
Cross-Router Covert Channels

Adar Ovadya, Rom Ogen, Yakov Mallah, Niv Gilboa and Yossi Oren
Faculty of Engineering Sciences, Ben-Gurion University of the Negev

{adarov@post.| romog@post.| mallah@post.| gilboan@| yos@} bgu.ac.il

Abstract
Many organizations protect secure networked devices from
non-secure networked devices by assigning each class of de-
vices to a different logical network. These two logical net-
works, commonly called the host network and the guest net-
work, use the same router hardware, which is designed to
isolate the two networks in software.

In this work we show that logical network isolation based
on host and guest networks can be overcome by the use
of cross-router covert channels. Using specially-crafted net-
work traffic, these channels make it possible to leak data
between the host network and the guest network, and vice
versa, through the use of the router as a shared medium. We
performed a survey of routers representing multiple vendors
and price points, and discovered that all of the routers we
surveyed are vulnerable to at least one class of covert channel.
Our attack can succeed even if the attacker has very limited
permissions on the infected device, and even an iframe hosting
malicious JavaScript code can be used for this purpose. We
provide several metrics for the effectiveness of such channels,
based on their pervasiveness, rate and covertness, and discuss
possible ways of identifying and preventing these leakages.

1 Introduction

Network separation and network isolation are important com-
ponents of the security policy of many organizations. The
goal of these policies is to prevent network intrusions and in-
formation leakage by separating sensitive network segments
from other segments of the organizational network, and indeed
from the general Internet. The traffic sent over the sensitive
network segments may include mission-critical business doc-
uments, control data for industrial systems, or private health
records. Less sensitive data may include multimedia streams,
environmental sensor readings or data related to the operation
of home automation devices.

The different levels of security also extend to the networked
devices themselves. While some devices are protected from

security risks by their owners and manufacturers, either by
careful administration or by the use of automatic updates,
other networked devices, such as Internet of Things (IoT)
nodes [24] or medical devices [19], are difficult or impossible
to patch, and are considered to be at a higher risk of malware
infection. It is especially important to isolate these less-secure
networked devices from other devices on the network.

A common approach for achieving network isolation is to
logically separate one physical network into multiple logical
networks. Many routers provide this functionality by splitting
the network into a host network and a guest network. The
router discards any traffic traveling between one network and
the other, enforcing separation as long as nodes on the two
networks do not connect to a common node on the Internet.

Logical isolation is not only common in practice, but it
is actively recommended as a security measure. For exam-
ple, the U.S. National Institute of Standards and Technology
(NIST) [20] recommends isolating Industrial Control Sys-
tem components, which typically have monolithic software
installations which are difficult to upgrade and maintain, into
dedicated network segments, isolated from the main corpo-
rate IT network. Based by this recommendation, the U.S.
Department of Veterans’ Affairs created the Medical Device
Isolation Architecture (MDIA) [1], which mandates the use
of software-based mechanisms to isolate medical devices and
restrict their traffic from entering the hospital’s network.

In this work, we analyze the effectiveness of logical net-
work separation against an attacker who has succeeded in in-
stalling a malicious agent on at least one of the two separated
network segments. The goal of the attacker is to communicate
with this agent, bypassing the security boundary enforced by
a router or by another network component.

There are two important use cases in which a malicious
actor may desire to overcome this isolation: exfiltration and
control. The exfiltration scenario is illustrated in Figure 1. As
shown in the Figure, a malicious implant installed on the guest
network has collected some sensitive data, for example, a per-
sonal health-related sensor reading, and would like to leak this
data to the Internet. Only the host network, however, and not

Guest Network

Router

Malicious Implant

Overt Traffic Blocked

Exfi
ltra

te d
ata

Host Network

Cov
ert

 ch
an

ne
l Covert channel

Internet

Collect data

Figure 1: A covert channel between a host network and a
guest network. Overt traffic is blocked, but the covert channel
is not blocked.

the guest network, is connected to the Internet, and overt com-
munications between the two networks is blocked. As shown
in the Figure, the malicious implant can use a cross-router
covert channel to send the data to the host network, and from
there to the Internet. In the control scenario, a remote com-
mand and control server located on the Internet is interested
in sending an activation command to an advanced persistent
threat (APT) installed on a device residing on the sensitive
host network. Only the guest network, however, and not the
host network, is connected to the Internet in this scenario.
The attacker can use a cross-router covert channel to cause a
computer residing on the guest network to send the activation
command to the implant. As we show in this article, our attack
can succeed even if the attacker has very limited permissions
on the infected device, and even an iframe hosting malicious
JavaScript code can be used for this purpose.

The general mechanism which is used for sending and
receiving data in such a restricted situation is called a covert
channel. As described in more detail in Section 1.1, a covert
channel is a communications link set up between two parties,
the sender and the receiver, who want to share some data
between them where direct communication is not allowed.
In our particular case, we would like to exploit the fact that
the router is a shared resource between the host and the guest
network, and use this router as the covert channel.

In this paper we make the following contributions:

• We characterize cross-router covert channels, which al-
low leaking data between the host network and the guest
network through the use of the router as a shared medium.
We provide several metrics for the effectiveness of such
channels, based on their pervasiveness, rate and covert-
ness.

• We perform a survey of routers representing multiple
vendors and price points, and identify a series of cross-

router covert channels which impact some or all of the
routers we survey.

