MAGE: Mutual Attestation for a Group of Enclaves without Trusted Third Parties


Guoxing Chen, Shanghai Jiao Tong University; Yinqian Zhang, Southern University of Science and Technology


Remote attestation mechanism enables an enclave to attest its identity (which is usually represented by the enclave's initial code and data) to another enclave. To verify that the attested identity is trusted, one enclave usually includes the identity of the enclave it trusts into its initial data in advance assuming no trusted third parties are available during runtime to provide this piece of information. However, when mutual trust between these two enclaves is required, it is infeasible to simultaneously include into their own initial data the other's identities respectively as any change to the initial data will change their identities, making the previously included identities invalid. In this paper, we propose MAGE, a framework enabling a group of enclaves to mutually attest each other without trusted third parties. Particularly, we introduce a technique to instrument these enclaves so that each of them could derive the others' identities using information solely from its own initial data. We also provide an open-sourced prototype implementation based on Intel SGX SDK, to facilitate enclave developers to adopt this technique.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {277168,
author = {Guoxing Chen and Yinqian Zhang},
title = {{MAGE}: Mutual Attestation for a Group of Enclaves without Trusted Third Parties},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {4095--4110},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video