From Global to Local Quiescence: Wait-Free Code Patching of Multi-Threaded Processes

Authors: 

Florian Rommel and Christian Dietrich, Leibniz Universität Hannover; Daniel Friesel, Marcel Köppen, Christoph Borchert, Michael Müller, and Olaf Spinczyk, Universität Osnabrück; Daniel Lohmann, Leibniz Universität Hannover

Abstract: 

Live patching has become a common technique to keep long-running system services secure and up-to-date without causing downtimes during patch application. However, to safely apply a patch, existing live-update methods require the entire process to enter a state of quiescence, which can be highly disruptive for multi-threaded programs: Having to halt all threads (e.g., at a global barrier) for patching not only hampers quality of service, but can also be tremendously difficult to implement correctly without causing deadlocks or other synchronization issues.

In this paper, we present WfPatch, a wait-free approach to inject code changes into running multi-threaded programs. Instead of having to stop the world before applying a patch, WfPatch can gradually apply it to each thread individually at a local point of quiescence, while all other threads can make uninterrupted progress.

We have implemented WfPatch as a kernel service and user-space library for Linux 5.1 and evaluated it with OpenLDAP, Apache, Memcached, Samba, Node.js, and MariaDB on Debian 10 (“buster”). In total, we successfully applied 33 different binary patches into running programs while they were actively servicing requests; 15 patches had a CVE number or were other critical updates. Applying a patch with WfPatch did not lead to any noticeable increase in request latencies — even under high load — while applying the same patch after reaching global quiescence increases tail latencies by a factor of up to 41x for MariaDB.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {258983,
author = {Florian Rommel and Christian Dietrich and Daniel Friesel and Marcel K{\"o}ppen and Christoph Borchert and Michael M{\"u}ller and Olaf Spinczyk and Daniel Lohmann},
title = {From Global to Local Quiescence: {Wait-Free} Code Patching of {Multi-Threaded} Processes},
booktitle = {14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20)},
year = {2020},
isbn = {978-1-939133-19-9},
pages = {651--666},
url = {https://www.usenix.org/conference/osdi20/presentation/rommel},
publisher = {USENIX Association},
month = nov
}

Presentation Video