Composable Cachelets: Protecting Enclaves from Cache Side-Channel Attacks


Daniel Townley, Peraton Labs; Kerem Arıkan, Yu David Liu, and Dmitry Ponomarev, Binghamton University; Oğuz Ergin, TOBB University of Economics and Technology


The security of isolated execution architectures such as Intel SGX has been significantly threatened by the recent emergence of side-channel attacks. Cache side-channel attacks allow adversaries to leak secrets stored inside isolated enclaves without having direct access to the enclave memory. In some cases, secrets can be leaked even without having the knowledge of the victim application code or having OS-level privileges. We propose the concept of Composable Cachelets (CC), a new scalable strategy to dynamically partition the last-level cache (LLC) for completely isolating enclaves from other applications and from each other. CC supports enclave isolation in caches with the capability to dynamically readjust the cache capacity as enclaves are created and destroyed. We present a cache-aware and enclave-aware operational semantics to help rigorously establish security properties of CC, and we experimentally demonstrate that CC thwarts side-channel attacks on caches with modest performance and complexity impact.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {281416,
author = {Daniel Townley and Kerem Ar{\i}kan and Yu David Liu and Dmitry Ponomarev and O{\u g}uz Ergin},
title = {Composable Cachelets: Protecting Enclaves from Cache {Side-Channel} Attacks},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {2839--2856},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video