• We classify the covert channels according to data rate,
ease of identification and impact on network traffic.

• We discuss possible ways of identifying and preventing
these cross-router leakages.

Understanding the limitations of software-based network
isolation is very important due to two factors: the first is the
explosive growth in inexpensive and relatively insecure IoT
devices, and the second is the increasing dependence of many
organizations on a secure IT infrastructure.

1.1 Covert Channels

Covert channels, first defined in 1973 by Lampson in [11],
are communication channels which exist between two parties,
a sender and a receiver, and can be used when overt communi-
cation between these parties is prohibited due to privilege sep-
aration, sandboxing or other architectural boundaries. In [23],
Zander et al. define two main two types of covert channels:
direct and indirect. A direct covert channel describes the case
when the two parties run an innocuous-looking overt com-
munication channel, containing a hidden covert channel. An
indirect covert channel describes the case when such an overt
communication channel between the parties does not exist.
In this case, the two parties establish a covert channel using
some hardware which is shared between them.

In our particular case, a direct covert channel would corre-
spond to a method of direct data exchange between the host
network and the guest network which is not blocked by the
router’s isolation architecture. Direct covert channels can be
considered software bugs, and are relatively simple to fix in
software, either by the addition of additional firewall rules
which block these data packets, or by scrubbing the sensitive
data and replacing it with random data. An indirect covert
channel, on the other hand, would be achieved by having the
sender selectively exhaust the finite hardware resources (CPU,
memory, network bandwidth, etc.) available on the router, and
having the receiver measure the effect of this varying resource
consumption on its own performance. Blocking this form of
data transfer is more difficult, since it may require architec-
tural changes to the router.

We note that throughout this paper we do not consider
communications channels that are simply based on writing to
a third-party server accessible to both the host and the guest
networks (i.e. some shared resource on the Internet), since
this form of data exchange is relatively easy to detect and
block. Furthermore, in some network topologies either the
host or the guest network cannot access the Internet at all.

1.2 Motivation

The general architecture of a router, as described by Kurose
and Ross in [10], can be found in Figure 2. As noted in the
Figure, the two main elements in the router are the software-
based control plane and the hardware-based routing plane. As
Kurose and Ross note, "the router’s input ports, output ports,
and switching fabric together implement the forwarding func-
tion and are almost always implemented in hardware. These
forwarding functions are sometimes collectively referred to as
the router forwarding plane. . . . While the forwarding plane
operates at the nanosecond time scale, a router’s control func-
tions —– executing the routing protocols, responding to at-
tached links that go up or down, and performing management
functions –— operate at the millisecond or second timescale.
These router control plane functions are usually implemented
in software and execute on the routing processor (typically a
traditional CPU)."

Guided by this discussion, we chose to focus our attempts
to create a cross-router covert channel not on the forwarding
plane, which operates at line speed, but rather on the slower
control plane. We did so by generating traffic which the router
does not simply forward, but rather has to respond to in soft-
ware. While devices on the host network may have a wide
variety of ways to interact with the router’s control plane, we
claim that even the most locked-down router must expose
a bare minimum set of router control plane functions to the
guest network in order to function properly, notably the Dy-
namic Host Configuration Protocol (DHCP) [5], the Address
Resolution Protocol (ARP) [16], and the Domain Name Sys-
tem (DNS) [14]. An additional control plane feature which
is often exposed to the guest network as a convenience is the
Internet Control Message Protocol [17], commonly used by
the ping utility to verify network connectivity.

Switching

Fabric

Routing

Processor

Input Ports Output Ports

Forwarding

data plane (hardware)

Routing, management

control plane (software)

Packet handled by

Routing Processor

Packet handled by

Switching Fabric

Figure 2: Architecture of a router. Some packets are handled
quickly by the switching fabric, while others are handled more
slowly by the routing processor.

2 Router-Based Covert Channels

The covert channels we discovered can be broadly split into
two groups: direct covert channels and timing covert chan-
nels. In direct covert channels, the data to be exchanged is
directly encoded into a packet which is (erroneously) for-
warded between the host and guest networks. As soon as we
discover such a form of erroneously forwarded packet, using
this form of covert channel is quite straightforward. Timing-
based covert channels, on the other hand, take advantage of
the shared resources on the router, such as CPU time, network
and IPC buffers, and so on. To exploit these channels, we need
to construct sender and receiver gadgets which cause an in-
creased demand on the router’s control plane or sample this
demand, respectively. Various combinations of these sender
and receiver gadgets can be used to form a covert channel,
depending on the router’s support for different network proto-
cols. In the following Section we describe the direct covert
channels we discovered, as well as a series of sender and re-
ceiver gadgets used for timing-based covert channels. In the
next Section we show how these gadgets can be combined in
various ways to form complete covert channels.

2.1 Direct Covert Channels

2.1.1 DHCP Direct

Host Router Guest

DHCP Request

Transaction ID = x

DHCP Nak

Transaction ID = x

DHCP Nak

Transaction ID = x

Figure 3: The DHCP Direct covert channel. On some routers,
a DHCP NAK from one network is erroneously sent to the
other network.

