
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

FishFuzz: Catch Deeper Bugs by Throwing Larger Nets
Han Zheng, National Computer Network Intrusion Protection Center, University of Chinese
Academy of Science; School of Computer and Communication Sciences, EPFL; Zhongguancun

Laboratory; Jiayuan Zhang, National Computer Network Intrusion Protection Center, University
of Chinese Academy of Science; School of Computer and Communication, Lanzhou University of

Technology; Yuhang Huang, National Computer Network Intrusion Protection Center, University
of Chinese Academy of Science; Zezhong Ren, National Computer Network Intrusion Protection
Center, University of Chinese Academy of Science; Zhongguancun Laboratory; He Wang, School

of Cyber Engineering, Xidian University; Chunjie Cao, School of Cyberspace Security, Hainan
University; Yuqing Zhang, National Computer Network Intrusion Protection Center, University of
Chinese Academy of Science; Zhongguancun Laboratory; School of Cyberspace Security, Hainan
University; School of Cyber Engineering, Xidian University; Flavio Toffalini and Mathias Payer,

School of Computer and Communication Sciences, EPFL

https://www.usenix.org/conference/usenixsecurity23/presentation/zheng

FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets

Han Zheng1,2,6, Jiayuan Zhang1,3, Yuhang Huang1, Zezhong Ren1,6, He Wang4, Chunjie Cao5,
Yuqing Zhang1,6,5,4, Flavio Toffalini2 and Mathias Payer2

1National Computer Network Intrusion Protection Center, University of Chinese Academy of Science
2School of Computer and Communication Sciences, EPFL

3School of Computer and Communication, Lanzhou University of Technology
4School of Cyber Engineering, Xidian University

5School of Cyberspace Security, Hainan University
6Zhongguancun Laboratory

Abstract
Fuzzers effectively explore programs to discover bugs.

Greybox fuzzers mutate seed inputs and observe their ex-
ecution. Whenever a seed reaches new behavior (e.g., new
code or higher execution frequency), it is stored for further
mutation. Greybox fuzzers directly measure exploration and,
by repeating execution of the same targets with large amounts
of mutated seeds, passively exploit any lingering bugs. Di-
rected greybox fuzzers (DGFs) narrow the search to a few
code locations but so far generalize distance to all targets into
a single score and do not prioritize targets dynamically.

FISHFUZZ introduces an input prioritization strategy that
builds on three concepts: (i) a novel multi-distance metric
whose precision is independent of the number of targets, (ii)
a dynamic target ranking to automatically discard exhausted
targets, and (iii) a smart queue culling algorithm, based on
hyperparameters, that alternates between exploration and ex-
ploitation. FISHFUZZ enables fuzzers to seamlessly scale
among thousands of targets and prioritize seeds toward inter-
esting locations, thus achieving more comprehensive program
testing. To demonstrate generality, we implement FISHFUZZ
over two well-established greybox fuzzers (AFL and AFL++).
We evaluate FISHFUZZ by leveraging all sanitizer labels as
targets. In comparison to modern DGFs and state-of-the-art
coverage guided fuzzers, FISHFUZZ reaches higher coverage
compared to the direct competitors, finds up to 2.8x more
bugs compared with the baseline and reproduces 68.3% ex-
isting bugs faster. FISHFUZZ also discovers 56 new bugs (38
CVEs) in 47 programs.

1 Introduction

Greybox fuzzing is an established automated program testing
technique aimed at finding bugs. Fuzzing is as simple as effec-
tive: execute the target program with inputs (seeds), observe
its behavior, and report observed crashes. The seed that trig-
gered the crash allows reproduction of the crash later during
debugging. This effectiveness resulted in considerable interest
in more sophisticated designs [2, 5–8, 10, 21, 25, 27, 31].

Successful greybox fuzzers balance two aspects: explo-
ration and exploitation. During exploration, the main goal is
to increase coverage, i.e., creating new seeds that reach new
program areas [8,31]. During exploitation, the main goal is to
trigger bugs by executing a piece of code with diverse inputs,
i.e., mutating existing seeds to trigger bugs in these already
covered program areas. Unfortunately, fuzzers have no direct
feedback for exploitation and assume that random mutations
will execute the same code sufficiently well. Directed Greybox
Fuzzers (DGF [3]) prioritize exploitation by directing explo-
ration towards a specific code location (target), improving
the likelihood to find bugs at that location [3, 5, 7, 21]. DGFs
leverage the distance between seeds and targets to prioritize
inputs more likely to trigger errors.

Recent DGFs try to balance exploitation and exploration
to automatically trigger bugs in larger sets of targets (on the
order of thousands) [5, 7, 21, 32]. However, we observe two
core limitations. First, they model the distance between seeds
and targets as a single harmonic average. This means that,
regardless of the number of targets, they always collapse the
seed-target distance into a single scalar. Therefore, for large
target sets, the distance results are distorted, and the fuzzer
loses precision. DGFs average the distance because tracing
each target individually (e.g., at the basic block level) results
in prohibitive overhead. Second, current works assign a time-
invariant priority to the targets. They use different techniques
(e.g., static analysis, sanitizer labels) to infer error-prone tar-
gets ahead of time, i.e., before the beginning of the fuzzing
session. However, we observe that the priority of a target
changes during the fuzzing campaign and a fuzzer must ad-
just its strategy as some targets may be easier to reach than
others. Targets that have been hit frequently are “well ex-
plored” and therefore less likely to be buggy. Less explored
targets should therefore be prioritized to uncover new bugs.
Therefore, a time-invariant priority might miss-classify the
importance of a code location and waste computing resources.

Observing these challenges, we propose FISHFUZZ that (i)
estimates a more precise distance between seeds and targets,
(ii) dynamically ranks interesting targets among thousands,

USENIX Association 32nd USENIX Security Symposium 1343

and (iii) automatically prioritizes inputs. FISHFUZZ builds
on three key contributions: (1) a novel distance metric more
robust to indirect jumps that can select the “closest” seed for
each target (thus improving exploration), (2) a dynamic target
ranking that automatically discards exhausted targets and
steers the fuzzer’s energy towards (more) promising locations
(thus improving exploitation), and (3) a novel queue culling
algorithm to efficiently orchestrate between exploration and
exploitation. The insight behind our approach is analogous to
trawling (which inspired our fuzzer’s name). After casting a
wide net (capturing many possible targets), the net is closed
gradually. During exploration our fuzzer tries to reach as many
targets as possible while during exploitation, our fuzzer tracks
how well each target is explored. Unlike previous works,
FISHFUZZ easily handles tens of thousands of targets without
loss of precision (e.g., in our largest target, we cover over 20k
targets). Concurrently, FISHFUZZ automatically prioritizes
rarely tested targets, which are more likely to contain bugs [18,
25]. The combination of these three strategies allows the
fuzzer to reach more targets (during exploration) and then
spread its energy evenly across the discovered targets (during
exploitation). Together, this results in improved bug-finding
capabilities.

We show the generality of FISHFUZZ by deploying our
strategies over two well-established greybox fuzzers: AFL and
AFL++. Then, we compare our prototypes against three mod-
ern DGFs (i.e., ParmeSan [21], TortoiseFuzz [27], and SAV-
IOR [7]), four modern two-stage fuzzers (i.e., AFLFast [4],
FairFuzz [17], EcoFuzz [29], K-Scheduler [23]) as well as
against AFL++ [8] and AFL [31]. We conduct experiments
over f our benchmark sets. The first two are composed of
11 and 8 programs taken from TortoiseFuzz [27] and SAV-
IOR [7], respectively. For the third one, we choose 7 programs
that cover different input formats, e.g., document, image, text,
executable. The last benchmark selects 30 real-world pro-
grams from other top-tier fuzzing works. During exploration,
we achieve higher coverage (up to 146% more) and hit more
targets (up to 112% more) compared with the state-of-the-
art. For exploitation, FISHFUZZ triggers 2.8x more targets
and finds up to 2x unique bugs in comparison to its com-
petitors. More precisely, FISHFUZZ reproduces 99 unique
previous bugs, among which 71 (68.3%) faster than previous
works. Moreover, we discover 56 new bugs from which 38
are already confirmed as CVEs. Finally, we investigate the
different bugs discovered when deploying FISHFUZZ over
AFL or AFL++. Our results show that the base fuzzer influ-
ences the type of bugs discovered (i.e., AFL/FISHFUZZ finds
different bugs than AFL++/FISHFUZZ). This insight suggests
FISHFUZZ enhances the existing bug discovery capabilities
by redirecting their energy more efficiently.

To sum up, our contributions are:

• FISHFUZZ: a novel input prioritization strategy that max-
imizes the number of explored and exploited targets.

• A distance metric between seeds and targets that is in-
dependent of the size of the target set and robust against
unresolved indirect jumps.

• A dynamic target ranking that automatically guides the
fuzzer’s energy towards promising locations, while dis-
carding thoroughly explored ones.

• A detailed evaluation against the state-of-the-art and the
discovery of 56 bugs (38 CVEs) in 47 programs.

The full source code is released at https://github.com/
HexHive/FishFuzz. The artifact with a demonstration is
available at https://zenodo.org/record/6405418.

2 Background

This section introduces background information of input pri-
oritization, upon which we build FISHFUZZ (§2.1). Moreover,
we define FISHFUZZ’s scope (§2.2).

2.1 Input prioritization
Modern fuzzers, such as AFL [31] and AFL++ [8], take a
program as input and a set of inputs (seeds) to submit to the
program. Their workflow is loop-based: they select seeds,
mutate them, and submit the mutated inputs to the program.
The fuzzer collects information about the program execu-
tion (e.g., code coverage) to guide the next fuzz iteration.
Usually, fuzzers select seeds to improve the code coverage
(code-coverage-guided fuzzers), but this behavior can be ad-
justed with different metrics and purposes. To select inter-
esting seeds, fuzzers adopt two strategies: input filtering and
queue culling. With input filtering, we refer to strategies that
discard unproductive seeds, while queue culling gives more
priority to interesting seeds (without discarding others).

Our work focuses on queue culling strategies. Specifically,
these approaches use a specific flag, called favored, to indicate
whose seeds will be selected in the next fuzz iteration. The
favored setting can follow various strategies depending on the
targeted results. For instance, we can select seeds to improve
the coverage, or we can guide the testing toward specific code
locations in an attempt to trigger a specific bug.

AFL [31] maintains a map (top-rated) that pairs the vis-
ited edge and the best input for visiting it, where the best input
is simply the smallest and fastest one to reach that edge. While
executing inputs, AFL traces the visited edges and assigns
the new input to the edges in top-rated if the input is smaller
or can reach these edges faster. In this way, AFL can easily
find a suitable input for an edge through a fast look-up. More
advanced fuzzers, such as Angora [6] or AFL-Sensitive [26],
include additional information, such as the calling stack, the
memory access address, and the n basic blocks execution
path. More recent fuzzers [27] infer the best seed based on
a combination of the static analysis and the seed’s execution

1344 32nd USENIX Security Symposium USENIX Association

https://github.com/HexHive/FishFuzz
https://github.com/HexHive/FishFuzz
https://zenodo.org/record/6405418

Vulnerability

Code Space

Greybox Fuzzers

Direct Greybox Fuzzers

Sanitizer Guided Fuzzers

FishFuzz

Figure 1: The image depicts the scope of FISHFUZZ relative
to other fuzzer families. Greybox Fuzzers target the whole
code space, Direct Greybox Fuzzers target specific targets,
Sanitizer-Guided Fuzzers target the sanitizer label but not all,
FISHFUZZ targets all the sanitizer labels.

Table 1: Number of targets used by ParmeSan and FISHFUZZ.

programs ParmeSan FISHFUZZ Rate

flvmeta 300 4157 13.86
MP4Box 6809 107930 15.85
lou_checktable 127 1853 14.59
tiff2pdf 1015 14938 14.72
nasm 899 9160 10.19
nm-new 1813 41901 23.11
gif2tga 10 474 47.40

sum 10973 180413 16.44

path. Regardless of their approaches, we observe that current
queue culling algorithms estimate the target’s priority ahead-
of-time, without reconsidering them during the campaign.
Therefore, if a portion of code has been triggered, the cull
queue keeps selecting seeds for that location, thus wasting
energy. Conversely, FISHFUZZ dynamically deprioritizes the
targets during the fuzzing campaign (§4.2).

