DORY: An Encrypted Search System with Distributed Trust


Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica, University of California, Berkeley


Efficient, leakage-free search on encrypted data has remained an unsolved problem for the last two decades; efficient schemes are vulnerable to leakage-abuse attacks, and schemes that eliminate leakage are impractical to deploy. To overcome this tradeoff, we reexamine the system model. We surveyed five companies providing end-to-end encrypted filesharing to better understand what they require from an encrypted search system. Based on our findings, we design and build DORY, an encrypted search system that addresses real-world requirements and protects search access patterns; namely, when a user searches for a keyword over the files within a folder, the server learns only that a search happens in that folder, but does not learn which documents match the search, the number of documents that match, or other information about the keyword. DORY splits trust between multiple servers to protect against a malicious attacker who controls all but one of the servers. We develop new cryptographic and systems techniques to meet the efficiency and trust model requirements outlined by the companies we surveyed. We implement DORY and show that it performs orders of magnitude better than a baseline built on ORAM. Parallelized across 8 servers, each with 16 CPUs, DORY takes 116ms to search roughly 50K documents and 862ms to search over 1M documents.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {258900,
author = {Emma Dauterman and Eric Feng and Ellen Luo and Raluca Ada Popa and Ion Stoica},
title = {{DORY}: An Encrypted Search System with Distributed Trust},
booktitle = {14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20)},
year = {2020},
isbn = {978-1-939133-19-9},
pages = {1101--1119},
url = {},
publisher = {{USENIX} Association},
month = nov,
Artifact Evaluated

Presentation Video