Rolling Colors: Adversarial Laser Exploits against Traffic Light Recognition


Chen Yan, Zhejiang University; Zhijian Xu, Zhejiang University and The Chinese University of Hong Kong; Zhanyuan Yin, The University of Chicago; Xiaoyu Ji and Wenyuan Xu, Zhejiang University


Traffic light recognition is essential for fully autonomous driving in urban areas. In this paper, we investigate the feasibility of fooling traffic light recognition mechanisms by shedding laser interference on the camera. By exploiting the rolling shutter of CMOS sensors, we manage to inject a color stripe overlapped on the traffic light in the image, which can cause a red light to be recognized as a green light or vice versa. To increase the success rate, we design an optimization method to search for effective laser parameters based on empirical models of laser interference. Our evaluation in emulated and real-world setups on 2 state-of-the-art recognition systems and 5 cameras reports a maximum success rate of 30% and 86.25% for Red-to-Green and Green-to-Red attacks. We observe that the attack is effective in continuous frames from more than 40 meters away against a moving vehicle, which may cause end-to-end impacts on self-driving such as running a red light or emergency stop. To mitigate the threat, we propose redesigning the rolling shutter mechanism.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {277268,
author = {Chen Yan and Zhijian Xu and Zhanyuan Yin and Xiaoyu Ji and Wenyuan Xu},
title = {Rolling Colors: Adversarial Laser Exploits against Traffic Light Recognition},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {1957--1974},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video