The Dynamic Host Configuration Protocol (DHCP) [5] is
a protocol used to dynamically assign IP addresses and other
network configuration parameters to hosts joining a network.
While the protocol formally involves a message exchange
between the host, or DHCP client, and a DHCP server present
on the network, in practice most residential and small business
routers implement DHCP server functionality themselves.
The DHCP protocol begins with the client computer sending
a DHCP Discover message. The DHCP server will respond
with a DHCP Offer message, offering an IP address and
other parameters. The client then chooses an offer and sends
a DHCP Request message with the requested IP address and
parameters. Finally, the DHCP server either sends a DHCP
ACK message affirming the requested IP and parameters, or a
DHCP NAK message denying the request. In today’s reality
of wireless hosts joining and leaving the network in an ad-hoc

manner, the DHCP server is virtually mandatory in routers,
and must be enabled both on the host and the guest network.

The DHCP direct covert channel exploits the fact that some
DHCP packets have an unusual IP header, which includes
0.0.0.0 and 255.255.255.255 as the source and destination ad-
dresses, respectively. This uncommon structure causes DHCP
packets to be handled by non-standard code paths on many
devices. Furthermore, DHCP is one of the protocols which
must be supported on the guest network, since without it net-
work connectivity is impossible. On several of the routers we
investigated, the router responds to an invalid DHCP Request
message sent from the guest network with a broadcast DHCP
NAK response which is sent to both the guest and the host
networks. Figure 3 demonstrates how we exploit this behavior
to transfer data between these two networks. The arrows be-
tween the participants in the attack describe the messages sent
from one participant to the other over time. The text by each
arrow describes the message sent between the participants.
As we can see, a DHCP Request is sent to the router with a
certain Transaction ID field. Following the DHCP protocol,
the router responds with ACK/NAK message (in our case
NAK), erroneously sending the NAK to both Host and Guest
networks with the same Transaction ID as found in the DHCP
Request. This allows encoding of data to be sent cross-router
into the 32-bit Transaction ID field.

2.1.2 IGMP Direct

Host Router Guest

IGMP Join
Group IP = x

IGMP Membership
Query

Group IP = x

IGMP Membership
Query

Group IP = x

IGMP Leave
Group IP = x

Figure 4: The IGMP Direct covert channel. On some routers,
an IGMP leave from one network erroneously causes an
IGMP membership query to be sent to the other network.

The Internet Group Management Protocol (IGMP) [6] is a
protocol used on IPv4 networks to establish multicast group
membership. Despite its extremely limited use, this protocol
is supported for historical reasons by a wide variety of routers.
According to the IGMP protocol, if a router discovers that
the last member of an IGMP group has left the group, it must
check whether there are remaining members in the group by
sending an IGMP Membership Query packet to all of its
connected interfaces.

The IGMP Direct covert channel exploits this property of
the IGMP protocol. We discovered that quickly joining and
leaving a group from the host side caused an IGMP Mem-
bership Query packet to be sent to both the host and guest

networks on routers TP1, TP2, DL2 and ED2. Figure 4 demon-
strates how we use this behavior to transfer data between these
two networks. In order to transfer data from the host network
to the guest network, the sender joins and then leaves an
IGMP group. After it leaves, the router, following the IGMP
protocol, creates an IGMP Membership Query packet with
the Group IP and sends it to both the Host and the Guest
networks. The data is transferred within the Group IP field,
which is completely controlled by the sender.

2.1.3 ARP Direct

The Address Resolution Protocol (ARP) [16] is a link-level
protocol used to resolve a MAC address associated with an IP
address. To resolve a MAC address of a specific associated IP
address, a station broadcasts an ARP request packet (a.k.a.
"who-has") asking for the MAC address of a station with a
specific IP address in the network. The station which has the
IP address specified in the ARP request then sends an ARP
response packet (a.k.a. "is-at") with its own MAC address as
an answer.

ARP must always be enabled, even on the guest network,
since it is used to locate the router itself. We noticed, however,
that some of the routers we evaluated forwarded ARP requests,
which are sent as broadcast packets, between the host and the
guest networks. Some routers restricted ARP forwarding only
to requests destined for the network’s subnet mask, while
some routers did not restrict this traffic in any way. To use
this leakage as a direct covert channel, the sender can trivially
issue an ARP request to an arbitrary computer on the network,
using either the lower 8 bits of the IP address, or the entire 32
bits in other cases, as the data payload.

2.2 Timing Covert Channel Building Blocks
The gadgets described in the following subsection can be
used to either cause an increased demand on the router’s
shared resources or to sample this demand. A complete covert
channel is formed by combining two of these gadgets, one on
the host network and one on the guest network.

2.2.1 SSH

The SSH protocol [22] is used for remote access to various
types of network equipment, including several of the routers
we evaluated in this work. We take advantage of the fact that
SSH connection setup is a relatively CPU-intensive operation,
specifically involving a modular exponentiation as part of the
key exchange process. Figure 5 describes the course of the
attack, with the three vertical lines in the interaction diagram
representing the Host , Router and Guest actors. As shown in
the Figure, the sender initiates SSH key exchange on the Host
network. The router carries out a modular exponentiation as
part of the key exchange, and the connection is finally aborted

RouterHost

Protocol
Protocol

Key Exchange

Init

f = gy mod p

Key Exchange

Init

e = gx mod p

Diffie-Hellman

Key Exchange

Init (send e)

K = ey mod p

Send (KS || f ||s)

Time for Message

Time for

Calculation

Time for

message + calculation

Guest

Request

Reply

Time for

Reply

Figure 5: The SSH Timing building block. Causing the router
to perform an SSH Key Exchange makes it noticeably slower
in responding to other requests.

before the protocol concludes. Since the aborted connection
stops before the authentication phase, we found that there is
no evidence in the router’s log file that the connection attempt
even occurred, adding to the covertness of this attack.

