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Abstract
Autonomous vehicles increasingly utilize the vision-based
perception module to acquire information about driving envi-
ronments and detect obstacles. Correct detection and classifi-
cation are important to ensure safe driving decisions. Existing
works have demonstrated the feasibility of fooling the per-
ception models such as object detectors and image classifiers
with printed adversarial patches. However, most of them are
indiscriminately offensive to every passing autonomous vehi-
cle. In this paper, we propose TPatch, a physical adversarial
patch triggered by acoustic signals. Unlike other adversarial
patches, TPatch remains benign under normal circumstances
but can be triggered to launch a hiding, creating or altering
attack by a designed distortion introduced by signal injection
attacks towards cameras. To avoid the suspicion of human
drivers and make the attack practical and robust in the real
world, we propose a content-based camouflage method and an
attack robustness enhancement method to strengthen it. Eval-
uations with three object detectors, YOLO V3/V5 and Faster
R-CNN, and eight image classifiers demonstrate the effective-
ness of TPatch in both the simulation and the real world. We
also discuss possible defenses at the sensor, algorithm, and
system levels.

1 Introduction

The growth of autonomous vehicles (AVs) spawns the wide
deployment of automotive cameras. According to the fore-
cast [26], the automotive camera market is predicted to grow
at a CAGR of 12.4% and reach a value of USD 12.2 billion by
2025. By providing precise images of surrounding environ-
ments, the automotive cameras and the subsequent perception
models such as object detectors and image classifiers consti-
tute the vision-based perception modules, which detect and
classify obstacles such as cars and stop signs on the roads to
help AVs make safety-critical driving decisions. As a result,
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Figure 1: TPatch attacks. The patch is preset at the roadside,
which is benign to most passing vehicles such as AV1 and
AV3, but can render the targeted vehicle under acoustic injec-
tion attacks (AV2) recognize a non-existing stop sign, leading
to tragic results.

correct detection and classification in the midst of a dedicated
adversary are important to ensure safe driving.

However, prior work [3, 5, 8, 17, 38, 47] has demonstrated
the vulnerabilities of the vision-based perception module to
carefully-crafted adversarial examples. Among the existing
ones, the adversarial patch that appears in the form of lo-
calized perturbations draws much attention in the physical
attacks towards AVs since it is physically realizable and robust
to slight distortions. Much work [3, 5, 8, 47] has demonstrated
the effectiveness of physically-printed adversarial patches
against classifiers or detectors. However, existing adversarial
patches, either in the digital or physical worlds, are indis-
criminately offensive to every passing AV and thus stand a
chance of being detected by pilot cars equipped with recent
countermeasures [9, 41].

In this paper, we ask “Can we design a physical adver-
sarial patch that is only activated when triggered but re-
mains benign under normal circumstances?” Inspired by prior
work [20, 31] that demonstrates physical signals in addition
to the natural lights may also cause distortions to images,
we propose TPatch, a physical adversarial patch triggered by
acoustic signals. Unlike common adversarial patches, TPatch
remains benign under normal circumstances but can be trig-
gered to launch a hiding, creating or altering attack toward
a targeted AV by a designed distortion introduced by signal
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injection attacks towards cameras. Specifically, we consider
the following attack scenario: The adversary puts a TPatch
at the roadside, which is benign to most passing vehicles but
can render the targeted vehicle under acoustic injection at-
tacks to recognize a non-existing stop sign, resulting in an
emergency brake and thus a car collision, as shown in Fig. 1.
TPatch is promising yet challenging. Several research chal-

lenges remain unsolved. First, how to ensure that TPatch
is sensitive to the image distortion caused by the selected
acoustic signal while dull to other natural or unintentional
distortions? Second, how to enhance the visual stealthiness
of TPatch and reduce the suspicion of human drivers or pas-
sengers when placed on the real road? Third, how to improve
the robustness of TPatch to make it more practical in the real
world?

To address the aforementioned challenges, we first design
a pair of triggers, where each stands for a kind of distortion,
consisting of a positive trigger that activates TPatch and a
negative trigger that suppresses TPatch. To find the feasible
positive triggers, we estimate the image distortion caused by
easy-to-implement physical signals and regularize the esti-
mated distortion with a proposed theoretical model. Based on
the selected positive and negative triggers, we design trigger-
oriented loss functions for object detectors and image clas-
sifiers receptively to generate optimized TPatch. Moreover,
to reduce the human suspicion of the generated TPatch, we
propose a content-based camouflage to make the patch similar
to an image or object. Finally, to improve the robustness of
TPatch in real-world attacks, we employ expectation over
transformation and triggerable space enlargement to further
enhance it.

To validate our attacks, we conduct both stimulation and
real-world evaluations with three object detectors YOLO
V3/V5 and Faster R-CNN, and eight image classifiers. In
summary, our contributions include the points below:

• To the best of our knowledge, this is the first work on
the physical adversarial patch that can be triggered by
sensor attacks.

• We propose a trigger-oriented optimization method to
generate TPatch, a content-based camouflage method to
reduce the suspicion of human drivers, and an attack ro-
bustness enhancement method to further make the patch
practical and robust in the real world.

• We evaluate the effectiveness of TPatch with three ob-
ject detectors, YOLO V3/V5 and Faster R-CNN, and
eight image classifiers in both white-box and black-box
settings.

• We realize three kinds of realistic attack implementation
in the outdoor real-vehicle driving-based experiments
and achieve the max success rate of 100% and 86.4%,
w.r.t. hiding attack and creating attack, in 150 consecu-
tive frames.

2 Background

In this section, we first introduce the vision-based perception
module used in autonomous driving, then present adversarial
patches that can fool machine learning algorithms, and finally
elaborate on physical signals that may cause distortions to
images.

2.1 Vision-based Perception Module

In autonomous driving, a vision-based perception module is
critical for decision-making. The camera first converts the
lights reflected from physical objects to electrical signals,
processed and digitized to create digital images. Then, the
perception models utilize machine learning algorithms to
detect or classify objects in the images, where the perception
results will be used for decision-making.

In recent years, convolutional neural networks (CNNs)
based perception models have achieved high accuracy in many
perception tasks. Object detectors and image classifiers are
two representative types commonly used in autonomous driv-
ing. Object detectors are usually utilized to coordinate the
location of critical objects, e.g., pedestrians, vehicles, etc.,
and classify them in a given group of classes. State-of-the-art
object detectors include (1) one-stage ones represented by the
YOLO series [28, 40] and (2) two-stage ones represented by
Faster R-CNN [29]. By contrast, image classifiers are used
for more fine-grained and specialized classification tasks [2],
e.g., recognizing the states of the traffic light (red, yellow, or
green) or the meanings of the traffic sign (stop, speed-limit,
school, etc.) [19]. Representative image classifiers include
models of various network architectures such as VGG [35],
ResNet [18] and Inception [37]. Both types of models provide
important perception results for higher-level functions such
as tracking, planning, and decision-making. In this paper, we
study the vulnerabilities of both object detectors and image
classifiers and their potential threats to autonomous driving.

2.2 Adversarial Patch

Adversarial patch [5] is one type of adversarial example that
appears in the form of localized perturbations. It can be a
sticker attached to an existing object or a stand-alone image
such as a poster. Compared to various pixel-wise perturbations
directly adding to images in the digital world [17, 38], the ad-
versarial patch is more likely to be practical in the real world
since (1) it is physically realizable, (2) it can be placed any-
where within the field of view to cause the perception model
to output a targeted class, and (3) it is image-independent and
robust for rotation and scaling. Due to its practicality and
robustness, it has drawn much attention recently, and a few
prior works [3, 5, 8, 47] have demonstrated the feasibility
of physical adversarial patch attacks on either classifiers or
detectors. However, existing adversarial patches are indis-
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criminately offensive to every passing vehicle and thus risk
being detected by pilot cars. In this paper, we investigate the
possibility of targeted adversarial attacks toward a specific
victim vehicle by using a triggered patch.