2.2 FISHFUZZ’s scope

Figure 1 depicts the relation of current fuzzer families
with FISHFUZZ. The outer box represents the whole code
space, which might contain vulnerabilities (represented as red
crosses). Fuzzers try to trigger vulnerabilities by exploring
code and exploiting the vulnerabilities. Greybox fuzzers focus
on exploration: covering the entire code space regardless of
the presence of vulnerabilities. As an opposite strategy, Direct
Greybox Fuzzers (DGFs) [3] try to reach and trigger targets
in a target set instead of the whole code space. The target set
is usually manually defined. DGFs achieve this goal by mod-
eling exploration and exploitation as distinct phases. First,
they mutate seeds so that they hit the targets (exploration
phase). Second, they try to trigger the targets (exploitation
phase). Specifically, the exploration phase uses seed-target
distance metrics to infer how “far” a seed is from a given
target set, while exploitation relies on standard fuzzing tech-

Table 2: Number of targets used by SAVIOR and FISHFUZZ.

programs SAVIOR FISHFUZZ Rate

djpeg 860 4927 5.73
jasper 2576 4194 1.63
readelf 236 3160 13.39
tcpdump 4114 10221 2.48
tiff2pdf 333 4235 12.72
tiff2ps 333 2740 8.23
xmllint 2627 5567 2.12

sum 11079 35044 3.16

niques to “hammer” the reached locations. However, their
seed-target metrics average the distance from a seed to the
whole target set, thus losing precision if the target set contains
more than one target. As an extension of DGF, Sanitizer-
guided Fuzzers (SGF) [7, 21] stretch the target set over any
location labeled by sanitizers, thus considering thousands of
targets. SGFs ideally consider all labeled code as possible
buggy and then direct the exploration toward those locations
in an attempt to trigger an exception. However, SGFs inherit
similar seed-target distance from DGFs, thus suffering from
similar precision issues. Therefore, SGFs propose static anal-
ysis and heuristics to focus on promising targets to make
the problem tractable. In practice, SGFs might discard rel-
evant vulnerabilities or test code locations that are already
bug-free [21]. Given this background, FISHFUZZ extends and
improves upon DGFs and SGFs by handling arbitrarily large
target sets without losing precision or discarding real bugs.
Unlike previous works, FISHFUZZ considers all the sanitizer
labels (e.g., from ASan [11] and UBSan [12]) and handles
16x and 3x more targets compared with Parmesan [21] and
SAVIOR [7] respectively, which are state-of-the-art SGFs (Ta-
ble 1 and Table 2). To achieve our goal, we must solve the
following three challenges:

C1: Designing a distance metric to improve the precision in
the exploration phase. Our metric allows a fuzzer to select
the closest seed for each function containing targets, thus
improving precision. Conversely, current distance metrics
employed in DGF and SGF average over multiple targets,
thus losing precision with the growth of the target set.

C2: Designing a mechanism to dynamically select interest-
ing targets and discard unpromising ones, thus improving
the exploitation phase. Conversely, current SGFs use either
heuristics or imprecise analysis that might (i) ignore inter-
esting code locations and (ii) waste energy toward already
triggered targets.

C3: Designing a smart queue culling algorithm that orches-
trates exploration and exploitation to maximize the targets
reached and triggered.

USENIX Association 32nd USENIX Security Symposium 1345

3 FISHFUZZ’s Design

The design of FISHFUZZ revolves around the concepts of
distance measurement and dynamic target selection, and poses
the base for our queue culling algorithm in §4. Specifically,
we first formalize the structures for modelling targets’ priority
in §3.1, then we introduce our distance measurement in §3.2.

3.1 Dynamic Target Priority

One of FISHFUZZ’s key features is to focus the fuzzer’s
energy by selecting more promising targets. To achieve
this, we associate to each target t a triple of meta-data
(hit_frequency,reached, triggered), where hit_frequency in-
dicates how often a target has been traversed by the seeds,
reached if the target has been executed at least once, and
triggered if the execution of the target crashes. The targets’
metadata are organized in a set T . During the campaign, we
update T through a shared memory region between the fuzzer
and the tested program. Then, FISHFUZZ selects seeds to
hit less-explored targets, i.e., those with low hit_frequency.
Since the selection is intertwined with the queue algorithm,
we detail the process in §4.2.

3.2 Distance Measurement

To overcome the imprecision of current seed-target distance
metrics [3, 21, 27], we propose to estimate the “closest” seed
for each target independently. However, tracing the distance
at the basic block level would require an enormous amount of
information, which would slow down the fuzzing campaign.
To reduce the tracing overhead, we measure the minimal dis-
tance between the seed and functions on the call graph. This
approach reduces the number of required instrumentations.
Finally, we rely on standard fuzzing techniques for the inner
function exploration (see §4.2).

Overall, we first pre-calculate a static map that contains
the minimum distance among functions, which we call static
distance map. Then, we leverage the static distance map to
estimate the closest seed to a function at runtime (i.e., the
seed that visits the function closest to the target). In the last
part of the section, we discuss how to handle indirect calls.

Static Distance Map. The static distance map is a look-up
table that contains the minimum distance for each function
pair. The distance is estimated over the control-flow-graph
(CFG) and the call-graph (CG), which we extract during com-
pilation from LLVM-IR [19]. This initial analysis, for now, is
oblivious to indirect calls.

To calculate the static distance map, FISHFUZZ assigns a
weight for each function pair (fi, f) such that f is a callee
of fi. The weight represents the minimum number of condi-
tional edges that a seed might traverse from the entry point

of fi to the callee function f , and is computed with the func-
tion dbb(ma,mb) (i.e., distance from basic block ma to mb).
Formally speaking, given two functions fi and f , we defined
weight(fi, f) as follows:

weight(fi, f) =

{
mindbb(m,m f) if ∃m f ∈ fi

∞ otherwise,
(1)

where m is the prologue of the function fi, and m f is a basic
block belonging to fi and contains a function call to function
f (so f is a callee of fi). If f is a callee of fi, the weight
between fi and f is the minimum distance between m and m f .
Otherwise, it is unreachable (∞). To handle multiple function
calls to f , we consider the minimum distance to leave fi only.

Once the weights are computed, FISHFUZZ pre-computes
the distance between two functions as the sum of their weight
along the shortest path between two functions based on the
compilation-extracted CG. Formally speaking, the distance
between two functions fa and fb is defined as follow:

dff(fa, fb) = ∑
fi∈sp(fa, fb)

weight(fi, fi+i), (2)

where sp(fa, fb) is the shortest path between fa and fb using
Dijkstra’s algorithm [15], and weight(fi, fi+1) is Eq. 1 over
two consecutive functions in the path.

Dynamic Seed to Function Distance. Having the static
distance map, we define a function dsf(s, f) that represents
the distance between the functions traversed by the seed s and
a function f as follows:

dsf(s, f) =

{
min fs∈ξ(s) dff(fs, f) if f 6∈ ξ(s)
0 otherwise,

(3)

where ξ(s) represents the functions traversed by the execution
of the seed s. If f is traversed by the execution path of s, we
consider the distance as zero.

With the dynamic seed distance, FISHFUZZ chooses the
closest seed for a target function based on the intuition that a
seed closer to a target has higher probability to reach it. We
mainly use dsf in the inter-function exploration (§4.2).

Indirect Call handling. Unresolved indirect calls might
stop a fuzzer from reaching interesting code regions. In FISH-
FUZZ, the dynamic seed to function distance (Eq. 3) already
provides an approximation of indirect calls without the burden
to resolve them. We illustrate this property in Figure 2, which
shows a CG where the functions pair fc - fd , and fb - fg, are
connected through an (unresolved) indirect call. This example
contains three cases: ID1 and ID2 show when FISHFUZZ can
resolve the seed-target distance, while ID3 exemplifies when
FISHFUZZ cannot resolve the distance.

Case ID1. We assume the fuzzer has generated a seed
s1 that traverses fa, fc, fd , and finally hits f f (red). When

1346 32nd USENIX Security Symposium USENIX Association

fa

fb fc

fd

fe ff

s
1 ’ execution path

dsf(s1, fe) = dff(fd,fe)

dsf(s2, fg) = 0

dsf(s1, fg) = ∞

dff
(f d

,f e
)fg

s 2
’ execution path

Figure 2: Example of handling indirect calls. In this CG fc
- fd and fb - fg are connected through unresolved indirect
calls. The execution path of the seed s1 (red) traverses the
indirect call between fc and fd . This allows FISHFUZZ to
notice the existence of a path to fd , and then calculate the
distance dsf(s1, fe) = dff(fd , fe). If a function is isolated from
the CG (e.g., fg), we may exercise a seed s2 (green) that hits
the isolated function. In this case, we consider the distance
dsf(s2, fg) = 0. If the seed has not resolved jumps toward a
function, such as for s1 and fg, then we consider its distance
dsf(s1, fg) = ∞.

this occurs, FISHFUZZ has sufficient information to compute
the distance between s and fe, which is exactly the distance
between fd and fe (Eq. 2). Our approach is an approximation
because there could be other hypothetical hidden paths behind
not-yet-resolved indirect calls.

Case ID2. In this case, fg has no direct calls to resolve
the distance calculation. Therefore, we assume the fuzzer
generates a seed s2 that traverses fg (green). According to
Eq. 3, the distance is zero since s2 hits the target function.

Case ID3. The execution path of s1 does not reach any
function directly connected to fg. In this case, we set the
distance between s1 and fg as infinite (∞), and consider fg
unreachable by s1.

Generally, whenever a seed traverses an indirect call, FISH-
FUZZ can use nearby (connected) functions to estimate the
minimum distance between the seed and the target function
(Case ID1). If a function has no direct connections, we have
two cases (i) the fuzzer generates a seed that traverses the
function (Case ID2), or (ii) the function is unreachable for a
given seed (Case ID3).

4 FISHFUZZ’s Queue Culling Strategy

Our queue culling strategy leverages the dynamic target prior-
ity (§3.1) and the distance measurement (§3.2) to address both
challenges described in §2.2. FISHFUZZ allows DGFs to scale
exploration and exploitation over programs with thousands of
targets without losing precision. Most importantly, we design
the queue culling to be easily integrated into modern Greybox
Fuzzers [31]. To prove our claims, we implement and test
FISHFUZZ over AFL and AFL++. This section focuses on

Program

compilation
+

sanitizers

Instrumented
Program

Program preparation (4.1)

Fuzz Loop

Queue

Fork Server

Program
Instances

isFavor?

Execute &
Monitor

Targets Extraction Targets Ranking (3.2)

Distance Metric (3.2)Static Analysis

Update
targets
ranking

Select
useful
seeds Save

interesting
seeds

Cull Queue (4.2)

+

①

: FishFuzz
 components

②

③

④

⑤

⑥
⑦

⑧

Figure 3: Overview of FISHFUZZ workflow.

the design and expands crucial queue components, while we
detail the implementation in §5 and evaluate in §6.

The overall workflow is depicted in Figure 3 and follows
the standard fuzzing procedures [8, 21, 27, 31]. Given a target
program, we compile and instrument it with specific sanitizers
1 , this phase makes the instrumented program ready for the
fuzzing campaign 2 , and extracts initial information useful
for FISHFUZZ 3 . Then, the instrumented program follows
the standard greybox workflow in which a fork server handles
the program lifecycle 4 . Meanwhile, a fuzz loop selects in-
puts from a queue and submits them to the program instances
5 . The input selection is handled by our queue culling 6

which relies on our distance measurement 7 and ranking 8 .
As previously stated, the majority of the workflow follows

the standard greybox fuzzers [4, 8, 31], only program prepa-
ration §4.1 and queue culling §4.2 differ. We discuss these
components in the rest of the section.

4.1 Program Preparation
In the program preparation phase, we compile the program
and generate a fuzzing-compatible binary. We also instrument
the code with extra components for code coverage and secu-
rity sanitizers similarly to previous works [3, 6, 21, 27, 31].
Finally, we perform static analysis over LLVM-IR [19] to
build the static distance map (§3.2). The FISHFUZZ design
is agnostic to the sanitizer, in our experiment, we success-
fully tested ASan [11,22] and UBSan [12]. Alternatively, one
can use other targets such as assertions. We opt for sanitizer
targets due to their straightforward security implications.

