Lumos: Identifying and Localizing Diverse Hidden IoT Devices in an Unfamiliar Environment


Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar, Carnegie Mellon University


Hidden IoT devices are increasingly being used to snoop on users in hotel rooms or AirBnBs. We envision empowering users entering such unfamiliar environments to identify and locate (e.g., hidden camera behind plants) diverse hidden devices (e.g., cameras, microphones, speakers) using only their personal handhelds.

What makes this challenging is the limited network visibility and physical access that a user has in such unfamiliar environments, coupled with the lack of specialized equipment.

This paper presents Lumos, a system that runs on commodity user devices (e.g., phone, laptop) and enables users to identify and locate WiFi-connected hidden IoT devices and visualize their presence using an augmented reality interface. Lumos addresses key challenges in: (1) identifying diverse devices using only coarse-grained wireless layer features, without IP/DNS layer information and without knowledge of the WiFi channel assignments of the hidden devices; and (2) locating the identified IoT devices with respect to the user using only phone sensors and wireless signal strength measurements. We evaluated Lumos across 44 different IoT devices spanning various types, models, and brands across six different environments. Our results show that Lumos can identify hidden devices with 95% accuracy and locate them with a median error of 1.5m within 30 minutes in a two-bedroom, 1000 sq. ft. apartment.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {277094,
author = {Rahul Anand Sharma and Elahe Soltanaghaei and Anthony Rowe and Vyas Sekar},
title = {Lumos: Identifying and Localizing Diverse Hidden {IoT} Devices in an Unfamiliar Environment},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {1095--1112},
url = {},
publisher = {USENIX Association},
month = aug,

Presentation Video