To make sure the channel had a reasonable bit rate, we
minimized the calculation time by choosing the parameter set
diffie-hellman-group1-sha1, which has a small key size.
This parameter set is, in fact, unsupported in most modern
implementations of SSH on desktops and servers, but can be
enabled using legacy mode command line parameters.

2.2.2 CSRF

Cross-Site Request Forgery, or CSRF, is a type of web attack
described in RFC 6749 [9] as "an exploit in which an attacker
causes the user-agent of a victim end-user to follow a mali-
cious URI (e.g., provided to the user-agent as a misleading
link, image, or redirection) to a trusting server (usually es-
tablished via the presence of a valid session cookie).". CSRF
attacks have historically been used to maliciously modify
router settings, perform malicious bank transactions, and so
on. To prevent these attacks, modern browsers prevent cross-
site read and write access to websites unless a Cross-Origin
Resource Sharing field is used. It is still, however, possible
for a website to display content from another website in an
embedded iframe [3].

To use CSRF as a timing covert channel, we take advan-
tage of the fact that most routers expose a web management
interface on the host network. The attacker can then coerce a
victim on the host network into viewing an attacker-controlled
web page (for example, by showing a malicious advertise-
ment), and access this management interface using an em-
bedded iframe element. Due to modern CSRF protections
built into most routers and browsers, it is rather difficult for an
adversary to maliciously change settings on the router using
this method. The timing channel, however, is still present,
since web resources requested by this iframe are served by
the router’s control plane. Therefore, the CSRF channel can

be used as a send gadget, by repeatedly loading the router’s
webpage in an iframe, causing an increased CPU load on the
router. It can also be used as a receive gadget which gauges
the load on the router by measuring the time it takes for the
router’s management website to render (or, in practice, to
return an "access denied" error).

2.2.3 DHCP Timing

The DHCP protocol, described above as a potential direct
covert channel, can also be used as a timing-based covert
channel, even if it is properly implemented. To use DHCP in
this way, the attacker can send a valid DHCP Request packet
to the router and measure the time it takes for the router to
respond with a DHCP Acknowledge packet. This behavior is
allowed by the DHCP protocol, and is used for clients wishing
to extend their leased address.

We noted experimentally that DHCP protocol interactions
result in entries being created on the log files of some routers.
On one hand, this additional file system activity increases
the processing time of every DHCP transaction, making it
easier to use in a timing covert channel. On the other hand,
this activity leaves evidence which makes the attack easier to
detect after the fact.

2.2.4 ARP Timing

As mentioned previously, the ARP protocol is enabled even
on the guest network, since it is used to locate the router itself.
To use the ARP protocol as a timing-based covert channel
gadget, the sender repeatedly queries the router for its own
MAC address by sending an ARP who-has packet with the
router’s IP address. The router has to answer this request,
even on the guest network, for the network to function. On
the receiver side, the attacker sends an ARP request again,
and measures the time it takes for the router to respond to the
ARP request. As shown in the following Section, even a low
rate of ARP requests, as little as 100 packets per second, can
affect the CPU load of the router in a measurable way.

2.2.5 ICMP

The Internet Control Message Protocol (ICMP) [17] is a sup-
porting protocol which is a vital part of the Internet Protocol
suite. It is used to provide feedback about problems and op-
erational information in the networked communication envi-
ronment. One very common use for the ICMP protocol is the
ping command, which is used to diagnose network connec-
tivity. When the ping command runs, it sends an ICMP echo
request packet to the remote host, which is then expected to
reply with an ICMP echo reply packet. While support for
ICMP is not mandatory, the ability to "ping the router" is a
common enough request for ICMP to be enabled on the guest
networks of some of the routers we evaluated.

As in the case of ARP, this protocol can be used as a timing-
based covert channel gadget by repeatedly sending ICMP
echo requests to the router and then measuring the time it
takes for the router to respond.

3 Methodology

To demonstrate the wide impact of the covert channel we
discovered, we attempted to reproduce our results on as many
router models as possible, from multiple vendors and price
points. To prepare each router for experimentation, we first
inspected its online documentation, both on the official ven-
dor website and on the OpenWRT website, which contains
hardware information for many router models. Next, we made
sure the router was factory reset and updated it to the most
recent firmware version we could find on the vendor’s website.
Then, we used the router’s web-based management interface
to enabled the router’s host and guest isolation feature and con-
nected two different computers to the router’s host and guest
networks, respectively. We checked that the isolation feature
works in principle by verifying that naïve direct connections
between the two computers are blocked by the router.

Next, we attempted to identify any open services of the
router by running the nmap utility, both on the host and on
the guest network. We also passively monitored the router’s
activity by running tcpdump and observing which services
are advertised by the router, again both on the host and on
the guest network. Finally, we tested for the existence of
direct or indirect covert channels, by observing how the router
reacted to a set of uniquely-crafted messages which we found
were more likely to breach the network isolation feature, as
described in the following sections.