4.2 Queue Culling Algorithm
We design the queue culling by taking inspiration from the
trawl fishing technique. At the beginning of the fuzzing cam-
paign, FISHFUZZ prioritizes the function exploration (expand-
ing the net). When no new functions are reached, FISHFUZZ
focuses on maximizing the reached targets (the net starts clos-
ing). Once no new targets are reached, the cull logic changes
again and tries to trigger the interesting targets (catching as
many fish as possible). Since every phase requires differ-
ent metrics (i.e., number of functions or targets reached/trig-

USENIX Association 32nd USENIX Security Symposium 1347

Inter-function
exploration

Intra-function
exploration

Exploitation phase

new function traversed

no new
 function

traversed

new
 function traversed

no new target reached

no new target triggered

Figure 4: FISHFUZZ uses an exploration phase to select seeds
closer to targets, while the exploitation phase focuses on
the targets triggering. Additionally, FISHFUZZ uses two sub-
exploration phases, one is specialized to reach larger number
of functions (inter-function), while the second to maximize
the reached targets (intra-function).

gered), we adopt a multiphase approach as suggested from
previous works [21]. Specifically, FISHFUZZ relies on three
phases: inter-function exploration, intra-function exploration,
and exploitation – all pictured in Figure 4. The purpose of the
inter-function exploration is to reach interesting functions (i.e.,
expanding the net). This phase leverages the Distance Mea-
surement (§3.2) to select seeds closer to functions containing
untriggered targets (thus addressing C1). Intra-function ex-
ploration focuses on testing internal functions based on the
original fuzzer’s algorithm and tries to hit as many targets as
possible (i.e., start closing the net). Finally, the exploitation
phase maximizes the number of targets triggered (i.e., catch-
ing the fish). This phase uses the Dynamic Target Ranking
(§3.1) to maximize the triggered targets (thus addressing C2).

The switch among the different phases happens at specific
events: (i) every time a new function is traversed (i.e., in-
ter-function exploration), (ii) if no new function is traversed
for a period of time (i.e., intra-function exploration), (iii) if
no new target is reached for a period of time (i.e., exploita-
tion), and (iv) if no new target is triggered for a period of
time. Swinging among the events allows FISHFUZZ to pri-
oritize each seed according to the needs, i.e., reaching new
targets in exploration or hammering under-tested locations in
explotation (thus addressing C3). In our experiments, we de-
termined these timeouts for each event and leave a discussion
for fine-tuning in §7.1. In the rest, we detail the inter-function
exploration and the exploitation phase. For intra-function ex-
ploration, we re-use the original cull algorithm (for AFL [8]
and AFL++ [31]) and thus omit its description.

Inter-function Exploration Phase. In this phase, FISH-
FUZZ selects seeds to maximize the reached functions con-
taining untriggered targets. The cull algorithm of this phase
is shown in Algorithm 1. Specifically, given a Queue of seeds
and a set of Functions from the target program, FISHFUZZ
sets f avored = 1 to the closest seed for each unexplored func-

Algorithm 1: Cull logic for the inter-function explo-
ration phase.

1 interFunctionCullQueue(Queue, Functions)
2 for s ∈ Queue do
3 s. f avored = 0
4 end
5 for f ∈ Functions do
6 if f .unexplored∧ f .hasTargets then
7 s← getClosestSeedToFun(Queue, f)
8 s. f avored = 1
9 end

10 end

Algorithm 2: Cull logic for the exploitation phase.

1 exploitationCullQueue(Queue, Targets)
2 for s ∈ Queue do
3 s. f avored = 0
4 end
5 trgs_to_visit← /0

6 for t ∈ Targets do
7 if t.reached then
8 trgs_to_visit← trgs_to_visit ∪{t}
9 end

10 end
11 trgs_to_visit← orderByHit(trgs_to_visit)
12 threshold← |trgs_to_visit| ∗20%
13 for (p, t) ∈ enumerate(trgs_to_visit) do
14 if p < threshold then
15 s← getFastestSeedToTarget(Queue, t)
16 s. f avored = 1
17 end
18 end

tion that also contains targets (line 6). After the favored seeds
are submitted to the program, FISHFUZZ updates the list
of explored Functions and repeats the process. getClosest-
SeedToFun finds the closest seed s to the function f through a
seed-function distance (§3.2). If multiple seeds are equidistant
to f , we prefer the one with the lowest execution time.

Exploitation Phase. In the exploitation phase, FISHFUZZ
tries to trigger the maximum number of targets previously
reached. Our intuition is to keep hitting the same target with
different seeds (that can reach the target), thus increasing the
chance to expose the bug. Algorithm 2 shows the pseudo-
code of this phase. Specifically, we first select those targets
that are reached through either the inter- or the intra-function
exploration phase (line 6 to line 10). Among the trgs_to_visit,
we select the top 20% of fewest hit targets (line 12 and line 14).
For each suitable target, getFastestSeedToTarget returns the

1348 32nd USENIX Security Symposium USENIX Association

fastest seed s that hits t, thus finally setting s as favored. As
the fastest seed, we select the seed with the lowest execution
time, which is measured in modern fuzzers [1, 27]. In this
phase, we have a high probability to find seeds that hit targets,
which are generated during the exploration phase. Finally,
the function getFastestSeedToTarget uses the dynamic target
priority in §3.1. In our experiments, we select the top 20% of
the fewest hit targets, we leave a discussion about parameters’
choice in §7.

5 Implementation

We provide two prototypes of FISHFUZZ: FFAFL and
FFAFL++, which are based on AFL [31] version 2.57b and
AFL++ [8] version 4.00c, respectively. For the instrumenta-
tion, we extended LLVM [19] version 12.0.1.1

We implement the inter-function exploration and the ex-
ploitation phases as two cull queue functions in AFL (2,500
LoC) and in AFL++ (1,800 LoC). For the program anal-
ysis, we develop additional analysis passes for LLVM to
extract CFG, CG, and to estimate the static function dis-
tance. Moreover, we develop an additional instrumentation
pass to extract information for the dynamic seed to func-
tion metric. The LLVM code is around 1,500 LoC in total.
Additionally, we have a few python scripts for the compi-
lation process, which are around 200 LoC. As for sanitiz-
ers, we use ASan [11, 22] and UBSan [12] distributed with
the compiler-rt libraries from LLVM/Clang. We open-source
FISHFUZZ and materials for replicating the experiments at
https://github.com/HexHive/FishFuzz.

6 Evaluation

We evaluate FISHFUZZ to answer the following research
questions. RQ1: How many targets are reached? (§ 6.1)
RQ2: How efficiently does FISHFUZZ find bugs? (§ 6.2)
RQ3: Can FISHFUZZ find new bugs? (§ 6.3) RQ4: Can

other fuzzers benefit from our strategies? (§6.4) RQ5: How
does FISHFUZZ improve the original fuzzer? (§6.5) We con-
duct all the experiments by following the best practice de-
scribed in [24] using the two FISHFUZZ implementations:
FFAFL and FFAFL++. For simplicity, we refer to FISHFUZZ
when indicating the two prototypes, and specify which when
needed. In RQ5, we discuss the differences between FFAFL
and FFAFL++.

Compared Fuzzers. We test FISHFUZZ against different
families of fuzzers. First, we select three of the most recent
DGFs in the literature: TortoiseFuzz [27], ParmeSan [21],
and SAVIOR [7]. Then, we include an array of Two-Stage
fuzzers: AFLFast [4], FairFuzz [17], EcoFuzz [29], and K-
Scheduler [23]. We also include AFL [31] and AFL++ [8]

1We also successfully test it on LLVM 10.0.1

since they are the base for FFAFL and FFAFL, respectively.
Moreover, we deploy FISHFUZZ over QSYM [30] to answer
RQ4. For our evaluation, we choose ASan and UBSan as
sanitizers as mentioned in §5.

Benchmarks Selected. We choose f our benchmarks. Two
sets of programs come from TortoiseFuzz [27] and SAV-
IOR [7]. Since we use the TortoiseFuzz benchmark set with
the ASan sanitizer, we call it ASan benchmark. Likewise, the
SAVIOR benchmark contains only UBSan sanitizers, thus
we name it UBSan benchmark. Regarding the ASan bench-
mark, it contains 11 programs, nine of which from Tortoise-
Fuzz [27],2 plus nm-new and tcpdump. Only for ParmeSan,
we remove four programs from the ASan benchmark due to
a non-resolvable exception while instrumenting the targets—
while the other fuzzers handle all programs. Regarding the
UBSan benchmark, we choose 8 programs from SAVIOR and
remove one because it is incompatible with Ubuntu 16.04.3

For testing the Two-Stage fuzzers, we design an ad-hoc bench-
mark, called Two-Stage benchmark, which covers programs
accepting different input formats, e.g., document, image, text,
or executable. Finally, we compose a benchmark of 30 real-
world programs for the experiments in §6.3. All in all, our
evaluation covers 47 programs.

Experiment Setup. All experiments are performed on a
Xeon Gold 5218 CPU (22M Cache, 2.30 GHz) equipped with
64GB of memory. We evaluate the ASan and UBSan bench-
marks on Ubuntu 16.04 to reproduce the original environment
of their respective works. For the two-stage campaign, we
opt for Ubuntu 18.04 to provide the same OS to the base-
line fuzzers. Finally, we choose Ubuntu 22.04 for real-world
programs. All experiments are run in docker containers with
one core assigned. For a fair evaluation, we choose the mini-
mized seeds provided by AFL as the initial corpus. If none
are present, we leverage the program test cases. Since most
fuzzers use a deterministic stage,4 we do likewise in AFL++.
Our artifact contains the full seed corpus and fuzzer configu-
rations.

FISHFUZZ Hyperparameter Setup. For our evaluation,
we fine-tune FISHFUZZ’s hyperparameters for ASan sanitizer
(§4.2) since we focus on vulnerabilities, which are commonly
found with ASan. For UBSan, we conduct a preliminary in-
vestigation using the same hyperparameters, and discuss their
tuning in §7. Therefore, we use the same set of hyperparame-
ters for ASan, UBSan, and Two-Stage benchmarks. Specifi-
cally, we set 30 min for inter-function exlporation, 10 min for
intra-function exploration, and 1 hour for exploitation (§4.2).

2We discard libming due to incompatibility with clang-12
3objdump runs out of memory during compilation.
4https://afl-1.readthedocs.io/en/latest/about_afl.html

USENIX Association 32nd USENIX Security Symposium 1349

https://github.com/HexHive/FishFuzz
https://afl-1.readthedocs.io/en/latest/about_afl.html

6.1 RQ1: How many targets are reached?

We evaluate if the exploration phase of FISHFUZZ can reach
more targets with respect to its competitors. To this end, we set
the following experiments. First, we exercise ParmeSan and
TortoiseFuzz against the ASan benchmark, SAVIOR against
the UBSan benchmark, and the Two-Stage fuzzers against
their benchmark. Then, we evaluate FISHFUZZ against the
ASan, UBSan, and Two-Stage benchmarks. For ASan, we run
10 rounds 60 hours each, while for UBSan and Two-Stage, we
run 10 rounds 24 hours each (as in the original papers [7,27]).
The results for ASan, UBSan, and Two-Stage benchmarks are
in Table 3, Table 4, and Table 5, respectively, along with a
dedicated analysis of p-values in §A.2.

Overall, Table 3, Table 4, and Table 5 show FISHFUZZ’s
prototypes achieve higher coverage in all three benchmarks.
Specifically, FFAFL++ achieves better coverage in the ASan
and Two-Stage benchmarks (+11.69% and +2.87% compared
against the second best), while FFAFL has better performance
with UBSan (+1.99% compared against the second best). For
the UBsan benchmark, we observe that AFL++ and SAV-
IOR reach better coverage for 3 programs (djpeg, tiff2pdf,
and xmllint). We look closely at these cases and conclude
that UBSan’s targets are easier to reach compared to ASan’s
ones. This can be observed by looking at each fuzzers’ per-
formances (Table 4), they have similar results for almost all
the programs. However, when considering the aggregate re-
sults, FISHFUZZ’s prototypes achieve higher coverage. These
results also reflect in the p-values (Table 11), which are not
statistically significant for the UBSan benchmark. The only
exceptions are tcpdump and readelf. We remark that, even
though FISHFUZZ is not fine-tuned for UBSan, FFAFL ob-
tains similar or better performances than its competitors (see
§ 7). We further investigate the incongruence between the
results of SAVIOR, ParmeSan, and TortoiseFuzz compared
to their papers [7, 21, 27]. For SAVIOR and TortoiseFuzz, the
original papers assign 3 cores to each fuzzing campaign. Con-
versely, we assign one core each to provide the same amount
of resources to each fuzzer. ParmeSan does not mutate the
initial seed length and uses custom seeds in their evaluation,
while we choose the initial corpus from AFL’s test cases.
For AFL++, we observe the deterministic stage sometimes
reduces efficiency, thus resulting in worse performance than
AFL, as also observed by Wu et al. [28].

Takeaway: Our experiment shows that the exploration
phase of FISHFUZZ reaches more targets compared to modern
fuzzers and with similar, if not better, results of their baseline.

6.2 RQ2: How efficiently does FISHFUZZ find
bugs?

We evaluate the ability of the exploitation phase in triggering
bugs. To this end, we choose the ASan, UBSan, and Two-
Stage benchmarks. Similar to §6.1, we exercise 10 rounds

(a) Time-To-Exposure for ASan Evaluations.

