom (the most popular domain-specific language for ZKP circuits) and describes a static analysis framework for detecting these vulnerabilities. Our technique operates over an abstraction called the circuit dependence graph (CDG) that captures key properties of the circuit and allows expressing semantic vulnerability patterns as queries over the CDG abstraction. We have implemented 9 different detectors using this framework and performed an experimental evaluation on over 258 circuits from popular Circom projects on GitHub. According to our evaluation, these detectors can identify vulnerabilities, including previously unknown ones, with high precision and recall.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.