GAIA: A System for Interactive Analysis on Distributed Graphs Using a High-Level Language


Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou, Alibaba Group


GAIA (GrAph Interactive Analysis) is a distributed system designed specifically to make it easy for a variety of users to interactively analyze big graph data on large clusters at low latency. It adopts a high-level language called Gremlin for graph traversal, and provides automatic parallel execution. In particular, we advocate a powerful new abstraction called Scope that caters to the specific needs in this new computation model to scale graph queries with complex dependencies and runtime dynamics, while at the same time maintaining the simple and concise programming model. GAIA has been deployed in production clusters at Alibaba to support a variety of business-critical scenarios. Extensive evaluations using both benchmarks and real-world applications have validated the effectiveness of the proposed techniques, which enables GAIA to execute complex Gremlin traversal with orders-of-magnitude better performance than existing high-performance engines, and at much larger scales than recent state-of-the-art Gremlin-enabled systems such as JanusGraph.

NSDI '21 Open Access Sponsored by NetApp

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {265045,
author = {Zhengping Qian and Chenqiang Min and Longbin Lai and Yong Fang and Gaofeng Li and Youyang Yao and Bingqing Lyu and Xiaoli Zhou and Zhimin Chen and Jingren Zhou},
title = {{GAIA}: A System for Interactive Analysis on Distributed Graphs Using a {High-Level} Language},
booktitle = {18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21)},
year = {2021},
isbn = {978-1-939133-21-2},
pages = {321--335},
url = {},
publisher = {USENIX Association},
month = apr

Presentation Video