(b) Time-To-Exposure for Two-Stage Evaluations.

Figure 5: Time-To-Exposure for ASan and Two-Stage bench-
marks.

of 60 hours for ASan, while 24 hours per run for UBSan
and Two-Stage (as in the original paper [7, 21]). Then, we
measure the number of unique bugs for ASan and Two-Stage
and the number of triggered targets in UBSan. For ASan/Two-
Stage, we report the number of unique bugs because each
bug can be associated with multiple targets, thus it could be
ambiguous simply referring to the targets. Conversely, UBSan
targets might not be associated with a bug, thus we prefer
to indicate the targets themselves. For instance, an integer
overflow in jasper was considered as an intended behavior
by the maintainer, and thus not considered a bug.

For ASan/Two-Stage, we identify unique bugs by first hash-
ing stack traces to disambiguate crashes, followed by manu-
ally triaging bugs. For UBSan, we extract the output patterns
and identify their source locations (as done by SAVIOR’s
authors after contacting them). In our evaluation, we observe
that ASan targets require, on average, more hits than UBSans
targets before triggering a crash. We thus consider UBsan’s
targets simpler, § A.1 provides a detailed discussion about
ASan and UBSan targets.

Bugs Found. The results for the ASan, UBSan and Two-
Stage benchmarks are shown in Table 6, Table 4, and Table 7,
respectively. Overall, FISHFUZZ triggers more bugs/targets

1350 32nd USENIX Security Symposium USENIX Association

Table 3: Edge coverage and targets reached in the ASan benchmark. The results refer to the average of 10 rounds for 60 hours
each.

FFAFL FFAFL++ AFL AFL++ ParmeSan TortoiseFuzz
cov reach cov reach cov reach cov reach cov reach cov reach

exiv2 19373.9 9524.1 21199.1 10168.6 11140.9 6764.0 19889.6 9676.5 - - 8612.5 5888.0
flvmeta 996.0 152.0 994.6 151.7 995.2 151.8 996.0 152.0 961.8 150.0 994.2 152.0
MP4Box 13751.1 1663.4 11580.6 1371.3 11524.2 1405.0 9320.7 1215.5 10411.0 1160.8 9855.0 1238.9
lou_checktable 2605.6 242.4 2816.3 305.4 2620.4 240.7 2131.9 187.5 1760.2 138.9 2392.7 214.1
tiff2pdf 18517.6 3484.9 18466.1 3494.9 18047.8 3337.1 17919.5 3361.5 12069.6 2436.7 15850.9 2977.7
nasm 11295.3 1860.6 12048.9 2018.3 10974.5 1751.7 11541.7 1889.7 8441.9 1489.9 10275 1698.4
tcpprep 1042.7 212.2 961.1 187.7 1030.6 209.0 1037.8 211.9 - - 995.8 209.5
catdoc 707.0 121.0 418.0 80.0 705 120.6 418.0 80.0 - - 682.6 119.1
tcpdump 26389.8 5924.0 29601.9 6765.9 25010.1 5187.6 23048.8 5131.8 - - 16667.4 3364.2
nm-new 15458.7 3731.4 15632.7 3788.7 13998.7 3237.7 15430.4 3755.9 9505.3 2709.4 13223.3 3123.3
gif2tga 747.1 132.4 743.9 132.3 728.1 123.9 745.2 132.8 722.9 125.7 735.2 126.6

sum 110884.8 27048.4 114463.2 28464.8 96775.5 22529.1 102479.6 25795.1 43872.7 8211.4 80284.6 19111.8

Table 4: Edge coverage, targets reached and triggered in UBSan benchmark. The results refer to the average of 10 rounds for 60
hours each.

FFAFL FFAFL++ AFL AFL++ SAVIOR
cov reach trigger cov reach trigger cov reach trigger cov reach trigger cov reach trigger

djpeg 12285.8 3940.6 138.2 12243.7 3953.2 137.8 11846.9 3866.1 134 12490.6 3987.7 141.9 11,919.9 3874.3 134.4
jasper 10708.1 1751.4 48.9 10158.6 1639.3 37.9 10313.8 1682.2 36.7 10553 1708.8 52.7 10,472.0 1664.7 44.5
objdump 10128.3 1092.7 95.8 9084.4 1123 90.7 9800.1 1040.2 94.9 9430.5 995.6 92.2 - - -
readelf 2041.9 163.7 28.3 1852.6 141.7 23 1895.6 148.3 21.8 1947.1 152.4 26.7 2,097.9 173.6 22.9
tcpdump 24615.0 3863.6 152.6 24929 4033.1 154.7 24198.9 3709.3 143.9 22553.9 3472 134.1 17,690.6 2752 93.5
tiff2pdf 13160.1 1932.9 14.2 13004.9 1885.2 15.3 13237.9 1935.6 16.2 12985.6 1908.8 13.6 12,611.7 1816.9 12.5
tiff2ps 9073.4 1172.1 14.9 9007.4 1160.1 13.6 9048.9 1165 13.5 8772.2 1118.5 10.5 8,765.1 1126.9 11.4
xmllint 8029.3 722.3 15.2 8048.7 718.8 15.9 7940.2 693.6 12.9 8265.9 736.7 15.1 7,849.9 711.2 13.9

sum 90041.9 14639.3 508.1 88329.3 14654.4 488.9 88282.3 14240.3 473.9 86998.8 14080.5 486.8 71,407.0 12119.6 333.1

(a) Unique bugs found in the
ASan benchmark and compared
with FISHFUZZ, TortoiseFuzz,
and ParmeSan.

(b) Triggered targets in the UB-
San benchmark and compared
with FISHFUZZ and SAVIOR.

Figure 6: Bugs found and triggered targets.

compared to the state-of-the-art. Specifically, both FFAFL
and FFAFL++ find 40.1 and 38 unique bugs on average in
the ASan benchmark (Table 6), doubles than either AFL++
(18.9), TortoiseFuzz (18), or ParmeSan (14.2). We observe a
similar pattern for the Two-Stage benchmark (Table 7), where
FISHFUZZ prototypes find more bugs than its competitors
on average (from 57.89% to 346.81% more unique bugs).
Here, the only exception is EcoFuzz, which can find slightly

more unique bugs than FFAFL++ (3.01%). Most importantly,
both FFAFL and FFAFL++ trigger more bugs compared to
their baseline fuzzers (i.e., AFL and AFL++) in both ASan
and Two-Stage benchmarks, thus showing FISHFUZZ im-
proves the bugs finding capabilities in the original fuzzers. For
the UBSan benchmark, we observe FFAFL (508.1) triggers
more targets compared to SAVIOR (333.1), while FFAFL++
achieves the second-best result (488.9). In particular, we acti-
vate from 2.83% to 52.54% more targets than SAVIOR on av-
erage. UBSan’s results suffer from a similar problem in terms
of coverage, since UBSan’s targets are simpler compared to
ASan, the solely exploration triggers fewer targets (more de-
tails in §A.1). In the current evaluation, we test UBSan with
the same tuning as ASan, thus we give higher importance
to exploitation rather than exploration. Conversely, hyperpa-
rameters that prioritize exploration produce better results for
UBSan. §7.1 shows a discussion of hyperparameters.

Time-To-Exposure. We measure the Time-to-Exposure for
the ASan and Two-Stage benchmarks. Similar to the bug
report, we only consider the time to exposure for the ASan
and Two-Stage benchmarks whose bugs are uniquely iden-
tifiable with an ID. For comparison, we consider the lowest

USENIX Association 32nd USENIX Security Symposium 1351

Table 5: Edge coverage and targets reached in the Two Stage Evaluation benchmark. The results refer to the average of 10 rounds
for 24 hours each.

FFAFL FFAFL++ AFL AFLFast FairFuzz EcoFuzz K-Scheduler AFL++
program cov reach cov reach cov reach cov reach cov reach cov reach cov reach cov reach

cflow 3974.3 999.5 3979.2 1000.8 3963.6 991.1 3952.0 988.5 3940.1 985.0 3964.8 997.1 3938.9 985.0 3954.2 989.2
mujs 6474.4 1558.3 6596.6 1594.8 6009.2 1469.9 6122.8 1470.1 6299.4 1520.0 6156.5 1482.3 6022.5 1451.4 6433.6 1547.9
tic 4731.4 925.5 4819.3 944.2 4135.4 785.5 4271.1 823.6 4469.9 864.2 4550.9 881.6 4272.5 807.9 4586.7 888.9
mutool 8367.7 2158.5 8298.8 2138.5 8132.1 2093.1 8231.4 2100.1 8268.8 2112.6 8215.7 2097.7 - - 8254.7 2104.4
dwarfdump 3091.1 730.1 2973.9 704.1 2999.8 698.9 2789.5 641.9 2966.1 690.0 3005.7 707.7 2940.9 695 2967.0 702.9
w3m 3605.4 822.2 3695.7 828.4 2822.7 730.0 2833.0 734.0 2836.0 734.0 3655.6 821.9 2963.3 748.3 3646.9 817.6
cxxfilt 7700.4 1685.8 8027.8 1777.9 6843.0 1350.0 7062.2 1416.4 7154.0 1436.3 6968.8 1393.2 6875.5 1369.7 7476.0 1513.4

sum 37944.7 8879.9 38391.3 8988.7 34905.8 8118.5 35262 8174.6 35934.3 8342.1 36518 8381.5 27013.6 6057.3 37319.1 8564.3

Table 6: Unique bugs found in the ASan benchmark after 10
rounds of 60 hours each.

FFAFL FFAFL++ AFL AFL++ ParmeSan TortoiseFuzz

tcpdump 0.6 0.8 0.7 0.2 - 0
catdoc 0.9 0 1.0 0 - 0
exiv2 1.3 0.8 0 0.7 - 0
flvmeta 2.0 2.0 2.0 2 1.7 2.0
lou_checktable 1.9 3.0 0.4 0 0 0.1
nasm 3.3 3.1 2.2 2.6 0 1.1
nm-new 6.6 6.7 1.6 0.1 0 0.6
tcpprep 1.8 2.0 2.0 1.8 - 2.0
tiff2pdf 0.3 0.1 0 0.2 0 0.2
gif2tga 4.0 4.0 4.0 4.0 4.0 4.0
MP4Box 17.4 15.5 14.8 7.3 8.5 8.0

sum 40.1 38.0 28.7 18.9 14.2 18.0

sum (- MP4Box) 22.7 22.5 13.9 11.6 5.7 10.0

vs FFAFL +39.72% +112.17% +182.39% +122.78%
vs FFAFL++ +32.40% +101.06% +167.61% +111.11%

time-to-exposure between FFAFL and FFAFL++. Our results
show that, out of 104 known bugs, FISHFUZZ finds 71 of
them faster than previous work (68.3%), 8 in the same time
(7.7%), and only 25 took slightly longer (24.0%). §A.5 shows
detailed data for all the bugs found. Additionally, Figure 5
shows the bug discovery over time. The images show FFAFL
and FFAFL++ are almost always above their competitors, espe-
cially at the end of the fuzzing session. Only EcoFuzz seems
competitive with FFAFL++. Most importantly, FISHFUZZ’s
prototypes always outperform their baseline (i.e., AFL and
AFL++). FISHFUZZ finds 38 new bugs not previously discov-
ered, we discuss them in a dedicated section in §6.3.

Bugs Analysis. Finally, we analyze the overlap of unique
bugs and triggered targets found by FISHFUZZ and its com-
petitors. For this analysis, we adopt the following procedures.
First, we ignore AFL and AFL++, which receive a dedicated
analysis in §6.5. Then, we use two Venn Diagrams for ASan
and UBSan in Figure 6a and Figure 6b, since the results are
suitable for this demonstration. For the Two-Stage benchmark,
instead, we use Table 9, which contains more detailed overlap
information for each combination of fuzzers in that bench-
mark. For ASan (Figure 6a), FFAFL and FFAFL++ share 93
and 75 unique bugs with ParmeSan and TortoiseFuzz. We did
not manage to find only 4 for ParmeSan and one for AFL++,

belonging to gpac and mutool respectively. For UBSan (Fig-
ure 6b), instead, we triggered 707 targets in total, while 8
targets were triggered by SAVIOR only. After investigation,
we notice that FFAFL and FFAFL++ do not reach the missing
targets. Since SAVIOR is based on symbolic execution, we
thus conclude SAVIOR and FISHFUZZ share a fundamen-
tally different exploration phase that reaches different code
sections. This leaves room for future alternative exploration
phases in FISHFUZZ.