2.3 Physical Signals Affecting Imaging

In general, the natural lights reflected from physical objects
and received by the camera’s image sensors are the main
physical signals that affect the output images. However, other
physical signals may cause distortions to the images during
the imaging process, leading to misclassification of the sub-
sequent perception models. For instance, prior work [20] has
demonstrated that acoustic signals can cause controllable blur
patterns on the output images by affecting the image stabiliza-
tion system of the camera. Another work [31] has shown that
laser diodes can inject colorful strips into the output images
by exploiting the rolling shutter of the camera. These works
inspire us to explore the feasibility of an adversarial patch that
needs a specific image distortion caused by physical signals
as a trigger to be effective. Since those physical signals, e.g.,
acoustic signals, lasers, etc., are commonly observed and not
difficult to generate in the real world, they may be candidates
for the trigger signals. In this paper, we study the blur effects
caused by acoustic signals as the trigger to serve as the first
example of TPatch.

3 Threat Model

3.1 Attack Goal

In this paper, we consider the following attack goals:

• Hiding Attacks (HA) against object detectors that hide
the detection of an existing object.

• Creating Attacks (CA) against object detectors that
induce the detection of a non-existing object.

• Altering Attacks (AA) against image classifiers that
render an object misclassified to another one.

3.2 Adversary Capability

To achieve the aforementioned attack goals, we assume the
adversary has the following capabilities:

Prior Knowledge of Perception Algorithms. We assume
the adversary has prior knowledge of the object detection
and image classification algorithms similar to those used in
the victim AV, including their architecture, parameters, etc.
Besides, the adversary can utilize the transferability of adver-
sarial examples to achieve black-box attacks.

Camera and Sensor Awareness. The adversary can ac-
quire a camera of the same model as the one used in the victim
AV, from which she can learn the information of the camera

and sensors, e.g., the camera exposure time, the physical lo-
cations and parameters of the inertial sensors, etc.

Signal Injection Capability. The adversary can launch
acoustic injection attacks toward the inertial sensors in the
victim AV by the ultrasonic transducers (1) attached to the
surface of the victim AV, (2) placed at a following vehicle, or
(3) placed at the roadside.

3.3 Design Requirement

To make the attacks practical in the real world, TPatch shall
achieve the following design requirements:

Conditionally Triggered. TPatch is adversarial if and only
if it is triggered by a specific physical signal. In other words,
TPatch shall be benign to object detectors or image classifiers
when not triggered, and shall not be triggered by signals other
than the designed one.

Scene Independent. In the scenario of open roads, traffic
participants are dynamic and hard to predict. As a result,
TPatch shall be adaptive to visual changes in the targeted
scene, i.e., the patch shall be somewhat universal.

Easy Implementation. The physical trigger signal shall
be easy to generate and transmit. Thus, the patch optimiza-
tion shall be trigger-oriented, i.e., we shall design an easy-to-
implement signal and consider it during the patch optimization
instead of finding an optimal trigger difficult to realize. In
addition, TPatch shall be robust to slight distortions of the
trigger signal.

4 Design

4.1 Overview

In this paper, we propose TPatch, a physical adversarial patch
triggered by specific physical signals. Different from other
adversarial patches, TPatch remains benign under normal
circumstances but can be triggered to launch a universal attack
by a designed distortion introduced by signal injection attacks
towards cameras. To craft TPatch, it is important to tackle
the following challenges:

Challenge 1: How to ensure that TPatch is sensitive to the
image distortion caused by the selected trigger signal while
dull to other natural or unintentional distortions?

Challenge 2: How to enhance the visual stealthiness of
TPatch while keeping it functionally stealthy?

Challenge 3: How to improve the robustness of TPatch to
make it more practical in the real world?

To address these challenges, we design TPatch attacks
with four modules, as shown in Fig. 2. The Trigger Design
module first defines the positive trigger that activates TPatch
and the negative trigger that suppresses TPatch. Then, to find
the feasible positive triggers, the module estimates the im-
age distortion caused by physical signals and regularizes the
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Figure 2: Overview of TPatch generation. Based on the selected physical trigger signal, the adversary first estimates the image
distortion caused by it and designs the positive and negative triggers. Then, she trains a TPatch in accord with the designed
triggers, and finally improves the visual camouflage and the robustness of the patch to make it more practical in the real world.
The generated TPatch can then be attached to any objects to launch hiding, creating or altering attacks.
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Figure 3: Diagram of the trigger design. ① Explore the res-
onant frequency by injecting frequency-modulated acoustic
signals. ② Estimate the PSF kernel with the clear image and
the corresponding blurred image. ③ Extract the strength and
orientation of blur.

distortion with a proposed theoretical model. The Trigger-
oriented Patch Optimization module then designs loss func-
tions based on the selected positive and negative triggers
to generate TPatch capable of achieving the corresponding
attack goals via gradient optimization. The Content-based
Camouflage module further improves the visual stealthiness
of TPatch by applying meaningful content extracted from
a reference image using a pre-trained feature extractor. The
Real-world Robustness Improvement module improves the
robustness of TPatch in the real world by addressing both the
deformation of the patch and the errors of the trigger signal.
In the following subsections, we present the details of each
module.

4.2 Trigger Design

TPatch is designed to launch adversarial attacks when trig-
gered by a specific physical signal while remaining benign
when not triggered. To generate TPatch, we first design its
trigger.

Trigger Definition. In this paper, we design the trigger of
TPatch to be a carefully crafted image blur. Specifically, we
consider two opposite types of triggers: (1) positive trigger
means that TPatch is activated by acoustic signals and leads

to adversarial detection consequences, and (2) negative trigger
means that TPatch is not triggered yet other factors cause un-
desired detection results, e.g., strong vibration caused during
normal driving.

Signal Injection. We investigate which physical signal can
create the expected image blur. Cameras rely on the outputs of
motion sensors for image stabilization, which however can be
manipulated by resonant acoustic signals via aliasing effects.
As shown in Eq. 1, the aliasing frequency fa depends on the
injected signal frequency f as follows:

fa = | f −n fs| ≤ 0.5 fs (1)

When the injected signal frequency f is an integer multiple
n of the sampling frequency fs, the output of motion sensors,
i.e., the aliased signal, is a constant bias. Thus, it can be re-
shaped arbitrarily through an amplification modulation [39].

However, this method faces two major challenges in prac-
tice: (1) The phase or frequency shifting caused by the lack of
synchronization may damage the attack capability in consec-
utive frames, as discussed in Appendix A.1. (2) The designed
image blur may be difficult to implement in the real world
due to the limited acoustic signal injection capability. For
example, the outputs of the x/y-axis gyroscope are coupling
because of their identical resonant frequencies.

To solve the first challenge, we propose a simple yet effec-
tive signal injection approach. As the resonant frequencies
are a range rather than a point [39], we shift the frequency of
the injected signal from the integer multiple of the sampling
frequency n fs to the frequency n fs ± fe, where fe represents
the exposure frequency. In this way, the generated image blur
can be resistant to phase shifting and frequency shifting, as
discussed in detail in Appendix A.2.

Blur Modeling. Then, we model the blurred image under
signal injection attacks. A blurred image can be viewed as
the superposition of a series of translated clean images. To
simulate the blur effects, we formulate the relationship be-
tween the blurred image and the translation of image sensor,
as shown in Eq. 2:
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ûγ

i, j =
1
N

N

∑
t=1

Sample(i+∆i(t), j+∆ j(t);vγ)

∆i(t) = Acosψsin(2π
t
N
+φi)

∆ j(t) = Asinψsin(2π
t
N
+φ j)

(2)

where û and v denote the blurred and clean image, respec-
tively. i and j represent the geometric position of a pixel.
∆i(t) and ∆ j(t) represent the translation of the camera, which
is in a form of sine wave with the similar phases φi,φ j but
different amplitudes Acosψ,Asinψ. Sample(·; ·) denotes the
sampling function by interpolation, e.g., bilinear. N represents
the fineness of discretion. γ = 2.2 is the parameter of gamma
correction [1], which converts the RGB values into the lumi-
nosity that is linear with exposure duration. The strength A
and the orientation ψ are the key parameters of blur modeling.
The slight phase difference ∆φ = |φi −φ j| has limited effects
on TPatch as shown in Fig. 19 in Appendix F.

