Off-Path Network Traffic Manipulation via Revitalized ICMP Redirect Attacks

Authors: 

Xuewei Feng, Department of Computer Science and Technology & BNRist, Tsinghua University; Qi Li, Institute for Network Sciences and Cyberspace & BNRist, Tsinghua University and Zhongguancun Lab; Kun Sun, Department of Information Sciences and Technology & CSIS, George Mason University; Zhiyun Qian, UC Riverside; Gang Zhao, Department of Computer Science and Technology & BNRist, Tsinghua University; Xiaohui Kuang, Beijing University of Posts and Telecommunications; Chuanpu Fu, Department of Computer Science and Technology & BNRist, Tsinghua University; Ke Xu, Department of Computer Science and Technology & BNRist, Tsinghua University and Zhongguancun Lab

Abstract: 

ICMP redirect is a mechanism that allows an end host to dynamically update its routing decisions for particular destinations. Previous studies show that ICMP redirect may be exploited by attackers to manipulate the routing of victim traffic. However, it is widely believed that ICMP redirect attacks are not a real-world threat since they can only occur under specific network topologies (e.g., LAN). In this paper, we conduct a systematic study on the legitimacy check mechanism of ICMP and uncover a fundamental gap between the check mechanism and stateless protocols, resulting in a wide range of vulnerabilities. In particular, we find that off-path attackers can utilize a suite of stateless protocols (e.g., UDP, ICMP, GRE, IPIP and SIT) to easily craft evasive ICMP error messages, thus revitalizing ICMP redirect attacks to cause serious damage in the real world, particularly, on the wide-area network. First, we show that off-path attackers can conduct a stealthy DoS attack by tricking various public servers on the Internet into mis-redirecting their traffic into black holes with a single forged ICMP redirect message. For example, we reveal that more than 43K popular websites on the Internet are vulnerable to this DoS attack. In addition, we identify 54.47K open DNS resolvers and 186 Tor nodes on the Internet are vulnerable as well. Second, we show that, by leveraging ICMP redirect attacks against NATed networks, off-path attackers in the same NATed network can perform a man-in-the-middle (MITM) attack to intercept the victim traffic. Finally, we develop countermeasures to throttle the attacks.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {281336,
author = {Xuewei Feng and Qi Li and Kun Sun and Zhiyun Qian and Gang Zhao and Xiaohui Kuang and Chuanpu Fu and Ke Xu},
title = {{Off-Path} Network Traffic Manipulation via Revitalized {ICMP} Redirect Attacks},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {2619--2636},
url = {https://www.usenix.org/conference/usenixsecurity22/presentation/feng},
publisher = {USENIX Association},
month = aug,
}

Presentation Video