Table 9 shows the overlapping bugs found in Two-Stage
benchmark. Since this benchmark contains too many fuzzers
for a useful Venn Diagram, we opt for a table whose cells
indicate two overlap measurements for each combination of
fuzzers. Specifically, given a pair of fuzzers, we indicate the
overlap with two numbers: a and b; a is the number of bugs
found exclusively by the two fuzzers (but not others), while
b is the number of bugs found by both fuzzers (and other
fuzzers). For example, the intersection between FFAFL and
FFAFL++ shows 7 and 20: 7 bugs are found exclusively by
FFAFL and FFAFL++, while 20 bugs are found by FFAFL
and FFAFL++ and other fuzzers. We also note Table 9 is mir-
rored since a and b are reflexive (i.e., a and b are not influ-
enced by the pair order). Overall, we notice that FFAFL and
FFAFL++ have a large intersection with the other competitors,
specifically FFAFL is significantly bigger than their respec-
tive baseline. This means FFAFL finds the same bugs as the
other competitors and more bugs than their original versions
(i.e., AFL). For instance FFAFL’s row has the largest b value
among other combinations of fuzzers, showing it can cover a
large number of bugs. FFAFL++, instead, has a similar overlap
as EcoFuzz. We conduct a dedicated study about FFAFL and
FFAFL++ respect AFL and AFL++ in §6.5.

Takeaway: Our experiments show the ability of our ex-
ploitation phase to discover more bugs and trigger more tar-
gets compared to the state-of-the-art. Additionally, we show
that FISHFUZZ finds known bugs faster.

6.3 RQ3: Can FISHFUZZ find new bugs?

We challenge the ability of FISHFUZZ to find new CVEs
in real applications. For this experiment, we choose 30 pro-

1352 32nd USENIX Security Symposium USENIX Association

Table 7: Unique bugs found in Two-Stage benchmark after 10 rounds of 24 hours each.

FFAFL FFAFL++ AFL AFL++ AFLFast FairFuzz EcoFuzz KScheduler

cflow 2.0 2.3 0.8 1.5 1.0 1.7 1.5 1.7
mujs 4.5 4.5 0.4 1.2 0.6 0.8 1.4 0.3
tic 3.4 3.9 0.9 1.7 0.7 1.1 0.7 0.1
mutool 1.0 0.4 0.7 0.9 0.5 1.3 1.1 -
dwarfdump 2.0 1.7 2.0 1.6 1.5 2.0 1.9 2.0
w3m 0 0 0 0 0 0 0 0
cxxfilt 8.1 0.1 3.2 0.2 0.4 0 6.7 1.8

sum 21.0 12.9 8.0 7.1 4.7 6.9 13.3 5.9

vs FFAFL +162.50% +195.77% +346.81% +204.35% +57.89% +255.93%
vs FFAFL++ +61.25% +81.69% +174.47% +86.96% -3.01% +118.64%

grams from top tiers publications, i.e., TortoiseFuzz [27],
SAVIOR [7], GREYONE [9], FuzzGen [14], as well as from
the fuzzing community. For each program, we deployed ASan
and UBSan, respectively. We run a session one week long for
each program.

In total, we found 56 new bugs, 38 of which were confirmed
CVEs. FISHFUZZ finds most of the bugs/CVEs in less than
three days (46), while 10 bugs require from three to seven
days. We found 44 bugs with the ASan sanitizers and 12 bugs
with UBSan. The most common bugs are heap-overflow (15),
reachable assertions (7), stack-exhausted (6), divide-by-zero
(2), and shift exponentially (1). We report the full list of bugs
founds in our artifact. Most importantly, the bugs found are
from exhaustively fuzzed programs (i.e., programs intensively
tested by other state-of-the-art fuzzers). For instance, FISH-
FUZZ finds CVE-2022-27943 in nm-new (binutils), one of
the most widely used fuzzing test suites. Moreover, FISH-
FUZZ also finds five bugs in Android and Apple OS libraries
(libavc, libmpeg2, liblouis), two of which (CVE-2022-
26981, CVE-2022-31783) have been confirmed to enable
remote code execution and receive acknowledgments from
Apple and Huawei (EulerOS-SA-2022-2226, HT213340).

Takeaway: FISHFUZZ is effective in finding new CVEs
since it manages to find 38 new vulnerabilities in less than a
week over programs already deeply tested by previous works.

6.4 RQ4: Can other fuzzers benefit from our
strategies?

To answer this question, we combine QSYM [30] with FFAFL
and AFL to measure if our cull queuing improves the perfor-
mance. Specifically, we run QSYM with one AFL-primary
and one concolic executor (more details in QSYM original pa-
per [30]). We run the experiments against UBSan benchmark
for 10 rounds of 24 hours each.

Table 8 shows that combining QSYM+FISHFUZZ im-
proves every aspect of the original fuzzer. For instance,
we improve the triggered targets up to 33.29% compared

to QSYM+AFL and up to 21.21% and 14.60% for targets
reached and coverage, respectively. Finally, FISHFUZZ also
improves the number of seeds in the queue by reaching
41.25% more seeds at maximum (i.e., path column).

Takeaway: This experiment demonstrates that FISHFUZZ
is compositional and improves the performance of other
fuzzers.

6.5 RQ5 - How FISHFUZZ improve the fuzzer
capabilities?

FISHFUZZ is a generic input prioritization technique that can
be deployed over any fuzzer. The purpose of FISHFUZZ is
to select better seeds for exploration or exploitation, without
altering the original fuzzer mutators or other mechanisms.
Therefore, the performance of FISHFUZZ might change de-
pending on the originally chosen fuzzer. In this section,
we study these differences by looking at how FFAFL and
FFAFL++ improve over their baselines AFL and AFL++.

Looking at Table 3 and Table 5, we observe that FFAFL
and FFAFL++ cover more edges compared to their baselines
(13.0% and 9.3%), as well as reach more targets (17.2% and
9.0%). Similar differences also appear when comparing sin-
gle programs, for exiv2 (ASan benchmark), FFAFL++ and
AFL++ achieve significantly better coverage compared to
FFAFL/AFL (9.4% and 78.5% respectively). However, in
catdoc, FFAFL++/AFL++ perform worse than FFAFL/AFL
(about 40.8% lower).

More interestingly, bugs covered by FFAFL++ and FFAFL
are different. Since FISHFUZZ does not modify the origi-
nal queue culling for intra-function exploration, FFAFL and
FFAFL++ show different results for bug discovery. For exam-
ple, in Table 7, AFL++ does not perform well in cxxfilt
(0.2 bugs on average) while AFL discovers 3.2 bugs. In
Two-Stage, FFAFL and AFL cover the same seven bugs, how-
ever, CVE-2017-13731 is only covered by FFAFL++/AFL++.
In ASan, we observe similar cases: gpac_issue_1250 and
catdoc_issue_8 are only covered by AFL/FFAFL. For all

USENIX Association 32nd USENIX Security Symposium 1353

Table 8: Running QSYM+FFAFL against QSYM+AFL in the UBSan benchmark. The results refer to the average of 10 rounds
for 24 hours each. Column path represents the number of seeds in the queue.

QSYM+AFL QSYM+FFAFL vs QSYM+FFAFL
path cov reach trigger path cov reach trigger path cov reach trigger

djpeg 1315.9 10640.0 3435.4 91.7 2264.5 11964.9 3905.0 138.1 +72.09% +12.45% +13.67% +50.60%
jasper 1029.7 9563.0 1430.1 29.0 1596.5 10565.7 1687.3 40.8 +55.05% +10.49% +17.98% +40.69%
readelf 516.8 2470.8 220.9 20.1 654.7 2517.6 218.6 23.8 +26.68% +1.89% -1.04% +18.41%
objdump 1812.8 9223.6 968.0 60.6 2142.7 10083.4 1112.4 78.6 +18.20% +9.32% +14.92% +29.70%
tcpdump 1760.1 13010.3 1981.8 73.7 2470.5 16924.3 2626.8 93.0 +40.36% +30.08% +32.55% +26.19%
tiff2pdf 1258.5 9131.7 993.2 12.0 1806.8 9878.1 1144.1 12.4 +43.57% +8.17% +15.19% +3.33%
tiff2ps 815.2 6355.7 540.2 6.7 1594.6 8221.0 1022.7 7.1 +95.61% +29.35% +89.32% +5.97%
xmllint 2272.2 8112.0 691.0 10.5 2698.5 8355.3 720.1 11.8 +18.76% +3.00% +4.21% +12.38%

sum 10781.2 68507.1 10260.6 304.3 15228.8 78510.3 12437.0 405.6 +41.25% +14.60% +21.21% +33.29%

these cases, we leave detailed tables in §A.5.
Takeaway: FISHFUZZ enhances the capabilities of the

original fuzzers by directing the energy toward promising
locations. More importantly, FISHFUZZ does not change the
intra-function exploration, thus triggering different bugs.

7 Discussion

We discuss hyperparameters tuning (§7.1), target size (§7.2),
and combination with orthogonal techniques (§7.3).

7.1 Hyperparameter Tuning
FISHFUZZ uses a finite-state machine to alternate exploration
and exploitation, whose switching is governed by hyperparam-
eter (§4.2). In our experiments, we empirically try different
settings and observe that a long exploitation time (i.e., 1 hour)
leads to better performances for ASan. However, this setting
brings to non-optimal performance for UBSan. We argue this
is because UBSan’s targets are simpler, thus they require less
exploitation time. To validate our hypothesis, we conduct an
additional study in §A.3. The results suggest different hyper-
parameters can improve up to 12.03% coverage and 37.29%
triggered targets. To sum up, different scenarios require their
own set of hyperparameters, likewise for ML/DL [33],

7.2 Target Set Size
FISHFUZZ is designed to handle large target sets (up to 20k
in our experiments §6). Even though FISHFUZZ scales up
efficiently in these cases, we also observe a drop of perfor-
mances for small target sets (e.g., at around tens targets). We
plan to tackle this problem in two directions. First, we could
employ different mutators to direct seeds faster, such as [20].
Second, we believe this observation suggests the need for spe-
cific ad-hoc seed-distance metrics according to the context.
Therefore, we will investigate the performance of different
seed-target metrics and infer the best trade-off as future work.

7.3 Combining FISHFUZZ with other works
BEACON [13], a concurrent DGF uses software analysis (e.g.,
static or dynamic) to foresee (and discard) unreachable por-
tions of code. FISHFUZZ would benefit from these techniques
to speed up the initial exploration phase or better re-assign
energy to targets. Similarly, we consider combining SAV-
IOR [7] with our exploration phase to investigate if different
approaches can lead to better performances.

8 Related Works

FISHFUZZ improves existing fuzzing work across two re-
search areas: Directed Greybox Fuzzers (§8.1) and Two-Stage
Fuzzers (§8.2).

8.1 Directed Greybox Fuzzers
DGF is a branch of fuzzing that specializes fuzzers for hitting
a given set of targets (instead of improving code-coverage).

Böhme et al. discusses the first prototype, AFLGo [3],
which models the seed-target distance as a harmonic aver-
age distance. However, the AFLGo approach loses precision
for large target sets. In this regard, FISHFUZZ relies on a
novel seed-target distance whose precision is not affected by
the number of targets. Improvements to AFLGo were further
proposed by Chen et al. with Hawkeyes [5] and Peiyuan et
al. with FuzzGuard [33]. These works try to handle indirect
calls by adopting heavy-weight static analysis (Hawkeyes) or
using deep learning to discard unfruitful inputs (FuzzGuard),
respectively. Conversely, FISHFUZZ does not need any com-
plex analysis to resolve indirect jumps, while its seed selection
automatically promotes interesting inputs.

Steps toward more scalable DGF are discussed by Öster-
lund with ParmeSan [21] and Chen with SAVIOR [7], respec-
tively. Both ParmeSan and SAVIOR consider all the sanitizer
labels as targets. Additionally, SAVIOR introduces a heavy
reachable analysis to select interesting inputs. Both works
suffer from the original AFLGo limitation since they collapse

1354 32nd USENIX Security Symposium USENIX Association

Table 9: Unique bug finding overlap for the Two-Stage benchmark. For each pair of fuzzers, we indicate two overlap measurements
a/b; where a indicates the bugs found exclusively by both fuzzers, while b indicates the bugs found by both fuzzers but possibly
also others. As an example, the intersection FFAFL and FFAFL++ indicates 7/20: 7 is the number of bugs found exclusively
by FFAFL and FFAFL++, while 20 are bugs found by FFAFL and FFAFL++ and by other fuzzers as well. The table is mirrored
because a and b are reflexive (the pair order does not matter).

