TVM: An Automated End-to-End Optimizing Compiler for Deep Learning

Authors: 

Tianqi Chen and Thierry Moreau, University of Washington; Ziheng Jiang, University of Washington, AWS; Lianmin Zheng, Shanghai Jiao Tong University; Eddie Yan, Haichen Shen, and Meghan Cowan, University of Washington; Leyuan Wang, UC Davis, AWS; Yuwei Hu, Cornell; Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy, University of Washington

Abstract: 

There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms -- such as mobile phones, embedded devices, and accelerators (e.g., FPGAs, ASICs) -- requires significant manual effort. We propose TVM, a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives, and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of code optimizations. Experimental results show that TVM delivers performance across hardware back-ends that are competitive with state-of-the-art, hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPUs. We also demonstrate TVM's ability to target new accelerator back-ends, such as the FPGA-based generic deep learning accelerator. The system is open sourced and in production use inside several major companies.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Presentation Audio

BibTeX
@inproceedings {222575,
author = {Tianqi Chen and Thierry Moreau and Ziheng Jiang and Lianmin Zheng and Eddie Yan and Haichen Shen and Meghan Cowan and Leyuan Wang and Yuwei Hu and Luis Ceze and Carlos Guestrin and Arvind Krishnamurthy},
title = {{TVM}: An Automated End-to-End Optimizing Compiler for Deep Learning},
booktitle = {13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18)},
year = {2018},
isbn = {978-1-931971-47-8},
address = {Carlsbad, CA},
pages = {578--594},
url = {https://www.usenix.org/conference/osdi18/presentation/chen},
publisher = {{USENIX} Association},
}