V'CER: Efficient Certificate Validation in Constrained Networks

Authors: 

David Koisser and Patrick Jauernig, Technical University Darmstadt; Gene Tsudik, University of California, Irvine; Ahmad-Reza Sadeghi, Technical University Darmstadt

Abstract: 

We address the challenging problem of efficient trust establishment in constrained networks, i.e., networks that are composed of a large and dynamic set of (possibly heterogeneous) devices with limited bandwidth, connectivity, storage, and computational capabilities. Constrained networks are an integral part of many emerging application domains, from IoT meshes to satellite networks. A particularly difficult challenge is how to enforce timely revocation of compromised or faulty devices. Unfortunately, current solutions and techniques cannot cope with idiosyncrasies of constrained networks, since they mandate frequent real-time communication with centralized entities, storage and maintenance of large amounts of revocation information, and incur considerable bandwidth overhead.

To address the shortcomings of existing solutions, we design V'CER, a secure and efficient scheme for certificate validation that augments and benefits a PKI for constrained networks. V'CER utilizes unique features of Sparse Merkle Trees (SMTs) to perform lightweight revocation checks, while enabling collaborative operations among devices to keep them up-to-date when connectivity to external authorities is limited. V'CER can complement any PKI scheme to increase its flexibility and applicability, while ensuring fast dissemination of validation information independent of the network routing or topology. V'CER requires under 3KB storage per node covering 106 certificates. We developed and deployed a prototype of V'CER on an in-orbit satellite and our large-scale simulations demonstrate that V'CER decreases the number of requests for updates from external authorities by over 93%, when nodes are intermittently connected.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {280040,
title = {{V{\textquoteright}CER}: Efficient Certificate Validation in Constrained Networks},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
address = {Boston, MA},
url = {https://www.usenix.org/conference/usenixsecurity22/presentation/koisser},
publisher = {USENIX Association},
month = aug,
}