CCSP: Controlled Relaxation of Content Security Policies by Runtime Policy Composition


Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi, Università Ca’ Foscari Venezia


Content Security Policy (CSP) is a W3C standard designed to prevent and mitigate the impact of content injection vulnerabilities on websites by means of browser-enforced security policies. Though CSP is gaining a lot of popularity in the wild, previous research questioned one of its key design choices, namely the use of static white-lists to define legitimate content inclusions. In this paper we present Compositional CSP (CCSP), an extension of CSP based on runtime policy composition. CCSP is designed to overcome the limitations arising from the use of static white-lists, while avoiding a major overhaul of CSP and the logic underlying policy writing. We perform an extensive evaluation of the design of CCSP by focusing on the general security guarantees it provides, its backward compatibility and its deployment cost. We then assess the potential impact of CCSP on the web and we implement a prototype of our proposal, which we test on major websites. In the end, we conclude that the deployment of CCSP can be done with limited efforts and would lead to significant benefits for the large majority of the websites.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {203646,
author = {Stefano Calzavara and Alvise Rabitti and Michele Bugliesi},
title = {{CCSP}: Controlled Relaxation of Content Security Policies by Runtime Policy Composition},
booktitle = {26th USENIX Security Symposium (USENIX Security 17)},
year = {2017},
isbn = {978-1-931971-40-9},
address = {Vancouver, BC},
pages = {695--712},
url = {},
publisher = {USENIX Association},
month = aug,

Presentation Video