Overload Control for µs-scale RPCs with Breakwater


Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and Adam Belay, MIT CSAIL


Modern datacenter applications are composed of hundreds of microservices with high degrees of fanout. As a result, they are sensitive to tail latency and require high request throughputs. Maintaining these characteristics under overload is difficult, especially for RPCs with short service times. In this paper, we consider the challenging case of microsecond-scale RPCs, where the cost of communicating information and dropping a request is similar to the cost of processing a request. We present Breakwater, an overload control scheme that can prevent overload in microsecond-scale services through a new, server-driven admission control scheme that issues credits based on server-side queueing delay. Breakwater contributes several techniques to amortize communication costs. It engages in demand speculation, where it assumes clients have unmet demand and issues additional credits when the server is not overloaded. Moreover, it piggybacks client-side demand information in RPC requests and credits in RPC responses. To cope with the occasional bursts in load caused by demand speculation, Breakwater drops requests when overloaded using active queue management. When clients’ demand spikes unexpectedly to 1.4x capacity, Breakwater converges to stable performance in less than 20 ms with no congestion collapse while DAGOR and SEDA take 500 ms and 1.58 s to recover from congestion collapse, respectively.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {258931,
author = {Inho Cho and Ahmed Saeed and Joshua Fried and Seo Jin Park and Mohammad Alizadeh and Adam Belay},
title = {Overload Control for {\textmu}s-scale RPCs with Breakwater},
booktitle = {14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20)},
year = {2020},
isbn = {978-1-939133-19-9},
pages = {299--314},
url = {https://www.usenix.org/conference/osdi20/presentation/cho},
publisher = {{USENIX} Association},
month = nov,
Artifact Evaluated

Presentation Video