Unearthing inter-job dependencies for better cluster scheduling

Authors: 

Andrew Chung, Carnegie Mellon University; Subru Krishnan, Konstantinos Karanasos, and Carlo Curino, Microsoft; Gregory R. Ganger, Carnegie Mellon University

Abstract: 

Inter-job dependencies pervade shared data analytics infrastructures (so-called ``data lakes''), as jobs read output files written by previous jobs, yet are often invisible to current cluster schedulers. Jobs are submitted one-by-one, without indicating dependencies, and the scheduler considers them independently based on priority, fairness, etc. This paper analyzes hidden inter-job dependencies in a 50k+ node analytics cluster at Microsoft, based on job and data provenance logs, finding that nearly 80% of all jobs depend on at least one other job. Yet, even in a business-critical setting, we see jobs that fail because they depend on not-yet-completed jobs, jobs that depend on jobs of lower priority, and other difficulties with hidden inter-job dependencies.

The Wing dependency profiler analyzes job and data provenance logs to find hidden inter-job dependencies, characterizes them, and provides improved guidance to a cluster scheduler. Specifically, for the 68% of jobs (in the analyzed data~lake) that exhibit their dependencies in a recurring fashion, Wing predicts the impact of a pending job on subsequent jobs and user downloads, and uses that information to refine valuation of that job by the scheduler. In simulations driven by real job logs, we find that a traditional YARN scheduler that uses Wing-provided valuations in place of user-specified priorities extracts more value (in terms of successful dependent jobs and user downloads) from a heavily-loaded cluster. By relying completely on Wing for guidance, YARN can achieve nearly 100% of value at constrained cluster capacities, almost 2x that achieved by using the user-provided job priorities.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {258870,
author = {Andrew Chung and Subru Krishnan and Konstantinos Karanasos and Carlo Curino and Gregory R. Ganger},
title = {Unearthing inter-job dependencies for better cluster scheduling},
booktitle = {14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20)},
year = {2020},
isbn = {978-1-939133-19-9},
pages = {1205--1223},
url = {https://www.usenix.org/conference/osdi20/presentation/chung},
publisher = {{USENIX} Association},
month = nov,
}

Presentation Video