Trinity: High-Performance Mobile Emulation through Graphics Projection


Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, and Yunhao Liu, Tsinghua University; Feng Qian, University of Minnesota; Liangyi Gong, CNIC, CAS; Tianyin Xu, UIUC


Mobile emulation, which creates full-fledged software mobile devices on a physical PC/server, is pivotal to the mobile ecosystem, especially for PC-based mobile gaming, app debugging, and malware detection. Unfortunately, existing mobile emulators perform poorly on graphics-intensive apps in terms of both efficiency and compatibility. To address this, we introduce graphics projection, a novel graphics virtualization mechanism that adds a small-size projection space inside the guest memory of a virtual mobile device. The projection space processes graphics operations involving control contexts and resource handles without host interactions. Novel flow control and data teleporting mechanisms are used to match the decoupled graphics processing rates of the virtual device and the host GPU to maximize performance. The resulting new Android emulator, dubbed Trinity, exhibits an average of 93.3% native hardware performance and 97.2% app support, in some cases outperforming other emulators by more than an order of magnitude. It has been adopted by Huawei DevEco Studio, a major Android IDE with millions of developers.

OSDI '22 Open Access Sponsored by NetApp

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {280930,
author = {Di Gao and Hao Lin and Zhenhua Li and Chengen Huang and Yunhao Liu and Feng Qian and Liangyi Gong and Tianyin Xu},
title = {Trinity: {High-Performance} Mobile Emulation through Graphics Projection},
booktitle = {16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)},
year = {2022},
isbn = {978-1-939133-28-1},
address = {Carlsbad, CA},
pages = {285--301},
url = {},
publisher = {USENIX Association},
month = jul

Presentation Video