Parameter Estimation. In the prior work, the attacker first
optimizes the desired blur by simulation and then implements
it in the real world. However, not all the optimized blur can
be realized due to the coupling of the x/y-axis gyroscope.
To ease the burden of the physical attack and make it more
practical in the real world, we propose an estimation-based
method to obtain the possible image blur set by injecting
acoustic signals easy to implement. In general, the image blur
caused by motions (introduced by acoustic signals) can be
described with a convolutional kernel named Point Spread
Function (PSF) [14], as shown in Eq. 3:

ûγ

i, j =
k

∑
a=−k

k

∑
b=−k

vγ

i−a, j−bha,b (3)

where h denotes the PSF, whose kernel size is (2k+1)×(2k+
1) and k is an integer. û is the convolutional result of the PSF
and v is the clean image. To estimate the kernel, we formulate
it as an optimization problem, as shown in Eq. 4:

min
h
∥u− û∥2 = min

h
∥u− (vγ ∗h)1/γ∥2 (4)

where u denotes the blurred image captured from a physi-
cal signal injection attack (the ground truth), and symbol ∗
denotes the convolutional operator. We use the Mean-Square-
Error (MSE) between the convolutional result û and the real-
captured image u as the loss function and solve the optimiza-
tion problem via gradient descent. In this way, we obtain the
estimated PSF h and calculate its strength A and orientation
ψ as the parameters of a possible image blur.

4.3 Trigger-oriented Patch Optimization
With the designed positive and negative triggers, we then opti-
mize TPatch based on them. Note that in contrast to common
adversarial patches that have a straightforward goal to fool

image classifiers, object detectors, or other victim systems,
TPatch is benign until it is triggered. As a result, we consider
several losses when design the loss functions: (1) a positive
loss Lpos that makes the patch achieve the adversarial effects
with a positive trigger, (2) a negative loss Lneg that makes the
patch dull to any negative triggers, (3) a regulation loss LTV
that reduces the risk of over-fitting and enhances the capa-
bility of migrating the attack from the digital world to the
physical world, and (4) a content loss Lcontent that realizes a
meaningful camouflage on the generated patch (details can
be found in Sec. 4.4). The integral loss function is shown in
Eq. 5:

argmin
p

Ex∼X ,l∼L,t∼T [Lpos +λLneg]+αLTV +βLcontent (5)

where p is the TPatch. x, l, t represent the input image, the
location where the patch is applied, and the random transfor-
mation respectively. Then, X ,L,T denote the corresponding
distribution. E denotes the expectation of the loss. Hyper-
parameters, e.g., λ, α, β, are used to balance different loss
components.

The positive and negative losses, i.e., Lpos and Lneg, are
different across object detectors and image classifiers. The
classifier outputs a single vector that represents the probability
of each class while the detector predicts the objectiveness
scores, the classification scores, and the object’s location. For
classifiers, the aggregation of features enables the patch to
manipulate all the outputs. However, for detectors that have
multiple predictive cells to recognize multiple objects, the
patch’s location mainly determines the affecting area due
to the locality of the patch. As a result, we shall align the
target object’s location with the adversarial patch to achieve
an effective attack. What’s more, the losses vary as the attack
goal changes. Therefore, we discuss the detailed design of the
loss function concerning each attack type.

For HA, the adversarial case is to render the target object
with the TPatch undetected, while the benign one is to keep
the target object correctly recognized. The loss functions of
HA are formulated as Eq. 6.

Lpos =− log(1−max(pob j · pt))

Lneg =− log
(

pob j · pt
)
+ζLreg

(6)

where pt and pob j denote the classification scores of target
class t and the objectiveness scores respectively. Lreg is the
regression loss to guide the detected box. ζ is the hyperpa-
rameter to balance the recognition loss and regression loss.

For CA, the adversarial case is to render the TPatch recog-
nized as the target object, while the benign one is to keep the
TPatch undetected. The loss functions of CA are formulated
as Eq. 7.

Lpos =− log
(

pob j · pt
)
+ζLreg

Lneg =− log(1−max(pob j · pt))
(7)
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(a) Camouflage (b) MSE Loss (c) Content Loss

Figure 4: Comparison between MSE loss and content loss. (a)
shows the target camouflage of the patch. (b) and (c) show the
generated patch by MSE loss and content loss respectively.

For AA, the adversarial case is to render the images with the
TPatch recognized as the target class, while the benign one
is to keep the original recognition results. The loss functions
of AA are formulated as Eq. 8.

Lpos =− log(pt)

Lneg =− log(1− pt)
(8)

where pt is the probability of target class t predicted by the
classifier.

The total variation loss is used for regularizing the TPatch.
As shown in Eq. 9, the TV loss aims to reduce the color
changes between the adjacent pixels, which eliminates the
overfitting of TPatch in the digital simulation as well as im-
proves the image quality.

LTV = ∑
i, j

√∣∣xi+1, j − xi, j
∣∣2 + ∣∣xi, j+1 − xi, j

∣∣2 (9)

4.4 Content-based Camouflage Improvement

Common adversarial patches are usually generated without
constraints on the L2/L∞ for the sake of universality, and
thus are inevitably perceptible to human eyes. Although prior
work has demonstrated the feasibility of changing the shape
of the patch arbitrarily, it remains abnormal since the pattern
of the patch is meaningless. To address it, we propose the
content-based camouflage improvement to make the patch
more meaningful, e.g., to be like a cartoon character or an art
painting.

A vanilla approach is to add a loss function that constrains
the patch with a euclidean distance between the target image
and the patch. However, this vanilla approach leads to a tricky
problem regarding the choice of the target image, i.e., the
punishment of the loss varies dramatically with different tar-
get images. Besides, the vanilla loss function is color-based,
which means the outline of the camouflage is prone to dimin-
ish, rendering the camouflage ambiguous and over-smooth.

To improve the camouflage, we utilize a content loss pro-
posed by style transfer works [15, 21] to regularize the patch
based on high-level features extracted by a pre-trained CNN.
The content loss can be formulated as Eq. 10. We use the j-th

layer φ j of the CNN pre-trained on ImageNet to respectively
extract the high-level feature map of target image x̂ and patch
x with the same shape C j ×H j ×Wj. The loss is calculated
with the euclidean distance in the feature space rather than
the pixel space. It encourages the patch to learn the content
and spatial structure of the target image rather than the details,
e.g., color, texture, and exact shape. A comparison of TPatch
with the proposed content loss and the conventional MSE loss
is shown in Fig. 4, from which we can see that the content
loss helps TPatch to be more natural as a cartoon character.

Lcontent =
1

C jH jWj

∥∥φ j(x̂)−φ j(x)
∥∥2

2 (10)

4.5 Attack Robustness Enhancement

The challenges of robust TPatch attacks mainly lie in two
aspects: (1) the captured patch can be different from the digital
one due to the additional process of printing and filming, and
(2) the injected trigger can be coarse and noisy due to the
limited physical attack capability and the estimation errors.
The former challenge is shared with other adversarial patches.
Factors commonly considered affecting the filming include
lighting conditions, shooting distances and angles. The latter
is unique for TPatch since it requires a certain trigger to be
adversarial. Inevitably, trigger errors can be introduced in the
pipeline of physical signal injection, trigger estimation, and
trigger formulation. The difference between the estimated
trigger and the ground truth probably causes the failure of
activating the TPatch. To tackle these challenges, we utilize
the expectation over transformation for the former and the
triggerable region enlargement for the latter.

Expectation over Transformation. To address the patch
distortion caused by photographing, we use the Expectation
over Transformation (EoT) method [3], which augments the
training of TPatch with random transformation to overcome
the various situations in the real world. We augment the patch
with three dimensions, i.e., resize, rotation, and color shift (in-
cluding brightness, contrast, saturation, and hue). We perform
three different transformations simultaneously with a uniform
distribution to randomize the degree of each transformation.

Triggerable Region Enlargement. Since an adversar-
ial subspace usually includes more than one point, triggers
close to the designed positive/negative trigger can be posi-
tive/negative as well, according to our observation. Inspired
by this phenomenon, we propose to enlarge the triggerable
region by employing more positive and negative triggers, as
illustrated in Fig. 5. Such an operation helps avoid the mild
blur existing in normal driving from activating TPatch and
improves the robustness of TPatch with more possible direc-
tions and strengths of the blur.
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Figure 5: Illustration of the relationship between the trigger-
able region and the designed triggers.

