Groove: Flexible Metadata-Private Messaging

Authors: 

Ludovic Barman, EPFL; Moshe Kol, Hebrew University of Jerusalem; David Lazar, EPFL; Yossi Gilad, Hebrew University of Jerusalem; Nickolai Zeldovich, MIT CSAIL

Abstract: 

Metadata-private messaging designs that scale to support millions of users are rigid: they limit users to a single device that is online all the time and transmits on short regular intervals, and require users to choose precisely when each of their buddies can message them. These requirements induce high network and energy costs for the clients, restricting users to communicate via one powerful device, like their desktop.

Groove is the first scalable metadata-private messaging system that gives users flexibility: it supports users with multiple devices, allows them to message buddies at any time, even when those buddies are offline, and conserves the user's device bandwidth and energy. Groove offers flexibility by introducing oblivious delegation, where users designate an untrusted service provider to participate in rigid mechanisms of metadata-private communication. It provides differential privacy guarantees on par with rigid systems like Stadium and Karaoke.

An evaluation of a Groove prototype on AWS with 100 servers, distributed across four data centers on two continents, demonstrates that it can achieve 32s of latency for 1 million users with 50 buddies in their contact lists. Experiments with a client running on a Pixel 4 smartphone show that it uses about 100 MB/month of bandwidth and increases battery consumption by 50mW (+16%) compared to an idle smartphone. These measurements show that Groove makes it realistic to hide messaging metadata on a mobile device.

OSDI '22 Open Access Sponsored by NetApp

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {280852,
author = {Ludovic Barman and Moshe Kol and David Lazar and Yossi Gilad and Nickolai Zeldovich},
title = {Groove: Flexible {Metadata-Private} Messaging},
booktitle = {16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)},
year = {2022},
isbn = {978-1-939133-28-1},
address = {Carlsbad, CA},
pages = {735--750},
url = {https://www.usenix.org/conference/osdi22/presentation/barman},
publisher = {USENIX Association},
month = jul
}

Presentation Video