Gemini: A Computation-Centric Distributed Graph Processing System


Xiaowei Zhu, Wenguang Chen, and Weimin Zheng, Tsinghua University; Xiaosong Ma, Hamad Bin Khalifa University


Traditionally distributed graph processing systems have largely focused on scalability through the optimizations of inter-node communication and load balance. However, they often deliver unsatisfactory overall processing efficiency compared with shared-memory graph computing frameworks. We analyze the behavior of several graph-parallel systems and find that the added overhead for achieving scalability becomes a major limiting factor for efficiency, especially with modern multi-core processors and high-speed interconnection networks.

Based on our observations, we present Gemini, a distributed graph processing system that applies multiple optimizations targeting computation performance to build scalability on top of efficiency. Gemini adopts (1) a sparse-dense signal-slot abstraction to extend the hybrid push-pull computation model from shared-memory to distributed scenarios, (2) a chunk-based partitioning scheme enabling low-overhead scaling out designs and locality-preserving vertex accesses, (3) a dual representation scheme to compress accesses to vertex indices, (4) NUMA-aware sub-partitioning for efficient intra-node memory accesses, plus (5) locality-aware chunking and fine-grained work-stealing for improving both inter-node and intra-node load balance, respectively. Our evaluation on an 8-node high-performance cluster (using five widely used graph applications and five real-world graphs) shows that Gemini significantly outperforms all well-known existing distributed graph processing systems, delivering up to 39.8x (from 8.91x) improvement over the fastest among them.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {199295,
author = {Xiaowei Zhu and Wenguang Chen and Weimin Zheng and Xiaosong Ma},
title = {Gemini: A {Computation-Centric} Distributed Graph Processing System},
booktitle = {12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)},
year = {2016},
isbn = {978-1-931971-33-1},
address = {Savannah, GA},
pages = {301--316},
url = {},
publisher = {USENIX Association},
month = nov,

Presentation Audio