Shuffle-based Private Set Union: Faster and More Secure


Yanxue Jia and Shi-Feng Sun, Shanghai Jiao Tong University; Hong-Sheng Zhou, Virginia Commonwealth University; Jiajun Du and Dawu Gu, Shanghai Jiao Tong University


Private Set Union (PSU) allows two players, the sender and the receiver, to compute the union of their input datasets without revealing any more information than the result. While it has found numerous applications in practice, not much research has been carried out so far, especially for large datasets.

In this work, we take shuffling technique as a key to design PSU protocols for the first time. By shuffling receiver's set, we put forward the first protocol, denoted as ΠR PSU, that eliminates the expensive operations in previous works, such as additive homomorphic encryption and repeated operations on the receiver's set. It outperforms the state-of-the-art design by Kolesnikov et al. (ASIACRYPT 2019) in both efficiency and security; the unnecessary leakage in Kolesnikov et al.'s design, can be avoided in our design.

We further extend our investigation to the application scenarios in which both players may hold unbalanced input datasets. We propose our second protocol ΠS PSU, by shuffling the sender's dataset. This design can be viewed as a dual version of our first protocol, and it is suitable in the cases where the sender's input size is much smaller than the receiver's.

Finally, we implement our protocols ΠR PSU and ΠS PSU in C++ on big datasets, and perform a comprehensive evaluation in terms of both scalability and parallelizability. The results demonstrate that our design can obtain a 4-5× improvement over the state-of-the-art by Kolesnikov et al. with a single thread in WAN/LAN settings.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {280022,
title = {Shuffle-based Private Set Union: Faster and More Secure},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
address = {Boston, MA},
url = {},
publisher = {USENIX Association},
month = aug,