Omnes pro uno: Practical Multi-Writer Encrypted Database


Jiafan Wang and Sherman S. M. Chow, The Chinese University of Hong Kong


Multi-writer encrypted databases allow a reader to search over data contributed by multiple writers securely. Public-key searchable encryption (PKSE) appears to be the right primitive. However, its search latency is not welcomed in practice for having public-key operations linear in the entire database. In contrast, symmetric searchable encryption (SSE) realizes sublinear search, but it is inherently not multi-writer.

This paper aims for the best of both SSE and PKSE, i.e., sublinear search and multiple writers, by formalizing hybrid searchable encryption (HSE), with some seemingly conflicting yet desirable features, requiring new insights to achieve.

Our first contribution is a history-based security definition with new flavors of leakage concerning updates and writer corruptions, which are absent in the only known multi-writer notion of PKSE since it is vacuously secure against writers. HSE, built on top of dynamic SSE (DSSE), should satisfy the de facto standard of forward privacy. Its multi-writer support, again, makes the known approach (of secret state maintenance) fails. HSE should also feature efficient controllable search – each search can be confined to a different writer subset, while the search token size remains constant. For these, we devise a new partial rebuild technique and two new building blocks (of independent interests) – ID-coupling key-aggregate encryption and (optimal) epoch-based forward-private DSSE.

Our evaluation over real-world datasets shows that HSE, surpassing prior arts by orders of magnitude, is concretely efficient for popular multi-writer database applications.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {277226,
author = {Jiafan Wang and Sherman S. M. Chow},
title = {Omnes pro uno: Practical {Multi-Writer} Encrypted Database},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {2371--2388},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video