Guest Network

Router

Host Network

Raspberry PiRaspberry Pi

wired connectionwired connection

Figure 6: Experiment Setup

Figure 6 shows the experiment setup we used. As shown in
the Figure, each router under test was connected via wireless
link to two Raspberry Pi devices, one connected to the guest

network and the other to the host network. The two Raspberry
Pis were in turn connected via a wired Ethernet link to a test
harness computer, which was used to start the measurements
and collect the experiment results. To make sure cross-router
communication was not achieved via an external third-party
server, the router’s WAN/Internet port was left disconnected.

The list of routers we evaluated is listed in Table 1. As
shown in the Table, the routers cover a variety of vendors and
price points, and have a wide diversity of CPU types, speeds
and core counts.

3.1 Criteria for channel quality
This report identifies many different types of covert channels.
We propose the following metrics to compare and evaluate
the quality of each of the channels we found.

The first and most significant criterion is the pervasiveness
of the channel: how widespread is this channel among the
various types of hardware, and how difficult would it be to
fix this channel using a simple software upgrade. The next
criterion is the channel’s rate: how much data can be trans-
ferred per unit of time over this channel with a reasonable
data rate. Finally, we can consider the channel’s degree of
covertness: how similar is traffic sent using this channel to
regular traffic exchanged by the router, and how hard is this
channel to detect using forensic tools which examine log files
and other external artifacts.

4 Results

Table 2 lists the types of attacks we evaluated on our routers,
either by immediately applying direct covert channels, or by
combining send and receive gadgets for timing-based covert
channels. When discussing timing-based covert channels, the
first gadget is always used on the guest side, and the second
gadget on the host side. We indicate that a timing-based covert
channel exists only if Student’s Independent two-sample t-
test, applied to the outputs from the receive gadget, can tell
apart between two sets of 1,000 timings, obtained either with
and without the sender gadget, with a significance of p< 0.05.

The direction of the arrows indicates whether we discov-
ered a host-to-guest covert channel, a guest-to-host covert
channel, or a bidirectional channel spanning both directions.

In addition to the channels examined in this report, we
note that timing-based channels exist for additional combi-
nations of sender and receiver gadgets, for example DHCP
vs. DHCP, using similar mechanisms to the ones described
above. Discussion of these channels is omitted for space.

4.1 DHCP Direct
In order to measure the performance of the DHCP attack, Fig-
ure 7 describes the bit error rate as a function of the sending

Table 1: Evaluated Routers
Identifier Vendor Model CPU type Core count CPU speed Year introduced Price

TP1 TP-Link Archer C3200 Broadcom BCM4709A0 2 1 GHz 2015 $218
TP2 TP-Link Archer C2 MediaTek MT7620A 1 580 MHz 2017 $63
DL1 D-Link DIR-882 MediaTek MT7621A 1 880 MHz 2017 $154
DL2 D-Link DIR-825AC Realtek RTL8197DN 1 660 MHz 2015 $50
ED1 Edimax RG21S MediaTek MT7621AT 2 880 MHz 2017 $209
ED2 Edimax BR-6208AC Realtek RTL8881AQ 1 520 MHz 2014 $47
LS1 Linksys EA7500-eu Qualcomm IPQ8064 2 1.4 GHz 2016 $185

Table 2: Covert Channels Supported by Different Routers
The table summarizes the covert channels we found on each one of the routers described in Table 1.

The arrow direction describes the possible flow of the data between the guest (G) and host (H) networks.

Channel Type TP1 TP2 DL1 DL2 ED1 ED2 LS1

ARP-SSH Timing G) H G) H – – – – –
ARP-ARP Timing G , H G , H – G , H G (H G , H G , H
ARP-CSRF Timing G , H G) H G , H G) H G , H G) H G) H
ICMP-ICMP Timing – – – – G , H – G , H
DHCP-ARP Timing G , H G , H G , H G , H G) H G (H G , H
DHCP Direct Direct G (H G (H – G , H – G , H –
IGMP Direct Direct G (H G (H – G , H – G , H –
ARP Direct Direct G (H G (H – G , H – G , H –

Figure 7: DHCP Direct error rate by bit rate (TP2)

bit rate. The circles are the actual output and the line empha-
sizes the change in the error rate over the bit rate. We can
see that up to around 3200 bits per second the bit error rate
remains low and above that the router is flooded and cannot
handle all the DHCP Requests, leading to a jump in the bit
error rate above 3200 bits per second.

We implemented a simple end-to-end attack demonstration
in Python which provides a chat functionality between two
isolated networks using this covert channel. It is relatively
straightforward to extend this demonstration to a full bidirec-
tional pipe which can carry higher-level traffic such as PPP
or SSH tunnels [13].

4.2 IGMP Direct

Figure 8: IGMP Direct error rate by bit rate (TP2)

Figure 8 describes the bit error rate as function of the bit
rate of the IGMP attack described in 4. We can see that the
error rate grows with the bit rate, and that above 170 bits per
second the error rate becomes than 50 percent.

4.3 ARP vs. SSH
To demonstrate the performance of the SSH vs. ARP attack
we present Figure 9, which was captured on router TP2. The
figure compares the time it took the router to answer the
receiver’s SSH requests while the sender sent ARP requests
and while it did not. Each color describes a different test-run in
which the receiver sends 1,000 SSH requests, while the sender

sends a stream of ARP requests in different rates, between 0 to
400 packets per second. The blue bar is the test-run in which
the sender sends no ARP requests. The other bars are the
test-runs in which the sender sends ARP requests in different
rates, from 100 to 400 packets per second. It can be seen that
there is a clear difference between the measurements, and that
the router takes more time to answer the receiver when the
sender is sending ARP requests.