5 Evaluation

In this section, we evaluate TPatch against both object de-
tectors and image classifiers. We consider two sets of evalua-
tions in this paper: (1) simulation evaluation, where TPatch
is attached to digital images directly, and (2) real-world evalu-
ation, where TPatch is physically printed to conduct attacks,
and the experiments are conducted with the outdoor real-
vehicle driving-based setup. We use the attack success rate
(ASR) as the metric to evaluate the simulation experiments
and use the highest attack success rate in n consecutive frames
f max(n)
succ [34, 47] to evaluate the real-world experiments.

In summary, we highlight the key results of our attacks as
follows:

• In the simulation evaluation, TPatch can achieve overall
ASRs of 88.4% and 91.9% for HA and CA against three
object detectors YOLO V3/V5 and Faster R-CNN, and
achieve an overall ASR of 85.7% for AA against eight
image classifiers.

• In the real-world evaluation, TPatch can achieve overall
f max(150)
succ of 100.0% and 86.4% for HA and CA against

three object detectors YOLO V3/V5 and Faster R-CNN.

• We conduct attacks in three attack scenarios, i.e., in-car,
car-to-car, and roadside, with an autonomous driving ve-
hicle on closed roads. The farthest feasible attack range
reaches about 6 meters.

• We extensively investigate the transferability and effec-
tiveness of TPatch under various driving scenarios in
the real world.

5.1 Simulation Evaluation
In the simulation evaluation, we investigate three types of
attacks, i.e., hiding attack (HA), creating attack (CA), and
altering attack (AA), in the public datasets extensively. We

first evaluate multiple classes of interest for each attack under
a consistent setting. Then we investigate the impact of critical
factors such as patch sizes and trigger parameters on the ef-
fectiveness of TPatch. Finally, we study the transferability of
TPatch with two black-box attacks, i.e., single model attack
and ensemble model attack.

5.1.1 Experimental Setup

Object Detectors. We evaluate TPatch using three popular
object detectors, including both one-stage ones YOLO V3/V5
and a two-stage one Faster R-CNN. The backbones of the
pre-trained models Faster R-CNN, YOLO V3, and YOLO
V5 are ResNet-50, Darknet-53, and CSPDarknet, respectively.
All the three models are trained on the MS Common Objects
in Context (COCO) dataset [10] for detection.

Image Classifiers. We evaluate TPatch on eight widely-
used CNNs, i.e., VGG-13/16/19, ResNet-50/101/152, Incep-
tion v3, and MobileNet v2, which cover models of different
depths and architectures. All of them are trained on the large
vision database ImageNet [11] for classification.

Datasets. For object detectors, we utilize two popular au-
tonomous driving datasets KITTI [16] and BDD100K [45]
that consist of images captured from real driving scenarios for
evaluation. For the image classifier, we utilize the ImageNet
validation set for evaluation. We use 2,000 and 10,000 im-
ages that are unseen in the training of the TPatch for testing
detectors and classifiers, respectively.

Classes of Interest. We select 8 classes for object detectors
and 20 classes for image classifiers as the classes of interest.
The classification or detection results of these classes are
security-related in the scenario of autonomous driving.

Metrics. We use the attack success rate (ASR) as the metric
in the simulation evaluation, which is the ratio of the num-
ber of successful attacks against an object detector or image
classifier over the total number of conducted attacks. We de-
fine a TPatch attack to be successful when it achieves the
targeted adversarial effect under triggering signals while it
does not modify the detection results without triggering. With
this definition, the metric can be formulated as Eq. 11:

ASR =
1
N

N

∑
i=1

IF(x,trp)=ya&F(x,trn)=yb
(x) (11)

where I(x) is the indicator function. F means the recognition
function of the target model. x means the image embedded
with TPatch. trp and trn are the positive trigger and nega-
tive trigger respectively. ya and yb denote the adversarial and
benign recognition results respectively.

More concretely, the predicted class is always the one that
has the highest confidence, and the prediction of TPatch is
decided by the Intersection-over-Union (IoU) between any
bounding box with the bounding box of TPatch, where we
use the threshold 0.5 to generate a binary result. In accord
with common sense, we refer to the object attached with the
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Figure 6: Overall effects of TPatch with regard to HA (top),
CA (middle) and AA (bottom). The box plots show the
min/max and quarterlies, and the dots represent different
classes of interest.

TPatch as the targeted box rather than the TPatch itself when
evaluating HA.

5.1.2 Overall Performance

In this subsection, we evaluate the effectiveness of TPatch
attacks on different detectors and classifiers, respectively. Dur-
ing the evaluation, we used a pair of positive and negative
triggers. The strength of the positive and negative triggers are
8 pixels and 0 pixels, respectively, and the orientation of the
positive trigger is 45°. The patch size is set to 48×48 pixels
in the overall evaluation.

For every single test of CA and AA, we randomly place the
TPatch on a single image and then use a pair of the designed
positive and negative triggers to generate two images that
stand for the adversarial and benign cases for recognition.
According to the metric formulated in 11, the overall success
rate is calculated. Unlike the other attacks, the TPatch of
HA is attached to the target object rather than standalone.
According to its annotations, the target objects are cropped
from the MS COCO dataset. The appropriate size bounds
filter them to ensure the occupied proportion, round 20% of
the object’s area, of the patch.

The results of overall performance evaluation are shown in
Fig. 6. For HA, the overall success rates are 79.4%, 94.0%,
and 91.9%, w.r.t. Faster R-CNN, YOLO V3 and YOLO V5.
For CA, the overall success rates are 91.0%, 95.7%, and
89.0%, w.r.t. Faster R-CNN, YOLO V3 and YOLO V5. For
AA, the VGG series are the easiest to attack (over 95%), fol-
lowed by ResNet and Inception (over 75%), and the worst
is MobileNet (73.8%). We find that the results have notable

Figure 7: Attack success rates under different patch sizes. The
shape of patch is square, and the patch size is denoted by the
side length of the square.

differences across classes, shared with different classifiers
and detectors. For example, in the experiments of Inception
v3, the most vulnerable class is traffic light, which exceeds
the 99% success rate. In contrast, the least vulnerable class,
trolleybus, only achieves a 0.04% success rate, which means
it hardly has adversarial effects. In addition, it is observed
that the worst classes are shared with different models, e.g.,
trolleybus, pickup, etc. The same phenomenon is observed in
the HA and CA experiments on detectors. For instance, car
is the easiest to achieve CA, and person is the most difficult
to achieve HA in all the detectors.

5.1.3 Impact of Patch Details

In this subsection, we investigate several possible factors that
may influence the adversarial effects of TPatch, including
the size of the patch and the strength and orientation of the
trigger.

For simplicity, we use several representative models for
patch detail analysis. As for the image classifier, we choose
the ResNet-50, whose overall performance lies in the medium
position among the eight models, and the traffic light as the
attack target of AA. As for the object detector, we choose the
YOLO V5, which is one of the latest models, and the stop
sign as the attack target of CA, which keeps consistency with
the real-world evaluation.

Impact of Patch Size. The patch size represents the ca-
pability of an attacker to manipulate the input image. In the
autonomous driving scenario, the small patch size indicates
the far distance between the camera and the patch, and the
large patch size represents that the camera is near the patch.
As shown in Fig. 7, too tiny patches hardly achieve the suc-
cess of the attack. The success rate curve is relatively smooth
in the classifier and achieves the success rate of nearly 100%
when the patch size is 64×64 pixels, while two leaps of suc-
cess rate in the detector can be observed at 32× 32 pixels
and 64×64 pixels. The reason is related to the three scales
in YOLO V5. As the patch size arises, it is more likely to be
wrongly predicted by the detector.

Impact of Triggers. To investigate whether different im-
age blurs would influence the adversarial effect of TPatch,
which is crucial for our trigger-oriented optimization, we set
different positive triggers whose strength and orientation are
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Figure 8: Attack success rates with different triggers. The
strength and orientation of blur trigger is illustrated by polar
coordinates.

