BootStomp: On the Security of Bootloaders in Mobile Devices

Authors: 

Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara

Abstract: 

Modern mobile bootloaders play an important role in both the function and the security of the device. They help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of the following stage before executing it. This process, in theory, should be immune even to attackers gaining full control over the operating system, and should prevent persistent compromise of a device’s CoT. However, not only do these bootloaders necessarily need to take untrusted input from an attacker in control of the OS in the process of performing their function, but also many of their verification steps can be disabled (“unlocked”) to allow for development and user customization. Applying traditional analyses on bootloaders is problematic, as hardware dependencies hinder dynamic analysis, and the size, complexity, and opacity of the code involved preclude the usage of many previous techniques.

In this paper, we explore vulnerabilities in both the design and implementation of mobile bootloaders. We examine bootloaders from four popular manufacturers, and discuss the standards and design principles that they strive to achieve. We then propose BOOTSTOMP, a multi-tag taint analysis resulting from a novel combination of static analyses and dynamic symbolic execution, designed to locate problematic areas where input from an attacker in control of the OS can compromise the bootloader’s execution, or its security features. Using our tool, we find six previously-unknown vulnerabilities (of which five have been confirmed by the respective vendors), as well as rediscover one that had been previously reported. Some of these vulnerabilities would allow an attacker to execute arbitrary code as part of the bootloader (thus compromising the entire chain of trust), or to perform permanent denial-of-service attacks. Our tool also identified two bootloader vulnerabilities that can be leveraged by an attacker with root privileges on the OS to unlock the device and break the CoT. We conclude by proposing simple mitigation steps that can be implemented by manufacturers to safeguard the bootloader and OS from all of the discovered attacks, using already deployed hardware features.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {203844,
author = {Nilo Redini and Aravind Machiry and Dipanjan Das and Yanick Fratantonio and Antonio Bianchi and Eric Gustafson and Yan Shoshitaishvili and Christopher Kruegel and Giovanni Vigna},
title = {{BootStomp}: On the Security of Bootloaders in Mobile Devices},
booktitle = {26th USENIX Security Symposium (USENIX Security 17)},
year = {2017},
isbn = {978-1-931971-40-9},
address = {Vancouver, BC},
pages = {781--798},
url = {https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini},
publisher = {USENIX Association},
month = aug
}

Presentation Video