Figure 9: ARP vs. SSH timing attack (TP2). Each histogram
describes a different test-run in which the receiver sends 1,000
SSH requests, while the sender sends a stream of ARP re-
quests in different rates, between 0 to 400 packets per second.

4.4 ARP vs. ARP
Figure 10 shows measurements of the time it took the router
to answer the receiver’s ARP requests, sent from the host
network, while the sender sent ARP requests, sent from the
guest network, and while it did not. The following Figure
shows this attack on two different routers: ED1 and TP2.
Each color describes a different test-run in which the receiver
sends 1000 ARP requests and the sender continuously sends
ARP requests in different rates, from 0 to 800 packets per
second. On the bottom graph it is clearly seen that when the
sender sends ARP requests at a high rate, it takes more time
for the router to answer the receiver. On the other hand, the top
graph illustrating router ED1 shows no significant difference
in the response time, but the t-test performed on the results
shows significant difference between the different test-runs
(p-value lower than 0.05).

4.5 ICMP vs. ICMP
Figure 11 shows the average round-trip time for an ICMP
request measured at the host network, as a function of the rate
of ICMP packets sent from the guest network, as measured
on router LS1. We can see that the measured response time
on the host network goes up with the number of packets per
second sent on the guest network, allowing data to be sent
between these two networks.

Figure 10: ARP vs ARP timing attack (top: ED2, bottom:
TP2) Each histogram describes a different test-run in which
the receiver sends 1000 ARP requests and the sender contin-
uously sends ARP requests in different rates, from 0 to 800
packets per second.

Figure 11: Average round-trip time for an ICMP request on
the host network, as function on the rate of ICMP packets
sent from the guest network (LS1).

4.6 ARP vs. CSRF

Figure 12: ARP vs. CSRF timing attack (DL1) Each his-
togram shows the round-trip time for an CSRF request mea-
sured using JavaScript on the host network, as a function of
the rate of ARP packets sent from the guest network.

Figure 12 shows the round-trip time for an CSRF request
measured using JavaScript on the host network, as a function
of the rate of ARP packets sent from the guest network, as
measured on router DL1. As shown in the Figure, a timing-
based covert channel can be established in this case even
without using any custom software or hardware on the host
side. Therefore this attack can work even if the node in the
protected network is not compromised.

5 Discussion

Table 3: Quality of Different Covert Channels
Channel Pervasiveness Rate Covertness

ARP-SSH ++ ++ +
ARP-ARP +++ + +++
ARP-CSRF +++ + ++
ICMP-ICMP ++ ++ ++
DHCP-ARP +++ ++ +
DHCP Direct + +++ ++
IGMP Direct + +++ +
ARP Direct ++ +++ ++

Table 3 summarizes the quality of each of the covert chan-
nels we identified, according to the criteria proposed in Sub-
section 3.1. Of all the channels we evaluated, the two direct
channels, IGMP direct and DHCP direct, have the highest
data rate and can be used to transfer thousands of bits per
second. On the other hand, their existence is due to a bug
in the router implementations and they are therefore easy to
fix. In addition, IGMP traffic is extremely rare in production
networks, and DHCP activity generates log file entries, mak-
ing both channels limited in their covertness. The SSH-ARP

channel is one of the most covert of the timing-based channels
we identified, as it generates no log-file entries since the SSH
connection establishment never concludes. We still consider
it less pervasive than the other timing-based covert channels
due to the limited amount of routers with default support for
the SSH protocol. The two ARP-based channels, CSRF-ARP
and ARP-ARP, are the most pervasive in our opinion, since
virtually all routers expose some sort of web server on their
host network side, and all routers support the ARP protocol.
The CSRF-ARP channel is slightly less stealthy since the
thousands of web requests per second may constitute an irreg-
ular access pattern which can be detected by external intrusion
detection systems. Both ARP-based channels are limited in
their rate because ARP packets are easily handled by the
router’s CPU and generate only a minimal resource footprint.
Finally, the ICMP-ICMP channel is both more covert and
more stealthy than the ARP-ARP channel, but its pervasive-
ness is limited by the fact that not all routers expose ICMP
on the guest network side.

5.1 Related Work
In 1973 Lampson first introduced covert channels in the con-
text of monolithic systems, as a mechanism by which a pro-
cess at a high security level, leaks information to a process
at a low security level, where the low-security process would
not otherwise have access to this information [11]. Various
types of covert channels are presented below.

5.1.1 Timing covert channels

Network timing channels transfer information using packet
arrival patterns and not by the actual content of the packet.
Network timing channels can be divided into two primary
types: Timing Channel and Sorting Channel. The former uses
predefined timing intervals to obtain information, reception of
a packet represents a ’1’ and the absence of a packet indicates
a ’0’ [4], while the latter uses the order in which the packets
has arrived to build the message transferred [2]. In the timing
channel implemented by Cabuk et al., the covert information
is being divided into small fixed-size parts. The sender and
the receiver synchronize by using a Special Start Sequence
in the beginning of every frame. They also suggest a detec-
tion method against these kind of covert channels which was
found to be highly efficient in detecting such covert channels
even under random noise or changing time intervals. The
timing channel they presented uses a direct channel to con-
vey information. Maurice et al. have successfully established
an indirect covert channel between virtual machines running
on different cores [12] . They exploit the inclusive feature
of caches, which is a shared resource among the machines,
allowing a core to evict lines in the private first level cache of
another core. By measuring access times to the cache, the re-
ceiver notices which bit was received. In our study we perform

a similar manipulation on the CPU of a router.