S = 0.02 S = 0.10

Figure 9: Images with different degrees of radial blur. The
degrees of radial blur equal 0.02 (left) and 0.1 (right).

diverse. Due to the symmetrical effects of linear blur, we de-
sign the range of orientation from 0 to 180 degrees, and we
set the range of strength from 4 to 16 pixels. Meanwhile, we
keep other parameters as default in the overall experiment.
As shown in Fig. 8, the TPatch achieves more than 88% suc-
cess rate in every blur pattern with different orientations and
strengths. Thus, it is demonstrated that the effectiveness of
TPatch does not rely on the specific blur.

5.1.4 Stealthiness Study

The captured images are not always clear because of the
car movements and vibrations. To investigate the functional
stealthiness of TPatch, we simulate the possible blur effects
via two methods, i.e., (1) radial blur for car movements and
(2) other triggers for car vibrations.

Car Movements. We use radial blur to simulate the blur
effects caused by car movements. To measure the boundary
of the radial blur, we drive at a speed of 40-60 km/h in the
low light scenario meanwhile sampling real-world blur ef-
fects. We compare the captured images with the simulated
images to estimate the degree of radial blur S ≈ 0.02. Then we
test the TPatch for CA attacks on 500 images with different
degrees of radial blur. The experiment results show that the
mis-triggering rate is 0% when S = 0.02 and achieves 5.2%
when S = 0.1 (corresponding to a car speed around 200-300
km/h), as illustrated in Fig. 9. Thus, the radial image blur
caused by a moving car at a reasonable speed may not trigger
the TPatch.

Car Vibrations. Since the car vibrations are various in
the real world, we simulate the effects by investigating the
ASRs with triggers of various strengths A and orientations ψ.
Tab. 1 outlines the ASRs of TPatch under different triggers.
The shadowed cells represent the designed positive triggers,

Table 1: Attack success rates under different triggers.

A
ψ

15° 45° 75° 105° 135° 165°

4.5 0% 0% 0% 0% 0% 0%
9 0% 5% 10% 0% 0% 0%

18 54% 97% 87% 0% 0% 0%

while the rest are negative triggers. We find the following
observations. In most cases, TPatch cannot be mis-triggered,
and the exceptions are a few cases that have similar strengths
A and orientations ψ as the positive ones. Nevertheless, the
average mis-triggering rate is only 1%.

5.1.5 Transferability Study

When the adversary has very limited prior knowledge of
the DNN models used in commercial autonomous cars, the
gradient-based optimization approach can not be directly ap-
plied to those black-box models. However, the attacker is still
possible evade the target model via the transferability of ad-
versarial examples among similar DNN models. To evaluate
the transferability of TPatch, we conduct a single model at-
tack on detectors and an ensemble model attack on classifiers.
During the evaluation, the design details of TPatch, e.g., tar-
get class, patch size, trigger setting, etc., is all fixed except for
the recognition with different models.

Tab. 2 list the results of transfer attacks on different detec-
tors. Due to the similar model architecture, the success rates
of transfer attacks between YOLO V3 and YOLO V5 are
relatively high, 86% (average), than the one between the one-
stage detectors (YOLO series) and the two-stage detectors
(Faster R-CNN), 49% (average), in all the HA and CA experi-
ments. As we use the same metric as formulated in Eq. 11, the
suppression effect from negative triggers is confirmed in the
black-box models in addition to the adversarial effect from
positive triggers.

We investigate the ensemble model attack on differ-
ent classifiers. Given that the attacker has a series of
white-box models with the same architecture while at-
tacking a black-box model, we build two ensemble mod-
els, i.e., VGG-ens (VGG13+VGG16+VGG19) and Res-ens
(Res50+Res101+Res152), as the white-box model to optimize
the TPatch to launch transfer attacks on the other five mod-
els. Tab. 3 list the detailed success rates of ensemble transfer
attacks. The VGG-ens and Res-ens attack achieve a 38% and
46% average success rate on five black-box models. Since the
number of classes in ImageNet, 1000, is much more than the
number of classes in MS COCO, 80, the overlap of decision
space between two different models is smaller theoretically;
thus, the targeted transfer attack would be more challenging.
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Table 2: Transferability across different detectors.
Attack Type Hiding Attack Creating Attack

Detector Faster R-CNN YOLO V3 YOLO V5 Faster R-CNN YOLO V3 YOLO V5
Faster R-CNN 85.8% 43.7% 42.8% 97.9% 31.2% 46.3%

YOLO V3 63.8% 98.9% 86.2% 34.9% 99.1% 87.1%
YOLO V5 70.1% 78.6% 93.8% 61.5% 93.8% 99.8%

Table 3: Transferability across different classifiers.
Classifier VGG13 VGG16 VGG19 Res50 Res101 Res152 Incv3 Mobv2
VGG-ens 94.0% 96.0% 96.2% 42.7% 32.0% 49.4% 34.3% 32.8%
Res-ens 26.1% 51.8% 51.9% 91.8% 90.9% 91.4% 52.4% 45.6%

5.2 Real-world Evaluation
In the real-world evaluation, we focus on these two kinds
of attacks, i.e., HA and CA against object detectors under
both white-box and black-box settings. We implement attacks
with three scenarios, i.e., in-car, car-to-car, and roadside. Fur-
thermore, we extensively investigate the influence of various
factors on the attack performance, including attack distances,
victim cameras, vehicle speeds, road conditions, and lighting
conditions.

5.2.1 Experimental Setup

Real-world Setup. We utilize an advanced Apollo Kit au-
tonomous vehicle as the victim vehicle, a platform to exper-
iment with future self-driving techniques. Its sizes are 2.77
m (length) * 1.01 m (width) * 1.67 m (height). We mount a
smartphone, e.g., Samsung S20 or iPhone 7, on the front of
the vehicle to mimic its computer vision system. The acoustic
signals are generated with an arbitrary waveform generator,
an audio amplifier and ultrasonic devices, as shown in Fig. 10.
The detailed setup varies with different attack scenarios, i.e.,
in-car, car-to-car, and roadside scenarios. The required attack
power and the scale of ultrasonic devices increase as the at-
tack range rises. We use the same waveform generator and
audio amplifier to drive the ultrasonic transducers for con-
venience. Yet the realistic setup can be on a much smaller
scale, especially for the in-car scenario. For HA, the TPatch
is printed on a sticker attached to a normal stop sign board.
For CA, the TPatch is printed on a board, with a realistic size
of 60cm×60cm. All the driving experiments are done on the
closed roads in our institute.

Methodology and Metric. In the real-world evaluation,
we take the in-car scenario as the default scenario, and the
attack performance in different scenarios is investigated stan-
dalone in Sec. 5.2.3. The victim vehicle is driving towards the
TPatch at a constant speed meanwhile keeping the TPatch
within the view of camera. The vehicle starts at a distance of
round 15 m to the TPatch and stops at a distance of 1-2 m to
the TPatch. The smartphone records the videos of driving ex-
periments, which is recognized by the victim detector on the
server. To have a better understanding of the effectiveness of
the TPatch, we split the positive trigger and negative trigger
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Figure 10: Experimental setups in three attack scenarios. (A)
shows the in-car scenario where a single ultrasonic transducer
is attached near the camera to inject acoustic signals. (B)
shows the car-to-car scenario where the attacker launches an
acoustic injection from the following car. (C) shows the road-
side scenario where a stationary ultrasonic array is utilized to
conduct roadside attacks.

evaluation and adopt a new metric, i.e., the best attack success
rate in n consecutive frames f max(n)

succ [34, 47], to evaluate the
recognition of videos. The metric is formulated as Eq. 12:

f max(n)
succ = max

j

1
n

n

∑
i=1

IF(xi+ j)=ya
(xi+ j) (12)

where xi denotes the ith frame of the captured video x. To
quantify our evaluation, we choose three frame lengths n 50,
100, and 150, i.e., f max(50)

succ , f max(100)
succ , and f max(150)

succ .

5.2.2 Overall Performance

To evaluate the overall performance, we craft 6 TPatches
(3 for HA and 3 for CA) against three detectors, i.e., Faster
R-CNN, YOLO V3, and YOLO V5. The victim vehicle is
configured to a slow speed, 5 km/h, and the average duration
of captured video clips is around 10 s, and then the number
of frames is about 300 at an fps of 30. Since every TPatch
is trained against a specific detector by gradient-based opti-
mization, we investigate its transferability via recognizing the
same video clips with the other black-box detectors.
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Table 4: Overall performance of hiding attacks and creating attacks in real-world setups.

