PHMon: A Programmable Hardware Monitor and Its Security Use Cases

Authors: 

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele, Boston University

Abstract: 

There has been a resurgent trend in the industry to enforce a variety of security policies in hardware. The current trend for developing dedicated hardware security extensions is an imperfect, lengthy, and costly process. In contrast to this trend, a flexible hardware monitor can efficiently enforce and enhance a variety of security policies as security threats evolve. Existing hardware monitors typically suffer from one (or more) of the following drawbacks: a restricted set of monitoring actions, considerable performance and power overheads, or an invasive design. In this paper, we propose a minimally-invasive and efficient implementation of a Programmable Hardware Monitor (PHMon) with expressive monitoring rules and flexible fine-grained actions. PHMon can enforce a variety of security policies and can also assist with detecting software bugs and security vulnerabilities. Our prototype of PHMon on an FPGA includes the hardware monitor and its interface with a RISC-V Rocket processor as well as a complete Linux software stack. We demonstrate the versatility of PHMon and its ease of adoption through four different use cases: a shadow stack, a hardware-accelerated fuzzing engine, an information leak prevention mechanism, and a hardware-accelerated debugger. Our prototype implementation of PHMon incurs 0.9% performance overhead on average, while the hardware-accelerated fuzzing engine improves fuzzing performance on average by 16× over the state-of-the art software-based implementation. Our ASIC implementation of PHMon only incurs a 5% power overhead and a 13.5% area overhead.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {244034,
author = {Leila Delshadtehrani and Sadullah Canakci and Boyou Zhou and Schuyler Eldridge and Ajay Joshi and Manuel Egele},
title = {PHMon: A Programmable Hardware Monitor and Its Security Use Cases},
booktitle = {29th {USENIX} Security Symposium ({USENIX} Security 20)},
year = {2020},
address = {Boston, MA},
url = {https://www.usenix.org/conference/usenixsecurity20/presentation/delshadtehrani},
publisher = {{USENIX} Association},
month = aug,
}