5.1.2 Network covert channels

Several papers presented the ability to carry storage covert
channel by modifying the headers of different protocols of lay-
ers of the Internet Protocol stack. For example, Rowland [18]
presented a covert channel based on modifying the IP Iden-
tification Field, the TCP Initial Sequence Number Field and
the TCP Acknowledge Sequence Number Field. In another
example, Handel [7] presented a series of covert channels
based on the OSI network model. Many variations on these
kinds of covert channels exist, based on different sections
of the network packet headers. These channels are also very
easy to eliminate using methods that scrub or remove these
headers [8]. In [21] Wendzel et al. provide a survey of hiding
methods in network covert channels. The methods we investi-
gated in this paper are unique in the fact that they make use
of the shared medium of the router to construct the covert
channel, an idea which is novel to the best of our knowledge.

As for timing covert channels carried over the network,
the data is transferred by creating delays in packet transmis-
sion, dropping packets or reorganizing them. Handel et al. [7]
introduced a covert channel that drops or delays packets by
jamming the medium of in the CSMA/CD protocol using bit
per packet modulation to send the data. In another example,
Ogen et al. [15] presented a covert channel over the 802.11
protocol, using the Clear Channel Assessment in the 802.11
protocol to delay packets transmission within few millisec-
onds and measuring that small delay using JavaScript at the
application layer. In contrast to the channel developed by
[15], the channel described in this paper does not require the
sender to by physically close to the router. In addition, the
covert channel described here does not require any custom
sender hardware, and can be implemented in software only on
consumer products. One advantage of [15] over the channel
described here is that their covert channel does not require
knowledge of the Wi-Fi network’s password.

5.2 Detection and Prevention
There are two general approaches for defending against covert
channels: detecting activity on a potential channel, and in-
terfering with the covert channel to the point of completely
blocking it. Both approaches require awareness of potential
covert channels and often imply some degradation in perfor-
mance. Limitation and auditing countermeasures have also
been discussed in several other works.

Detecting a timing or storage covert channel requires a
profile of the channel’s activity in a “benign” setting, i.e. with-
out an attack in progress, and measurements of its activity to
test for data transfer on the channel. The basic idea is that
in timing and storage channels, data transfer is achieved by
contention on a shared resource. Both types of channels re-

quire nodes from both network segments to repeatedly poll
the resource, often at higher rate than the background rate for
such polling. For example, in our experiments the background
rate for ARP requests was lower than one packet per second,
while the rate during an attack1 was greater than 1000 packets
per second and with a high incidence of concurrent activity
from the same nodes in separate segments. Both rate and con-
current activity can often be measured and correlated, raising
an alarm. General anomaly detection algorithms can be used
to detect activity on a direct side-channel, with effectiveness
that is governed by the background activity of this channel.

The detection approach suffers from an inherent disadvan-
tage: false positives or false negatives in detection. The reason
is that users of the covert channel can reduce the rate of the
channel and thereby reduce the difference between the activity
on the channel when it is used and when it is not.

Methods for prevention of a covert channel depend on the
type of the channel. Direct covert channels should be viewed
as system bugs and should be corrected by hardware or soft-
ware vendor or by better configuration of network devices.
Storage side-channels are very difficult to block and should
be avoided as much as possible as part of system design.

A comprehensive approach to blocking timing side-
channels is to divide the router’s computing resources into
time slices, statically allotting time slices to each network
segment. Requests from nodes in a certain network segment
will be served only during time slices allotted to that segment.
The advantage of this approach is that timing side-channels
are almost completely blocked, since activity in one network
segment does not affect activity in other segments. The dis-
advantage of the static time slot method is that performance
decreases as the router is less flexible in serving requests. A
different approach to interfere with, although not completely
prevent, timing side-channels uses the channels’ sensitivity to
the distribution of time measurements for received messages.
Therefore, a router that adds a random delay before sending
a message will effectively increase the error probability in
decoding and therefore decrease the rate of the channel. Note
that the router is constrained in the magnitude of the delays it
adds, i.e. in the channel error it introduces, since it needs to
serve legitimate customers in reasonable time.

5.3 Responsible Disclosure
We sent a draft of our findings to the manufacturers of the
routers listed in Table 1 during May 2019. During June 2019
the Belkin/Linksys security response team notified us that
they do not intend to fix the vulnerability we disclosed. None
of the other router vendors responded to our disclosure. Our
vulnerability reports for the various channels and models were
granted CVE IDs CVE-2019-13263, CVE-2019-13264, CVE-
2019-13265, CVE-2019-13266, CVE-2019-13267, CVE-

1Note that we tried to maximize throughput in these attacks.

2019-13268, CVE-2019-13269, CVE-2019-13270 and CVE-
2019-13271.

