Floem: A Programming System for NIC-Accelerated Network Applications


Phitchaya Mangpo Phothilimthana, University of California, Berkeley; Ming Liu and Antoine Kaufmann, University of Washington; Simon Peter, The University of Texas at Austin; Rastislav Bodik and Thomas Anderson, University of Washington


Developing server applications that offload computation and data to a NIC accelerator is laborious because one has to explore the design space of decisions about data placement and caching; partitioning of code and its parallelism; and communication strategies between program components across devices.

We propose programming abstractions for NIC-accelerated applications, balancing the ease of developing a correct application and the ability to refactor it to explore different design choices. The design space includes semantic changes as well as variations on parallelization and program-to-resource mapping. Our abstractions include logical and physical queues and a construct for mapping the former onto the latter; global per-packet state; a remote caching construct; and an interface to external application code. We develop Floem, a programming system that provides these abstractions, and show that the system helps explore a space of NIC-offloading designs for real-world applications, including a key-value store and a distributed real-time data analytics system, improving throughput by 1.3--3.6x.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Presentation Audio

@inproceedings {222623,
author = {Phitchaya Mangpo Phothilimthana and Ming Liu and Antoine Kaufmann and Simon Peter and Rastislav Bodik and Thomas Anderson},
title = {Floem: A Programming System for NIC-Accelerated Network Applications},
booktitle = {13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18)},
year = {2018},
isbn = {978-1-931971-47-8},
address = {Carlsbad, CA},
pages = {663--679},
url = {https://www.usenix.org/conference/osdi18/presentation/phothilimthana},
publisher = {{USENIX} Association},