FFAFL FFAFL++ AFL AFL++ AFLFast FairFuzz EcoFuzz KScheduler

FFAFL 2/29 7/20 0/14 0/11 0/13 0/10 1/19 0/13
FFAFL++ 7/20 0/21 0/9 1/12 0/9 0/10 0/12 0/8
AFL 0/14 0/9 0/15 0/10 0/11 0/9 0/15 0/11
AFL++ 0/11 1/12 0/10 0/13 0/8 0/10 0/11 0/7
AFLFast 0/13 0/9 0/11 0/8 0/13 0/9 0/13 0/11
FairFuzz 0/10 0/10 0/9 0/10 0/9 0/11 0/11 0/7
EcoFuzz 1/19 0/12 0/15 0/11 0/13 0/11 0/20 0/13
KScheduler 0/13 0/8 0/11 0/7 0/11 0/7 0/13 0/13

the seed-target distance into a scalar, thus losing precision.
FISHFUZZ differs from these works for two reasons. First, it
employs a novel seed-target distance that overcomes scalabil-
ity limitations. Second, it uses a faster exploitation phase to
trigger more targets.

Lee et al. propose CAFL [16] (Constraint guided directed
greybox fuzzing). The goal of this work is to synthesize a
POC from a given crash by following a similar approach
to AFLGo. In their scenario, CAFL considers only one tar-
get, while FISHFUZZ is designed to handle a large number
of targets. Finally, Zhu et al. discuss Regression Greybox
Fuzzing [32], their work contains methods to select possible
bogus code locations by analyzing the repository history. This
approach is then combined with a more efficient power sched-
ule policy. We consider this work as orthogonal to FISHFUZZ
since we focus on the input prioritization strategy, while they
recognize interesting code locations for testing.

Huang et al. introduce BEACON [13], which uses sophisti-
cated static analysis to remove unfeasible paths, thus speeding
up the exploration phase. Conversely, FISHFUZZ aims at im-
proving the exploitation phase and trigger targets. We consider
their approach as orthogonal to FISHFUZZ, we further plan
to combine the two strategies in the future.

8.2 Two-Stage Fuzzers

Two-Stage fuzzers use exploration and exploitation phases
to reach and trigger multiple targets. Böhme et al. proposes
AFLFast [4], which relies on Markov chains to probabilisti-
cally select seeds that improve the coverage. Their contribu-
tion is mainly energy distribution related, while queue culling
and seed distance are not discussed.

Lemieux et al. [17] study new mutation strategies and seed
selections to hit rare branches. Their contribution is more
related to improving code coverage, while FISHFUZZ also
maximizes the targets triggered. Yue et al. discuss a combi-

nation of adaptive energy schedule and game theory to avoid
testing unfruitful seeds. Their approach does not discuss seed
selection strategies, thus being orthogonal to FISHFUZZ.

Wang et al. [27] select interesting targets upon extensive
software analysis, that are then combined with a novel queue
culling strategy. However, their approach considers only time-
invariant targets, thus not adjusting the fuzzer’s energy toward
more promising code locations. Conversely, the queue culling
mechanism of FISHFUZZ is adaptive and can be potentially
used to improve the performance of Wang’s work.

9 Conclusion

Exploration and exploitation are fuzzers’ key components for
finding bugs. Greybox fuzzers overly focus on explorations.
Directed Greybox Fuzzing has been hampered by averaged
distance metrics that over-eagerly aggregate paths into scalars
and simple energy distribution that simply assigns equal pri-
orities to all targets in a round-robin fashion.

We draw inspiration from trawl fishing where a wide net
is cast and pulled to reach many targets before they are har-
vested. FISHFUZZ improves the exploration and exploitation
phases with explicit feedback for both phases and a dynamic
switching strategy that alternates mutation and energy distri-
bution based on the current phase. Additionally, our dynamic
target ranking automatically discards exhausted targets and
our novel multi-distance metric keeps track of tens of thou-
sands of targets without loss of precision.

We evaluate FISHFUZZ against 47 programs and have, so
far, discovered 56 new bugs (38 CVEs). FISHFUZZ is avail-
able at https://github.com/HexHive/FishFuzz and we
provide a test environment to play with our novel input priori-
tization mechanism.

USENIX Association 32nd USENIX Security Symposium 1355

https://github.com/HexHive/FishFuzz

Acknowledgments

We thank the anonymous reviewers and our shepherd for
their feedback. This work was supported, in part, by the Na-
tional Natural Science Foundation of China (U1836210), the
Key Research and Development Science and Technology of
Hainan Province (GHYF2022010), the China Scholarship
Council, the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 850868), SNSF PCEGP2_186974,
and DARPA HR001119S0089-AMP-FP-034.

References

[1] AFL. technical_details.txt. https://github.
com/google/AFL/blob/master/docs/technical_
details.txt, 2019.

[2] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo
Ivancic, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. Fudge: Fuzz driver
generation at scale. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, 2019.

[3] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–
2344, 2017.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 45(5):489–
506, 2017.

[5] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2095–2108, 2018.

[6] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[7] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Tao Wei, and Long Lu. Savior:
Towards bug-driven hybrid testing. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 1580–1596.
IEEE, 2020.

[8] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++ : Combining incremental steps of

fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
August 2020.

[9] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xi-
aojun Qin, Dong Wu, and Zuoning Chen. {GREYONE}:
Data flow sensitive fuzzing. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2577–2594,
2020.

[10] Patrice Godefroid, Michael Y Levin, and David Molnar.
Sage: Whitebox fuzzing for security testing: Sage has
had a remarkable impact at microsoft. Queue, 10(1):20–
27, 2012.

[11] Google. Addresssanitizer. https://github.com/
google/sanitizers/wiki/AddressSanitizer,
2014.

[12] Google. Undefinedbehaviorsanitizer. https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.
html, 2017.

[13] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed
grey-box fuzzing with provable path pruning.

[14] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and
Mathias Payer. {FuzzGen}: Automatic fuzzer genera-
tion. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2271–2287, 2020.

[15] Donald B Johnson. A note on dijkstra’s shortest path
algorithm. Journal of the ACM (JACM), 20(3):385–388,
1973.

[16] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee.
Constraint-guided directed greybox fuzzing. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 3559–3576. USENIX Association, August 2021.

[17] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475–485, 2018.

[18] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin
Cappos. Lock-in-pop: Securing privileged operating sys-
tem kernels by keeping on the beaten path. In USENIX
Annual Technical Conference, pages 1–13, 2017.

[19] llvm. The LLVM Compiler Infrastructure Project. http:
//llvm.org/.

[20] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. {MOPT}: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX

1356 32nd USENIX Security Symposium USENIX Association

https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://llvm.org/
http://llvm.org/

Security Symposium (USENIX Security 19), pages 1949–
1966, 2019.

[21] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. {ParmeSan}: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2289–2306, 2020.

[22] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. {AddressSanitizer}:
A fast address sanity checker. In 2012 USENIX An-
nual Technical Conference (USENIX ATC 12), pages
309–318, 2012.

[23] Dongdong She, Abhishek Shah, and Suman Jana. Effec-
tive seed scheduling for fuzzing with graph centrality
analysis. arXiv preprint arXiv:2203.12064, 2022.

[24] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse,
Herbert Bos, and Cristiano Giuffrida. SoK: Benchmark-
ing Flaws in Systems Security. In EuroS&P, June 2019.

[25] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[26] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and
Chengyu Song. Be sensitive and collaborative: Ana-
lyzing impact of coverage metrics in greybox fuzzing.
In 22nd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2019), pages 1–15,
2019.

[27] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng,
Tiffany Bao, Dinghao Wu, and Purui Su. Not all cov-
erage measurements are equal: Fuzzing by coverage
accounting for input prioritization. In NDSS, 2020.

[28] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei
Huang, Heming Cui, Lingming Zhang, and Yuqun
Zhang. One fuzzing strategy to rule them all. In Proceed-
ings of the 44th International Conference on Software
Engineering, pages 1634–1645, 2022.

[29] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. {EcoFuzz}: Adaptive {Energy-
Saving} greybox fuzzing as a variant of the adversarial
{Multi-Armed} bandit. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 2307–2324, 2020.

[30] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A practical concolic execution en-
gine tailored for hybrid fuzzing. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 745–761,
Baltimore, MD, August 2018. USENIX Association.

[31] Michal Zalewski. american fuzzy lop. https://
lcamtuf.coredump.cx/afl/, 2013.

[32] Xiaogang Zhu and Marcel Böhme. Regression greybox
fuzzing. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2169–2182, 2021.

[33] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. FuzzGuard: Filtering out
unreachable inputs in directed grey-box fuzzing through
deep learning. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2255–2269. USENIX As-
sociation, August 2020.

A Appendix

A.1 UBSan vs ASan targets
We observe that UBSan targets tend to require less exploita-
tion time compared to ASan targets. Therefore, we conduct a
dedicated study regarding the difficulties to trigger targets in
the two sanitizers. First, we instrument the Two-Stage bench-
mark with ASan and UBSan respectively (more info in §6
“Benchmarks Selected”). Then, we count the visit frequencies
of targets before triggering a crash and report the average. We
observe that in most programs, ASan’s average hit rate is sig-
nificantly higher than UBSan’s. For instance, in cxxfilt and
mujs, ASan’s hit counts are 1.23X and 1.40X higher than UB-
San’s. In mutool and tic, instead, the differences are more
pronounced, i.e., ASan requires 23.17X and 1369.87X higher
hit rates than UBSan. Observing these results, we conclude
that UBSan targets are simpler, thus requiring less exploita-
tion time. Our hyperparameter study observes similar results
in §7.1.

A.2 P-Values
Table 10, Table 11, and Table 12 contain the p-values from
the Mann-Whitney U test. The numbers are the respective
p-values from the Table 3, Table 4, and Table 5. We com-
pute the p-values for coverage, target reached/triggered in all
our benchmarks by using scipy version 1.8.0 and the results
from FFAFL++ as baseline. We chose FFAFL++ as baseline,
instead of FFAFL, because the latter produces unexpected
results due to an anomality with the statistical test if all val-
ues of one target are equal. For instance, even though FFAFL
and TortoiseFuzz achieve similar coverage on flvmeta, con-
sidering FFAFL++ as baseline produces a p-value of 0. This
happens because FFAFL explores exactly 996 edges every
round, so the probability for FFAFL to achieve different edge
coverage is 0. TortoiseFuzz, instead, explores 995 and 994
edges during the 10 rounds. Conversely, using FFAFL++ as
baseline procudes more representative p-values. For com-
pleteness, we release all the raw measurement data along

USENIX Association 32nd USENIX Security Symposium 1357

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Table 10: p-values of the Mann-Whitney U test from the experiments in Table 3.

FFAFL FFAFL++ AFL AFL++ TortoiseFuzz ParmeSan
programs cov reach cov reach cov reach cov reach cov reach cov reach

exiv2 0.0046 0.0028 1 1 0.0004 0.0004 0.2123 0.1405 0.0002 0.0002 0.0001 0.0001
flvmeta 0.1681 0.1681 1 1 0.6264 0.6264 0.1681 0.1681 0.017 0.1681 0.0001 0.0001
MP4Box 0.0073 0.0004 1 1 0.7337 0.3845 0.0002 0.0002 0.001 0.001 0.1212 0.001
lou_checktable 0.1857 0.0015 1 1 0.1855 0.0004 0.0045 0.0002 0.0257 0.0002 0.0002 0.0001
tiff2pdf 0.6232 1 1 1 0.0036 0.0006 0.0022 0.0017 0.0002 0.0002 0.0002 0.0002
nasm 0.0002 0.0004 1 1 0.0002 0.0002 0.0008 0.0006 0.0002 0.0002 0.0002 0.0002
tcpprep 0.0007 0.0085 1 1 0.0689 0.4425 0.0001 0.0226 0.1397 0.8755 0.0001 0.0001
catdoc 0 0 1 1 0.0001 0 1 1 0.0001 0 0 0
tcpdump 0.0006 0.0008 1 1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
nm-new 0.162 0.1405 1 1 0.0002 0.0002 0.5708 0.7912 0.0002 0.0002 0.0002 0.0002
gif2tga 0.0659 0.8236 1 1 0.0002 0.0001 0.7592 0.5171 0.0012 0.0001 0.0006 0.0008

Table 11: p-values of the Mann-Whitney U test from the experiments in Table 4.