Attack Type Hiding Attack Creating Attack
Source Target f max(50)

succ f max(100)
succ f max(150)

succ f max(50)
succ f max(100)

succ f max(150)
succ

Faster R-CNN Faster R-CNN 100.0% 100.0% 100.0% 100.0% 90.0% 64.0%
Faster R-CNN YOLO V3 100.0% 100.0% 98.0% 96.0% 65.0% 46.7%
Faster R-CNN YOLO V5 100.0% 98.0% 96.7% 30.0% 27.0% 20.0%

YOLO V3 Faster R-CNN 100.0% 100.0% 100.0% 100.0% 95.0% 92.7%
YOLO V3 YOLO V3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
YOLO V3 YOLO V5 100.0% 98.0% 96.0% 100.0% 79.0% 77.3%
YOLO V5 Faster R-CNN 100.0% 100.0% 100.0% 96.0% 82.0% 71.3%
YOLO V5 YOLO V3 100.0% 100.0% 99.3% 90.0% 83.0% 77.3%
YOLO V5 YOLO V5 100.0% 100.0% 100.0% 100.0% 98.0% 95.3%

Tab. 4 demonstrate the overall performance of HA and CA.
It is indeed possible to achieve transfer attacks in the real
world. For CA, the average f max(50)

succ , f max(100)
succ , and f max(150)

succ ,
are 90.2%, 79.9%, and 71.6%, respectively, where the white-
box ones are 100%, 96.0%, and 86.4% while the transferred
ones are 85.3%, 71.8%, and 64.2%. For HA, the average of
f max(150)
succ is 100% (white-box) and 98.3% (transferred), which

has a better performance than CA. The possible reason is that
the HA TPatch attached to the normal stop sign destroys the
robust feature of the stop sign, which is agnostic to the recog-
nition algorithm, which contributes to the blurring attacks.
For comparison, we test the pure blur attack case whereby the
stop sign has no patch and the camera is under similar levels
of acoustic signal injection and found that the pure blur attack
is difficult to hide the stop sign, where f max(150)

succ = 3.3%.

5.2.3 Attack Performance in Various Scenarios

The implementation of acoustic signal injection can vary for
different attack scenarios, i.e., in-car, car-to-car, and roadside
scenarios. We summarize the setups of different attack sce-
narios in Tab. 5.

• For an in-car scenario, an attacker may place the attack
device near the target, whereby the attack device can be
one ultrasonic transducer and may be left there during
car maintenance. The attack device can be in a small size
to be stealthy.

• For a car-to-car scenario, an attacker may drive a car
to follow the victim’s vehicle and emit acoustic signals
with a transducer array. The attack distance is about 1 m.

• For a roadside scenario, an attacker may set up an ultra-
sonic array on the roadside, emitting acoustic signals to
a driving-by victim vehicle. The farthest attack distance
can be up to 6 m.

Note that in the roadside attack scenario, the attacker has
to handle the Doppler effects since there may exist a relative
speed between the ultrasonic devices and the victim’s vehicle.
Details of discussion on the Doppler effects are referred to
Appendix B.

Table 5: Setups of three attack scenarios.
Scenario Non-intrusive Distance Device Scale Power

in-car ✗ 5 cm 1.6cm×1.6cm 0.08W
car-to-car ✓ 1 m 15cm×15cm 7W
roadside ✓ 6 m 30cm×30cm 40W

Table 6: Effectiveness in three attack scenarios.
Attack Type Scenario f max(50)

succ f max(100)
succ f max(150)

succ

HA in-car 100.0% 100.0% 100.0%
HA car-to-car 100.0% 99.0% 96.0%
HA roadside 100.0% 99.0% 93.3%
CA in-car 100.0% 99.0% 96.7%
CA car-to-car 96.0% 91.0% 86.7%
CA roadside 98.0% 97.0% 91.3%

To investigate the effectiveness of TPatch among various
attack scenarios, we conduct experiments for each attack sce-
nario and summarize the results in Tab. 6. For the in-car
scenario, the f max(150)

succ is 100% for HA and 96.7% for CA, re-
spectively. The attacks of an in-car scenario achieved the best
performance because the transducer is close to the camera and
remains relatively stationary to the camera, which results in
imposing stable acoustic signals on the camera. Nevertheless,
even with the car-to-car or roadside scenarios whereby the
attack transducers are placed external to the victim vehicle,
we can still achieve HA with a f max(150)

succ of over 93.3%, and
achieve CA with a f max(150)

succ of over 86.7%.
To explore the upper bound of the attack distance, we con-

duct experiments with various attack distances. We utilize
the roadside attack setup with a 30cm∗30cm ultrasonic trans-
ducer array at an apparent power level of 40W. Tab. 7 lists the
results of f max(50)

succ at different attack distances from 2 m to 7
m. We find that we can achieve a f max(50)

succ of 100% for HA
with an attack distance up to 6 m, and a f max(50)

succ of 98% for
CA with an attack distance up to 5 m. The attack performance
begins to decrease when the distance exceeds 5 m, which is
because sounds attenuate with distances. Based on the inverse
square law, the energy of sound received at 7 m is almost
half of that at 5 m. The attenuated acoustic signals are more
likely to be affected by environmental factors, leading to a
degradation of the attack performance in consecutive frames.
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Table 7: Impact of attack distances.

Distance 2 m 3 m 4 m 5 m 6 m 7 m
HA 100% 100% 100% 100% 100% 70%
CA 100% 100% 98% 98% 74% 48%

Table 8: Effectiveness with different cameras.
Attack Type Camera Freq. f max(50)

succ f max(100)
succ f max(150)

succ

HA Samsung S20 20 kHz 100.0% 100.0% 100.0%
HA iPhone7 27 kHz 100.0% 100.0% 100.0%
CA Samsung S20 20 kHz 100.0% 98.0% 92.7%
CA iPhone7 27 kHz 98.0% 93.0% 94.0%

To investigate whether the attacks can affect various cam-
eras, we attack another camera equipped with image stabiliza-
tion techniques, iPhone7, in addition to Samsung S20. Since
iPhone7 mounts a different motion sensor from the one on
Samsung S20, their resonant frequencies are different, i.e., 20
kHz for Samsung S20 and 27 kHz for iPhone7. But we can
cause a similar image blur on different cameras via acoustic
signals with different frequencies. As shown in Tab. 8, we
evaluate both HA and CA on iPhone7 and find that our attacks
can work with iPhone7 as well with a f max(150)

succ of 100% for
HA and a f max(150)

succ of 94.0% for CA.

5.2.4 Impact of Environmental Factors

In this subsection, we investigate how those common envi-
ronmental factors influence the attack performance of the
TPatch. We mainly take three aspects of environmental fac-
tors into consideration, i.e., car movements, car vibrations,
and lighting conditions. We conduct two series of experiments
to evaluate the attack performance for positive triggers and
the mis-triggering rate for negative triggers.

Car Movement. For car movements, we evaluated their
impact by conducting experiments with three car speeds: (1)
slow (5 km/h), (2) medium (10 km/h), and (3) fast (15 km/h).
We limited the highest experimental speed to 15 km/h for
safety reasons. As shown in Fig. 11, we can achieve a f max(50)

succ

of 100% for HA and a f max(50)
succ of 96% for CA with any car

speed. The f max(150)
succ of HA and CA at high speed are lower

than the rest because the number of captured frames decreases
when the vehicle drives fast. On the other hand, the TPatch
is hardly mis-triggered as the car moves, and the average
mis-triggering rate is 0.6% for HA and 1.1% for CA, w.r.t.
f max(150)
succ .