5.4 Conclusion
In this work we showed that logical network isolation based
on host and guest networks can be overcome by the use of
specially-crafted network traffic. All of the routers we sur-
veyed are vulnerable to at least one class of cross-router covert
channel, and fixing this vulnerability is far from trivial. A
hardware-based solution seems to be the only way of guar-
anteeing isolation between secure and non-secure network
devices.

Acknowledgments

This research was supported by Israel Science Foundation
grants 702/16 and 703/16. The authors would like to thank
Clémentine Maurice for inspiring this research, and our shep-
herd Paul Pearce for helping us improve the paper.

References

[1] Medical device security, VA enterprise design patterns
privacy and security, January 2017.

[2] Kamran Ahsan. Covert channel analysis and data hiding
in tcp/ip. Canada, University of Toronto, 2002.

[3] A. Barth. The web origin concept. RFC 6454, RFC Ed-
itor, December 2011. http://www.rfc-editor.org/
rfc/rfc6454.txt.

[4] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP
covert timing channels: design and detection. In Vi-
jayalakshmi Atluri, Birgit Pfitzmann, and Patrick D.
McDaniel, editors, Proceedings of the 11th ACM Con-
ference on Computer and Communications Security,
CCS 2004, Washington, DC, USA, October 25-29, 2004,
pages 178–187. ACM, 2004.

[5] Ralph Droms. Dynamic host configuration protocol.
RFC 2131, RFC Editor, March 1997. http://www.
rfc-editor.org/rfc/rfc2131.txt.

[6] William C. Fenner. Internet group management protocol,
version 2. RFC 2236, RFC Editor, November 1997.
http://www.rfc-editor.org/rfc/rfc2236.txt.

[7] Theodore G Handel and Maxwell T Sandford. Hiding
data in the OSI network model. In International Work-
shop on Information Hiding, pages 23–38. Springer,
1996.

[8] Mark Handley, Vern Paxson, and Christian Kreibich.
Network intrusion detection: Evasion, traffic normaliza-
tion, and end-to-end protocol semantics. In Dan S. Wal-
lach, editor, 10th USENIX Security Symposium, August
13-17, 2001, Washington, D.C., USA. USENIX, 2001.

[9] D. Hardt. The oauth 2.0 authorization framework.
RFC 6749, RFC Editor, October 2012. http://www.
rfc-editor.org/rfc/rfc6749.txt.

[10] James Kurose and Keith Ross. Computer Networking:
A Top-Down Approach (7th Edition). Pearson, 2016.

[11] Butler W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10):613–615, 1973.

[12] Clémentine Maurice, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. C5: cross-cores cache covert
channel. In Magnus Almgren, Vincenzo Gulisano, and
Federico Maggi, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment - 12th Interna-
tional Conference, DIMVA 2015, Milan, Italy, July 9-10,
2015, Proceedings, volume 9148 of Lecture Notes in
Computer Science, pages 46–64. Springer, 2015.

[13] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Ste-
fan Mangard, and Kay Römer. Hello from the other
side: Ssh over robust cache covert channels in the cloud.
NDSS, San Diego, CA, US, 2017.

[14] P. Mockapetris. Domain names - concepts and facilities.
STD 13, RFC Editor, November 1987. http://www.
rfc-editor.org/rfc/rfc1034.txt.

[15] Rom Ogen, Kfir Zvi, Omer Shwartz, and Yossi Oren.
Sensorless, permissionless information exfiltration with
wi-fi micro-jamming. In 12th {USENIX} Workshop on
Offensive Technologies ({WOOT} 18), 2018.

[16] David C. Plummer. Ethernet address resolution pro-
tocol: Or converting network protocol addresses to
48.bit ethernet address for transmission on ethernet hard-
ware. STD 37, RFC Editor, November 1982. http:
//www.rfc-editor.org/rfc/rfc826.txt.

[17] J. Postel. Internet control message protocol.
STD 5, RFC Editor, September 1981. http://www.
rfc-editor.org/rfc/rfc792.txt.

[18] Craig H. Rowland. Covert channels in the TCP/IP pro-
tocol suite. First Monday, 2(5), 1997.

[19] Johannes Sametinger, Jerzy W. Rozenblit, Roman L.
Lysecky, and Peter Ott. Security challenges for medical
devices. Commun. ACM, 58(4):74–82, 2015.

[20] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide
to industrial control systems (ics) security. NIST special
publication, 800(82):16–16, 2011.

[21] Steffen Wendzel, Sebastian Zander, Bernhard Fechner,
and Christian Herdin. Pattern-based survey and cate-
gorization of network covert channel techniques. ACM
Comput. Surv., 47(3):50:1–50:26, 2015.

[22] T. Ylonen and C. Lonvick. The secure shell (ssh) trans-
port layer protocol. RFC 4253, RFC Editor, January
2006. http://www.rfc-editor.org/rfc/rfc4253.
txt.

[23] Sebastian Zander, Grenville J. Armitage, and Philip
Branch. A survey of covert channels and countermea-
sures in computer network protocols. IEEE Communi-
cations Surveys and Tutorials, 9(1-4):44–57, 2007.

[24] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang,
Chia-Wei Hsu, Chong Kuan Chen, and Shiuhpyng Shieh.
Iot security: Ongoing challenges and research oppor-
tunities. In 7th IEEE International Conference on
Service-Oriented Computing and Applications, SOCA
2014, Matsue, Japan, November 17-19, 2014, pages 230–

234. IEEE Computer Society, 2014.