FFAFL FFAFL++ AFL AFL++ SAVIOR
programs cov reach trigger cov reach trigger cov reach trigger cov reach trigger cov reach trigger

djpeg 0.6232 0.3603 0.6998 1 1 1 0.0046 0.0013 0.0344 0.4274 0.6772 0.1333 0.0091 0.0045 0.1003
jasper 0.0058 0.0282 0.0045 1 1 1 0.162 0.4053 0.5959 0.0173 0.1301 0.0004 0.064 0.1617 0.405
readelf 0.0013 0.0028 0.0004 1 1 1 0.1403 0.185 0.4253 0.0757 0.0818 0.1081 0.001 0.0019 0.0773
objdump 0.65 0.273 0.6429 1 1 1 0.0452 0.0211 0.7018 0.0058 0.0022 0.7026 0.0001 0.0001 0.0001
tcpdump 0.1212 0.1041 0.9396 1 1 1 0.0539 0.0211 0.0489 0.0036 0.0019 0.0002 0.0002 0.0002 0.0002
tiff2pdf 0.5205 0.5706 0.7885 1 1 1 0.3075 0.3071 0.0108 0.6232 0.8205 0.1153 0.0257 0.1405 0.0224
tiff2ps 0.2119 0.13 0.298 1 1 1 0.0539 0.1859 0.8479 0.0006 0.0005 0.0056 0.0113 0.0058 0.0458
xmllint 0.4055 0.3432 0.0198 1 1 1 0.9097 0.009 0.0021 0.6776 0.0491 0.0147 0.0003 0.0021 0.0001

with p-values (with both FFAFL and FFAFL++ as baseline) in
https://github.com/HexHive/FishFuzz.

A.3 Hyperparameter Study

FISHFUZZ’s performance depends on a set of inter-dependent
parameters.

Different Exploration/Exploitation Timeout. We mea-
sure coverage, the number of reached/triggered targets on our
UBSan benchmark with FFAFL++. We leverage different time-
outs for inter-function (15, 20, 30 mins), intra-function(10,
20 mins), and exploitation phases (30, 40, 60 mins). The per-
formance changes as follows comparing the best/worst set-
tings: in tcpdump, the coverage improves by 12.03%, while in
readelf the reached targets improve by 15.43%. We also no-
tice that in tiff2ps the number of triggered targets improves
by 37.29%.

Target Ranking Threshold. We also study the impact of
different target ranking thresholds (i.e., the variable thresh-
old in line 14). We evaluate our UBSan benchmark for 5
rounds with threshold top 10%, 20%, and 40% fewer hit tar-
gets, respectively. The results suggest the threshold setting
only affects 0.60% of the coverage and 2.91% of the triggered
targets respectively. Therefore, this hyperparameter does not
affect the capability of FISHFUZZ to exploit/reach targets.

A.4 Ablation Study
We run a campaign on our UBSan dataset (24h each for 5
rounds) by using only inter-function and exploitation (§4.2).
This experiment shows the independent contribution for edge/-
function coverage and reached/triggered targets. Note that
intra-function (Figure 4) is the original AFL/AFL++ one,
thus we ignore it. As shown in Table 13, the combination
of all phases produces the best results. FFAFL covers 5.29%
more edges and triggered 16.02% compared against best of
inter-function and exploitation stage. For the inter-function,
although it reaches 3.73% less basic block compared with
exploitation stage, it still finds slightly more functions than
exploitation (1.54%).

A.5 Time-To-Exposure Details
Table 14 and Table 15 show the unique bugs found in ASan
and the Two-Stage benchmarks (more info in §6 “Benchmarks
Selected”) and the respective time-to-exposure.

1358 32nd USENIX Security Symposium USENIX Association

https://github.com/HexHive/FishFuzz

Table 12: p-values of the Mann-Whitney U test from the experiments inTable 5.

FFAFL FFAFL++ AFL AFL++ AFLFast FairFuzz EcoFuzz KScheduler
program cov reach cov reach cov reach cov reach cov reach cov reach cov reach cov reach

cflow 0.0122 0.0381 1 1 0.0026 0.0001 0.0002 0.0001 0.0243 0.0001 0.0026 0.0001 0.0002 0.0004 0.0002 0.0001
mujs 0.0073 0.0036 1 1 0.0002 0.0002 0.0008 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
tic 0.0451 0.0407 1 1 0.0003 0.0002 0.0017 0.0013 0.0002 0.0002 0.0004 0.0003 0.0013 0.0013 0.0003 0.0002
mupdf 0.0101 0.0957 1 1 0.0002 0.0003 0.1403 0.0113 0.0065 0.001 0.1212 0.0112 0.0091 0.001 0.0001 0.0001
dwarfdump 0.0139 0.4457 1 1 0.1402 0.8197 0.6219 0.3416 0.0003 0.0003 0.9096 0.0807 0.2411 0.9696 0.2727 0.1846
w3m 0.289 0.676 1 1 0.0001 0.0001 0.0019 0.0002 0.0001 0.0001 0.0001 0.0001 0.0125 0.068 0.0002 0.0002
cxxfilt 0.0002 0.0002 1 1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Table 13: average edge/function coverage and target reached/triggered in UBSan benchmark. all means combination of all
strategies (FFAFL), explore is Algorithm 1 only and exploit is Algorithm 2 only.

all explore exploit
programs cov func reach trigger cov func reach trigger cov func reach trigger

djpeg 12427 147.2 3969.4 140.4 11621.8 141 3842 133.8 11651.6 141 3846.8 134
jasper 10775.2 468.2 1772.6 50.4 9783.2 449 1609.6 33.2 9592.4 436.2 1587.2 31.2
readelf 2008 51.2 157.6 28 2112 53.2 178 27.6 1889.4 49.4 149.2 19.6
objdump 10320.4 292.6 1118.8 97.6 9004.6 271.8 985.2 77.4 9154.6 268.2 982.6 87.6
tcpdump 24422.8 471.8 3822.6 154.8 22972.8 461.4 3596.6 146 24279 439.6 3678 131.2
tiff2pdf 13076.8 282.4 1919 19.4 11104 270.6 1424.6 12.4 12673.8 275.2 1847.4 15.8
tiff2ps 9088 198.4 1177.8 15.8 8457.6 189.8 1070.2 8.6 8738.6 191.4 1129.2 10.6
xmllint 8069.4 306.8 723.6 15 7523.8 298.2 679.4 10.4 7681 301.6 690 11.6

sum 90187.6 2218.6 14661.4 521.4 82579.8 2135 13385.6 449.4 85660.4 2102.6 13910.4 441.6

Table 14: Time-To-Exposure of 30 real world bugs found after 10 rounds of 24 hours in the Two Stage benchmark.

BUG programs stack trace type FFAFL FFAFL++ AFL AFLFast FairFuzz EcoFuzz K-Scheduler AFL++

CVE-2019-16165 cflow reference->expression UAF 2:27:54 0:19:32 10:18:24 9:02:05 10:10:57 9:52:40 1:54:52 0:24:49
CVE-2019-16166 cflow nexttoken->parse_function_declaration HOF 15:54:06 9:36:24 19:30:12 20:11:16 17:19:06 20:45:32 13:06:41 14:01:42
cflow_unknow_1 cflow collect_processor->hash_do_for_each->collect_symbols HOF 18:51:31 16:06:51 24:00:00 22:51:20 20:47:46 13:25:35 21:19:50 24:00:00
CVE-2022-30974 mujs compile->compile stack exhastion 0:59:15 14:56:30 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
mujs_unknow_1 mujs jsP_foldconst->jsP_foldconst stack exhastion 1:53:49 15:48:42 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
mujs_unknow_2 mujs unary->unary stack exhastion 1:01:13 16:19:47 24:00:00 24:00:00 24:00:00 11:55:31 24:00:00 24:00:00
mujs_unknow_3 mujs count->count stack exhastion 20:24:15 22:40:38 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2018-5759 mujs jsC_cexp->jsC_cexp stack exhastion 13:30:49 21:46:19 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2017-5627 mujs js_pushstring->Fp_toString HOF 14:21:28 10:40:18 17:54:54 12:30:47 15:24:11 19:51:40 17:00:15 8:16:52
CVE-2018-6191 mujs js_strtod->lexnumber GOF 23:57:36 19:54:45 21:38:13 24:00:00 23:23:10 22:11:11 24:00:00 19:26:52
tic_leak_1 tic strdup->_nc_set_writedir->main leak 13:20:26 20:36:24 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
tic_leak_2 tic malloc->_nc_init_termtype->_nc_init_entry leak 9:27:45 10:23:48 24:00:00 21:52:12 20:56:50 20:03:57 24:00:00 15:30:04
tic_leak_3 tic malloc->_nc_resolve_uses2->main leak 16:39:44 22:49:26 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 22:24:48
CVE-2021-39537 tic _nc_captoinfo->_nc_parse_entry->_nc_read_entry_source HOF 17:36:37 1:01:29 4:32:25 11:47:47 7:06:39 15:02:31 21:55:41 3:54:42
CVE-2017-13731 tic postprocess_termcap->_nc_parse_entry->_nc_read_entry_source HOF 24:00:00 22:52:34 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 21:38:29
CVE-2022-29458 tic convert_strings->_nc_read_termtype HOF 17:23:15 10:39:59 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2017-13729 tic __interceptor_strlen.part.36->_nc_save_str UAF 20:10:17 19:11:37 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2017-17858 mutool ensure_solid_xref->pdf_get_xref_entry HOF 9:59:33 18:56:29 17:47:20 17:17:42 5:48:57 19:19:19 24:00:00 11:28:14
CVE-2016-6265 mutool pdf_load_xref->pdf_init_document OBW 24:00:00 24:00:00 21:32:51 24:00:00 15:57:10 19:49:54 24:00:00 19:33:02
CVE-2019-14249 dwarfdump read_gs_section_group FPE 0:00:05 0:00:02 0:00:03 0:23:27 0:23:43 0:24:23 0:23:19 0:00:02
CVE-2022-39170 dwarfdump _dwarf_destruct_elf_nlaccess double free 4:21:22 10:25:58 1:20:58 12:45:42 2:41:26 6:44:44 5:25:28 10:13:38
dwarf_unknow_1 dwarfdump dwarf_pe_load_dwarf_section_headers HOF 23:50:30 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2018-18484 cxxfilt cplus_demangle_type->d_bare_function_type->d_function_type stack exhastion 1:08:31 24:00:00 16:37:15 22:34:27 24:00:00 7:35:09 20:34:34 24:00:00
CVE-2018-17985 cxxfilt cplus_demangle_type->cplus_demangle_type stack exhastion 1:12:08 24:00:00 13:33:11 22:33:52 24:00:00 1:35:54 18:01:46 24:00:00
cxxfilt_unknow_1 cxxfilt d_pointer_to_member_type->cplus_demangle_type stack exhastion 3:03:39 24:00:00 19:40:40 22:34:38 24:00:00 7:05:33 23:17:13 24:00:00
CVE-2018-18700 cxxfilt d_name->d_encoding->d_local_name stack exhastion 1:11:57 24:00:00 19:21:04 22:32:31 24:00:00 4:58:06 19:53:30 24:00:00
CVE-2018-9138 cxxfilt demangle_nested_args->do_type->do_arg->demangle_args stack exhastion 2:01:55 23:13:48 21:33:11 24:00:00 24:00:00 4:09:24 21:51:43 21:37:46
cxxfilt_unknow_2 cxxfilt d_template_arg->d_template_args_1 stack exhastion 5:24:50 24:00:00 24:00:00 24:00:00 24:00:00 16:52:02 20:05:49 24:00:00
CVE-2019-9071 cxxfilt d_count_templates_scopes->d_count_templates_scopes stack exhastion 6:04:27 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00 24:00:00
CVE-2019-9070 cxxfilt d_expression_1->d_expression_1 stack exhastion 4:48:47 24:00:00 24:00:00 24:00:00 24:00:00 21:39:56 24:00:00 24:00:00
CVE-2018-9996 cxxfilt demangle_real_value->demangle_template_value_parm stack exhastion 20:17:37 24:00:00 23:27:07 24:00:00 24:00:00 20:13:10 24:00:00 24:00:00

USENIX Association 32nd USENIX Security Symposium 1359

Table 15: Time-To-Exposure of 72 real world bugs found after 10 rounds of 60 hours in the ASan benchmark.

bug id programs stack trace bug type FFAFL FFAFL++ AFL AFL++ ParmeSan TortoiseFuzz