Car Vibration. For car vibrations, we conduct experiments
on three roads with various conditions: (1) an even brick road,
(2) a straight asphalt road, and (3) an asphalt intersection.
We find that the impact of car vibrations is abrupt. Most of
the time, the car is in relatively stable driving conditions. As
shown in Fig. 11, the TPatch has a bit better performance
on the brick road than the other roads. The car vibration is
possible to trigger our TPatch as long as the motion blur is

Figure 11: Impact of environmental factors on HA (blur
bars) and CA (orange bars), including the speeds of vehi-
cle (left), the road types (middle), and the lighting conditions
(right). The three adjacent bars denote f max(50)

succ , f max(100)
succ , and

f max(150)
succ .

similar to the positive trigger, but it is occasional and has a
limited mis-triggering rate, 0.2% for HA and 2.2% for CA,
w.r.t. f max(150)

succ .
Lighting condition. Lighting conditions may change the

color of the captured images and thus influence the effective-
ness of TPatch. We investigate three lighting conditions, e.g.,
daytime (2000 lux), dusk (400 lux), and backlight (100 lux).
As shown in Fig. 11, the TPatch is robust to different lighting
conditions and achieves nearly 100% in all situations. It is be-
cause we have considered the possible color shifts in the EoT
training of TPatch, including brightness, contrast, saturation,
and hue.

6 Countermeasures and Limitation

6.1 Countermeasures

In this section, we discuss four potential defenses against
TPatch from three levels, i.e., physical signal protection
(sensor level), input-transformed defenses (algorithm level),
model robustness improvement (algorithm level), and sensor
fusion techniques (system level).

Physical Signal Protection. In this paper, we exploit the
image blur caused by acoustic signals as the trigger of at-
tacks, which is enabled by the vulnerability of MEMS inertial
sensors to acoustic injection attacks. Microfiber metallic fab-
rics or MEMS fabricated acoustic metamaterials can be used
to isolate the attacking sound. We can also design a secure
low-pass filter to eliminate out-of-band analog signals, thus
inhibiting the ability of the adversary to control the sensor
output through signal aliasing [39].

Input-Transformed Defenses. A series of works intended
to exploit the instability of adversarial examples to detect
or mitigate this type of attack, typically via transformations
on the input images, e.g., JPEG compression [13], bit depth
reduction [43], Gaussian noise [46], median filter [43], and
denoise autoencoder [27]. Due to their simplicity, these de-
fenses are evaluated in recent relevant work like [30] and [6].
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Figure 12: ASRs (blue bars) and mAPs in benign scenarios (orange bars) with the input-transformed defenses. The x-axis
represents the strength of defenses for all defenses except the denoise autoencoders. The character of ’M’ and ’C’ denotes the
MNIST and CIFAR-10, respectively, as the training dataset of autoencoders. The number ’1’ and ’2’ denotes the two different
model architecture proposed in [27].

We use the ASR to evaluate the effectiveness of the defense
and use the mean Average-Precision (mAP) to evaluate its
impact on the performance of the detection model. As shown
in Fig. 6.1, we find that with a large defense strength, the
tested methods can defend our attacks to some extent but
impair the performance of the detection model. For safety-
related applications like self-driving, such performance drops
of recognition may not be acceptable. Therefore, using the
input-transformed defenses cannot easily defeat our attacks.

Model Robustness Improvement. The key factor that con-
tributes to trigger-ability is the vulnerability of recognition
models to the distortion. We can boost the resistance of the
recognition model in two ways: (1) train a more robust model
that tolerates the image distortion to an extent, and (2) detect
the distortion via evaluating the image quality by metrics, e.g.,
PSNR and MS-SSIM with the last frame, and then, lower the
importance of the recognition results of low-quality images.

Sensor Fusion Techniques. The general ways to cope
with the abnormal situations that exist in the scenario of au-
tonomous driving still work with TPatch, e.g., the fusion of
3d point cloud collected by Lidar and visual perception of the
camera in obstacle detection, the reference of the HD maps
that contain rich information about traffic signs, etc.

6.2 Limitation

TPatch attacks have the following limitations at present. First,
our evaluation mainly focuses on studying the effects of
TPatch attacks on the AI component level rather than the
AV system level [34]. A system-level evaluation will help
better understand the real-world impacts of our attacks. We
will have a closed-loop simulation with the other self-driving
components, e.g., prediction, planning, and control for evalu-
ation in the future. Second, we only investigate the acoustic
signal attacks as the trigger of TPatch. More evaluation on
the other sensor attacks is demanded. Third, although we have
enhanced the visual camouflage of TPatch with the content
loss, it may still alter acute victims. Further improvement on
the camouflage of TPatch is required. Fourth, the attack de-
vice for long range attacks can be noticeable at present. To
improve its visual stealthiness, we can (1) employ a more
compact array arrangement and (2) fit it with the surrounding

environment. For instance, the scale of the attack device in
the roadside scenario can be reduced into 20cm× 20cm by
simply eliminating gaps between the transducers. In addition,
the adversary could spray the ultrasonic array in a color con-
form to the surroundings, e.g., green for the vegetation. We
designate the aforementioned issues as our future work.

7 Related Work

In this section, we summarize the existing works on adver-
sarial attacks from three aspects, i.e., digital noise attacks,
physical adversarial attacks, and adversarial sensor attacks.

Digital Noise Attacks. It has been heavily studied how
to generate adversarial examples against image classifiers
by adding invisible noises, e.g., FGSM [17], PGD [24], I-
FGSM [22], MI-FGSM [12] and CW attacks [7]. Other than
image classification, Xie et al. [42] extend adversarial attacks
to object detection and image segmentation.

Physical Adversarial Attacks. A bunch of works aim to
explore the physical adversarial attacks. Kurakin et al. [22]
first prove the feasibility of printed adversarial attacks. How-
ever, the subtle pixel modification limits the attack capabil-
ity. Adversarial patch [5] replaces the additive noise with
the placement of the patch. In [3], Expectation over Trans-
formation (EoT) is proposed to boost the robustness of ad-
versarial examples. Chen et al. [8] propose a robust attack,
ShapeShifter, to Faster R-CNN in the real world. Song et
al. [36] successfully attack both Faster R-CNN and YOLO
V2. Zhao et al. [47] realize long-range attacks by adversarial
example nested in the patch. Lovisotto et al. [23] render the
stop sign with visible light to realize the adversarial attacks.

Adversarial Sensor Attacks. There exists another branch
of researches that launch sensor attacks on the camera to
achieve the adversarial goals. Yan et al. [44] demonstrate that
the direct laser projection can make the camera blind or even
destroyed. Man et al. [25] utilize the lens flare to manipulate
the recognition of traffic signs. Sayles et al. [31] propose an
optimization of color strips induced by the rolling shutter
effect to mislead the image classifier. Ji et al. [20] propose ad-
versarial blur attacks on object detectors by emitting acoustic
signals to hijack the image stabilization system.
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8 Conclusion

In this paper, we present TPatch, a physical adversarial patch
triggered by specific physical signals to realize hiding, cre-
ating and altering attacks against the vision-based percep-
tion module in a targeted autonomous vesicle. Evaluations
with three object detectors, YOLO V3/V5 and Faster R-CNN,
and eight image classifiers demonstrate the effectiveness of
TPatch in both the simulation and the real world. This work
serves as the first attempt at the adversarial patches triggered
by physical signals. Further directions include investigating
other signals in addition to the acoustic ones as the triggers.
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A Design Details of Acoustic Signal Injection

A.1 Challenge

Previous work [39] has demonstrated that injecting acoustic
signals into a MEMS motion sensor can induce a constant
bias when the signal frequency is an integer multiple of the
sampling frequency. Based on it, the attacker can form any
signal through amplification or phase modulation. However,
this method requires the attacker to monitor the sensor read-
ings of the victim’s car in real-time to synchronize the attack
signals, which can be difficult to fulfill in real driving scenar-
ios. Without signal synchronization, the sensor output may
suffer from phase shifting and frequency shifting, degrading
the performance of manipulation. In the following, we use
the one-dimension sensor data as an example to demonstrate
their effects.

Figure 13: Phase shifting effects on the aliased signals. The
blue line denotes the resonance of gyroscope induced by
injected signals (IS). The red and green dot lines represent
the aliased signals (AS) with different phase.
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Figure 14: Frequency shifting effects on the aliased signals.
The bottom figure shows the moving angles of camera which
is the integral of angular velocity shown in the upper figure.
The red line represents the ideal situation where the sampling
frequency is constant, while the green and blue dot lines rep-
resent the consequences caused by different frequency shifts.

Phase shifting. Without synchronization, a random phase
shift can be introduced during the aliasing process, as shown
in Fig. 13. The random phase shift then introduces a ran-
dom sensor output, and thus the motion blur with a random
strength.

