Ray: A Distributed Framework for Emerging AI Applications


Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica, UC Berkeley


The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray — a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system’s control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Presentation Audio

@inproceedings {222605,
author = {Philipp Moritz and Robert Nishihara and Stephanie Wang and Alexey Tumanov and Richard Liaw and Eric Liang and Melih Elibol and Zongheng Yang and William Paul and Michael I. Jordan and Ion Stoica},
title = {Ray: A Distributed Framework for Emerging {AI} Applications},
booktitle = {13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18)},
year = {2018},
isbn = {978-1-931971-47-8},
address = {Carlsbad, CA},
pages = {561--577},
url = {https://www.usenix.org/conference/osdi18/presentation/moritz},
publisher = {{USENIX} Association},