CVE-2018-19325 tcpdump EXTRACT_32BITS->mfr_print heap overflow 38:26:44 35:53:56 50:48:10 56:36:43 60:00:00 60:00:00
CVE-2017-16808 tcpdump lookup_emem->etheraddr_string heap overflow 60:00:00 57:19:30 59:48:41 60:00:00 60:00:00 60:00:00
catdoc_issue_8 catdoc find_file null pointer 13:36:47 60:00:00 9:58:12 60:00:00 60:00:00 60:00:00
CVE-2020-18898 exiv2 printIFDStructure->printIFDStructure stack exhaustion 15:46:29 40:10:20 60:00:00 31:50:12 60:00:00 60:00:00
CVE-2018-17282 exiv2 Exiv2::DataValue::copy SEGV 48:25:23 50:31:59 60:00:00 54:37:08 60:00:00 60:00:00
flvmeta_issue_13 flvmeta __interceptor_strcmp.part.26 ->xml_on_metadata_tag_only SEGV 0:00:00 0:00:00 0:00:00 0:00:00 0:05:17 0:00:00
flvmeta_issue_14 flvmeta __strftime_l ->xml_amf_data_dump SEGV 0:13:34 0:07:40 0:07:26 0:04:04 20:32:55 0:18:13
liblouis_issue_728-1 lou_checktable vsnprintf->compileError stack-overflow 20:05:21 29:34:34 50:44:01 60:00:00 60:00:00 59:40:42
liblouis-java_issue_10 lou_checktable compileUplow ->compileRule UAF 36:39:59 38:28:58 60:00:00 60:00:00 60:00:00 60:00:00
liblouis_issue_573 lou_checktable pattern_compile_expression->pattern_compile_expression Stack Exhaustion 53:31:54 53:52:37 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-11685 lou_checktable compileHyphenation->compileRule stack overflow 60:00:00 40:19:42 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-8883 nasm parse_line ->assemble_file global-buffer-overflow 0:03:04 0:02:46 0:02:02 0:02:21 60:00:00 0:05:51
CVE-2019-6291 nasm expr6 ->expr6 stack-overflow 23:58:18 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-8882 nasm ieee_shr ->to_float stack-underflow 16:29:29 6:24:29 47:39:19 25:51:22 60:00:00 60:00:00
CVE-2021-33457 nasm expand_mmac_params->pp_getline heap overflow 60:00:00 57:34:31 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-16517 nasm islocal ->find_label SEGV 48:33:10 28:15:12 51:25:28 32:44:35 60:00:00 59:56:40
CVE-2018-18484 nm-new cplus_demangle_type ->d_bare_function_type ->d_function_type Stack Exhaustion 28:44:07 42:01:53 48:18:18 60:00:00 60:00:00 59:15:02
CVE-2018-9138 nm-new do_type->do_arg Stack Exhaustion 24:43:11 42:30:07 46:57:50 59:49:47 60:00:00 51:02:03
CVE-2019-9070 nm-new d_expression_1 ->d_expression_1 Stack Exhaustion 32:00:16 41:54:22 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-17985 nm-new cplus_demangle_type ->cplus_demangle_type Stack Exhaustion 20:18:26 39:15:26 48:14:18 60:00:00 60:00:00 58:44:38
binutils-unknow-1 nm-new cplus_demangle_type ->d_pointer_to_member_type Stack Exhaustion 12:00:38 54:34:15 53:07:52 60:00:00 60:00:00 60:00:00
CVE-2019-9071 nm-new d_count_templates_scopes ->d_count_templates_scopes Stack Exhaustion 25:32:00 41:35:26 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-18700 nm-new d_local_name ->d_name ->d_encoding Stack Exhaustion 20:05:55 39:14:25 50:40:09 60:00:00 60:00:00 59:05:22
binutils-unknow-2 nm-new d_template_args_1 ->d_template_args ->d_template_arg Stack Exhaustion 04:02:40 49:18:08 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-9996 nm-new demangle_real_value->demangle_template_value_parm Stack Exhaustion 48:34:55 58:00:44 60:00:00 60:00:00 60:00:00 60:00:00
binutils_issue_1375935 nm-new d_print_comp->d_print_comp_inner Stack Exhaustion 58:50:22 58:37:44 60:00:00 60:00:00 60:00:00 60:00:00
CVE-2018-20552 tcpprep packet2tree ->add_tree_ipv4 heap overflow 14:40:00 0:04:11 0:01:09 12:03:27 60:00:00 0:10:09
CVE-2020-24266 tcpprep get_l2len ->get_ipv4 heap overflow 1:27:17 1:35:06 0:13:18 0:52:37 60:00:00 1:14:46
CVE-2018-17795 tiff2pdf t2p_write_pdf->main heap overflow 58:13:04 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
libtiff_issue_258 tiff2pdf t2p_read_tiff_data->t2p_write_pdf null pointer 57:22:05 59:43:58 60:00:00 54:19:59 60:00:00 53:09:29
ngiflib_issue_11 gif2tga WritePixel ->DecodeGifImg heap overflow 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
ngiflib_issue_1 gif2tga WritePixels ->DecodeGifImg heap overflow 0:00:04 0:00:03 0:00:04 0:00:02 0:00:14 0:00:06
CVE-2019-20219 gif2tga GifIndexToTrueColor ->WritePixels heap overflow 0:00:04 0:00:03 0:00:04 0:00:02 0:06:38 0:00:07
ngiflib_issue_4 gif2tga DecodeGifImg ->LoadGif heap overflow 0:00:04 0:00:03 0:00:04 0:00:04 0:08:35 0:00:07
gpac_issue_1333 MP4Box gf_isom_box_dump_ex->gf_isom_box_array_dump UAF 0:00:40 0:00:28 0:00:40 0:00:18 18:42:19 0:02:21
gpac_issue_1661 MP4Box gf_isom_box_del->gf_isom_box_del UAF 0:02:37 0:01:34 0:02:19 0:01:04 0:02:54 0:08:15
gpac_issue_1099 MP4Box gf_isom_oinf_read_entry->gf_isom_box_parse_ex heap overflow 0:38:38 2:05:03 1:44:01 1:51:07 0:33:06 2:07:35
gpac_issue_1250 MP4Box gf_m2ts_process_data->gf_import_mpeg_ts heap overflow 15:17:10 29:21:37 23:39:24 56:02:08 60:00:00 36:55:54
gpac_issue_1422 MP4Box gf_m2ts_section_complete->gf_m2ts_gather_section heap overflow 3:49:32 29:51:36 37:24:53 59:02:10 60:00:00 58:46:16
gpac_issue_1446 MP4Box gf_m2ts_get_adaptation_field->gf_m2ts_process_data stack overflow 3:12:32 27:46:30 39:13:11 57:48:21 60:00:00 60:00:00
CVE-2018-13005 MP4Box urn_Read->gf_isom_box_parse_ex heap overflow 18:32:11 22:18:47 15:57:09 51:38:52 60:00:00 33:33:56
gpac_unknow_1 MP4Box gf_isom_sample_entry_get_bitrate->AVC_RewriteESDescriptorEx UAF 12:19:05 33:58:37 49:39:20 58:38:01 60:00:00 26:23:00
CVE-2018-7752 MP4Box gf_media_avc_read_sps->avcc_Read stack overflow 19:13:32 5:58:45 25:31:18 4:14:43 20:01:51 31:10:59
CVE-2018-21015 MP4Box AVC_DuplicateConfig->merge_avc_config null pointer 51:20:32 53:43:02 57:46:19 60:00:00 48:39:58 60:00:00
CVE-2019-20169 MP4Box trak_Read->gf_isom_box_parse_ex UAF 16:24:41 27:59:42 18:36:35 2:08:12 2:11:47 41:07:32
gpac_issue_1096 MP4Box metx_Read->gf_isom_box_parse_ex heap overflow 40:03:46 49:09:00 46:08:35 48:12:03 60:00:00 51:47:14
gpac_issue_1097 MP4Box printf_common->ReportGenericError heap overflow 22:12:04 60:00:00 60:00:00 51:19:56 60:00:00 47:19:37
CVE-2019-20630 MP4Box BS_ReadByte->gf_bs_read_int heap overflow 34:10:31 52:56:22 58:25:29 60:00:00 60:00:00 60:00:00
gpac_unknow_2 MP4Box gf_m2ts_process_tdt_tot->gf_m2ts_section_complete heap overflow 22:07:45 40:21:03 46:47:03 60:00:00 60:00:00 60:00:00
CVE-2019-20629 MP4Box gf_m2ts_process_pmt->gf_m2ts_section_complete heap overflow 48:20:55 52:10:17 55:44:50 60:00:00 60:00:00 60:00:00
CVE-2019-20632 MP4Box gf_odf_delete_descriptor null pointer 50:10:54 57:45:29 59:20:16 60:00:00 60:00:00 60:00:00
gpac_issue_1445 MP4Box __asan_memcpy->gf_bs_read_data heap overflow 48:55:11 55:55:11 59:00:47 60:00:00 5:03:02 60:00:00
gpac_issue_1317 MP4Box GF_IPMPX_ReadData->gf_ipmpx_data_parse heap overflow 55:22:35 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_3 MP4Box gf_list_enum->gf_odf_delete_descriptor_list heap overflow 50:24:04 57:44:56 59:20:34 60:00:00 60:00:00 60:00:00
gpac_issue_1327-1 MP4Box gf_isom_box_parse_ex->gf_isom_box_array_read_ex heap overflow 60:00:00 60:00:00 60:00:00 60:00:00 0:26:17 60:00:00
gpac_unknow_4 MP4Box gf_isom_parse_movie_boxes null pointer 60:00:00 57:25:18 38:59:37 54:17:28 60:00:00 60:00:00
gpac_unknow_5 MP4Box gf_m2ts_process_sdt->gf_m2ts_section_complete heap overflow 46:00:58 52:43:55 52:40:11 60:00:00 60:00:00 60:00:00
gpac_issue_1332 MP4Box stbl_AddBox->gf_isom_box_array_read_ex null pointer 60:00:00 60:00:00 60:00:00 60:00:00 36:53:28 60:00:00
gpac_unknow_6 MP4Box sgpd_dump->gf_isom_box_dump_ex heap overflow 60:00:00 60:00:00 60:00:00 60:00:00 45:56:20 60:00:00
gpac_unknow_7 MP4Box abst_Read->gf_isom_box_parse_ex heap overflow 52:18:32 60:00:00 56:48:01 60:00:00 58:56:05 60:00:00
gpac_issue_1446 MP4Box on_m2ts_import_data->gf_m2ts_reframe_nalu_video heap overflow 58:45:40 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_8 MP4Box gf_m2ts_reframe_aac_adts->gf_m2ts_flush_pes heap overflow 59:12:06 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_9 MP4Box gf_mp3_get_next_header_mem->gf_m2ts_reframe_mpeg_audio heap overflow 59:14:31 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_10 MP4Box __asan_memcpy->gf_m2ts_reframe_aac_latm heap overflow 59:15:20 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_11 MP4Box __interceptor_memchr.part.36->gf_m2ts_reframe_nalu_video heap overflow 59:16:03 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_12 MP4Box gf_m2ts_reframe_mpeg_video->gf_m2ts_flush_pes heap overflow 59:24:00 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_unknow_13 MP4Box audio_sample_entry_AddBox->gf_isom_box_array_read_ex null pointer 60:00:00 60:00:00 60:00:00 60:00:00 55:19:00 60:00:00
CVE-2018-13006 MP4Box __interceptor_strlen.part.24->hdlr_dump heap overflow 55:50:01 23:23:05 60:00:00 58:13:36 60:00:00 60:00:00
gpac_issue_1348 MP4Box dimC_Read->gf_isom_box_parse_ex heap overflow 57:38:37 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_issue_1262 MP4Box txtc_Read->gf_isom_box_parse_ex heap overflow 59:21:35 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_issue_1328 MP4Box GF_IPMPX_AUTH_Delete->gf_ipmpx_data_del heap overflow 57:03:56 60:00:00 60:00:00 60:00:00 60:00:00 60:00:00
gpac_issue_1338 MP4Box ilst_item_Read->gf_isom_box_parse_ex null pointer 58:11:06 47:49:35 49:06:22 60:00:00 60:00:00 59:52:36
gpac_unknow_14 MP4Box ilst_item_del->gf_isom_box_del heap overflow 60:00:00 48:50:21 49:42:13 60:00:00 60:00:00 60:00:00

1360 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Input prioritization
	FishFuzz's scope

	FishFuzz's Design
	Dynamic Target Priority
	Distance Measurement

	FishFuzz's Queue Culling Strategy
	Program Preparation
	Queue Culling Algorithm

	Implementation
	Evaluation
	RQ1: How many targets are reached?
	RQ2: How efficiently does FishFuzz find bugs?
	RQ3: Can FishFuzz find new bugs?
	RQ4: Can other fuzzers benefit from our strategies?
	RQ5 - How FishFuzz improve the fuzzer capabilities?

	Discussion
	Hyperparameter Tuning
	Target Set Size
	Combining FishFuzz with other works

	Related Works
	Directed Greybox Fuzzers
	Two-Stage Fuzzers

	Conclusion
	Appendix
	UBSan vs ASan targets
	P-Values
	Hyperparameter Study
	Ablation Study
	Time-To-Exposure Details