Frequency shifting. Similarly, when without synchroniza-
tion, the sampling frequency of the MEMS sensor may drift
slightly from time to time due to the temperature changes. As
shown in Fig. 14, a small shift in frequency, e.g., 2 Hz or 4
Hz, can render the camera motion different from the ideal one
and varied in continuous frames.

A.2 Our Approach
To address the aforementioned issues, we first model the im-
age blur effect. A motion-blurred image can be viewed as the
superposition of a series of translated clean images, which
can be formulated in Eq. 13:

L(i, j, t) =
∫ t+te

t
g(i+∆i(τ), j+∆ j(τ))dτ (13)

where L(i, j, t) denotes the jth row and ith column of the image
L captured at the moment t. te is the exposure duration of the
camera. ∆i(t) and ∆ j(t) denote the translation of the X-axis
and Y-axis of the image at the moment t. g(i, j) denotes the
jth row and ith column of the stationary image g.

Based on this formulation, we find the key to reducing
the impact of phase/frequency shifting is to make the image
blur independent of the time t. To achieve it, we propose to
shift the frequency of the injected signal from the integer
multiple of the sampling frequency n fs to the frequency n fs±
fe, where fe represents the exposure frequency. In this way,
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Figure 15: Aliased signals with frequency shifting. The upper
figure shows the image translation caused by aliased sine sig-
nals, where the curves with different colors represent different
frequency shifts and the red shadows represent the exposure
duration. The bottom figure shows the density of image trans-
lation.

the frequency of the aliased signal can be given with fa =
| f −n fs|= |n fs ± fe −n fs|= fe, which equals the exposure
frequency. Since the aliased signal determines the sensor
output and thus the camera motion, the translation functions
of the X-axis ∆i(t) and Y-axis ∆ j(t) share the same period
with the camera exposure duration te, as formulated in Eq. 14:

∆i(t) = ∆i(t + te), ∆ j(t) = ∆ j(t + te), ∀t (14)

In this way, we can inject a stable blur pattern that is time-
independent as shown in Eq. 15, which eliminates the impact
of phase shifting.

L(i, j, t1) = L(i, j, t2), ∀t1, t2 (15)

The proof of the property is provided as follows:

L(i, j, t1) =
∫ t1+te

t1
g(i+∆i(τ), j+∆ j(τ))dτ

=
∫ t2

t1
g(i+∆i(τ), j+∆ j(τ))dτ+

∫ t1+te

t2
g(i+∆i(τ), j+∆ j(τ))dτ

=
∫ t2

t1
g(i+∆i(τ+ te), j+∆ j(τ+ te))dτ+

∫ t1+te

t2
g(i+∆i(τ), j+∆ j(τ))dτ

=
∫ t2+te

t1+te
g(i+∆i(τ), j+∆ j(τ))dτ+

∫ t1+te

t2
g(i+∆i(τ), j+∆ j(τ))dτ

=
∫ t2+te

t2
g(i+∆i(τ), j+∆ j(τ))dτ = L(i, j, t2)

For frequency shifting, our approach cannot eliminate it
but can reduce its impact. The reason is that the aliased signal
generated by our approach has a much higher frequency than
the frequency shift caused by the temperature drift, making
its impact not significant. For instance, given a desired aliased
signal of 60 Hz and a frequency shifting of k = 2 Hz, the
actual aliased signal is 58 Hz or 62 Hz, which still has a high
overlap with the idea one, as shown in Fig. 15

Figure 16: Visualization of SentiNet results. The red triangles
and blue squares respectively denote TPatch and benign ex-
amples. The curve represents the decision boundary.

B Impact of Doppler Effects

In the roadside attack scenario, a relative speed can exist be-
tween the driving-by vehicle and the stationary attack device,
resulting in a frequency shift of the injected signals due to
the Doppler effects. Given a relative speed of 1 m/s and an
emitted signal frequency of 20 kHz, the frequency shift of
injected acoustic signal is 58.8 Hz. To address it, the attacker
can compensate for the frequency shifting in real-time by
externally measuring the speed of the vehicle via a certain
common approach, e.g., LiDAR [32]. For the reason of engi-
neering, we configure the car at a constant speed to simulate
the scenario where the adversary has obtained the vehicle
speed from real-time measurements.

C Explainable-AI based Detection Techniques

Recently, a few approaches are proposed to defend the attack
of adversarial patches, e.g., SentiNet [9], PatchGuard [41],
etc. The common methodology among existing defenses is to
utilize the explainable-AI techniques, e.g., Grad-CAM [33]
in SentiNet and BagNet [4] in PatchGuard, to localize the
potential adversarial patch, whose saliency is abnormally high.
Once the TPatch is triggered, it would work like the normal
adversarial patch; hence, it is feasible to tackle our attack with
similar approaches. We report the defense results of SentiNet
in Fig. 16, where the accuracy of SentiNet is relatively low
when TPatch is untriggered. We suppose that there are pilot
systems that are equipped with these state-of-the-art detection
techniques. We want to investigate whether it is possible to
detect the TPatch via feature analysis.

We use Grad-CAM and BagNet to extract the feature
saliency map of the target class. Here we make a strong as-
sumption that the defender knows the target class of attack.
If the defender is still unable to detect the presence of the
TPatch despite having additional prior conditions, it means
that this detection method is also difficult to succeed with
zero prior. We follow the methodology of original papers
to process the saliency map. In SentiNet, the defender uses
a threshold to generate the binary mask and then crops the
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Figure 17: CDF of the number of masked pixels. We use
ResNet-50 and BagNet-33 as the recognition model respec-
tively for the experiments of Grad-CAM and BagNet.

masked part of the image, which potentially contains the ad-
versarial patch. We keep 30% of the pixels with the highest
saliency for evaluation. In PatchGuard, the defender uses Bag-
Net as the recognition model, whose final convolutional layer
can generate a local feature map of each class, and utilizes a
sliding window to detect the most salient area. We design the
TPatch as 48×48 pixels and the corresponding best window
size is 6×6. After finding the most salient window, we can
map the window in the feature space to the mask in the image
pixel space.

We define the masked pixel numbers of the TPatch as the
metric of evaluation, where zero stands for the complete fail-
ure of detection and the total pixel number of the patch stands
for the success of detection. We conduct experiments on three
types of patches, i.e., random patch, normal adversarial patch,
and our TPatch, and plot the overall result with the format of
cumulative distribution function (CDF). As shown in Fig. 17,
both methods have an excellent performance in detecting the
normal adversarial patch. However, both methods perform
badly on detecting the TPatch and never mask the whole
patch. Surprisingly, the performance of detecting the TPatch
is even worse than the one of detecting the random patch,
which represents the probability of accidentally masking the
irrelevant objects.

D Physical Experiments on Altering Attacks

We conduct indoor physical experiments to investigate the
effectiveness of altering attacks on classifiers. We place the
TPatch with a mouse (an existed class in ImageNet [11]) in
the view of camera and use a switch to control the acoustic
signal injection. When the switch is off, the classifiers cor-
rectly recognize the mouse, and the target class, traffic light,
is not within the top-5 recognition results. When the switch is
on, the top-1 recognition result is altered into the traffic light.
All the TPatches achieve f max(150)

succ of 100% on three tested
classifiers, i.e., VGG16, Res50, and Incv3.

E Impact of Other Acoustic Signals

We conduct experiments with three representative types of
acoustic signals: (1) in-car music, (2) road noises, and (3)
traffic horn sounds. During attacks, we played each of them at
110dB using a speaker at a distance of 5cm from the camera.
From the results, we find that none of them has effects on
either the captured images or the motion sensor readings.
This is because common background noises are in a lower
frequency band (<10kHz) than the resonant frequencies of
the motion sensors tested in our experiments, i.e., higher than
20kHz.

F Impact of Phase Differences

With the same strength A and orientation ψ of motion blur,
different phase differences can make the PSF kernel various
shapes, as illustrated in Fig. 18, while the phase differences
have few impacts on the ASRs of TPatch, as shown in Fig. 19.

Figure 18: PSF kernels of different phase differences.

Figure 19: ASRs with different phase differences.
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