é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

Linear Private Set Union from Multi-Query
Reverse Private Membership Test

Cong Zhang, State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese
Academy of Sciences; Yu Chen, School of Cyber Science and Technology, Shandong University;
State Key Laboratory of Cryptology; Key Laboratory of Cryptologic Technology and
Information Security, Ministry of Education, Shandong University; Weiran Liu, Alibaba Group;
Min Zhang, School of Cyber Science and Technology, Shandong University; State Key
Laboratory of Cryptology; Key Laboratory of Cryptologic Technology and Information
Security, Ministry of Education, Shandong University; Dongdai Lin, State Key Laboratory
of Information Security, Institute of Information Engineering, Chinese Academy of Sciences;
School of Cyber Security, University of Chinese Academy of Sciences

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-cong

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 *« Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

RO R G

+

Linear Private Set Union from Multi-Query Reverse
Private Membership Test
Cong Zhang!?, Yu Chen®*> ™9 Weiran Liu®, Min Zhang>*> and Dongdai Lin!-?

IState Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
{zhangcong,ddlin} @iie.ac.cn
3School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
4State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
5Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Qingdao 266237, China
yuchen.prc@gmail.com, zm_min@mail.sdu.edu.cn
SAlibaba Group
weiran.lwr@alibaba-inc.com

Abstract

Private set union (PSU) protocol enables two parties, each
holding a set, to compute the union of their sets without
revealing anything else to either party. So far, there are
two known approaches for constructing PSU protocols. The
first mainly depends on additively homomorphic encryption
(AHE), which is generally inefficient since it needs to per-
form a non-constant number of homomorphic computations
on each item. The second is mainly based on oblivious trans-
fer and symmetric-key operations, which is recently proposed
by Kolesnikov et al. (ASIACRYPT 2019). It features good
practical performance, which is several orders of magnitude
faster than the first one. However, neither of these two ap-
proaches is optimal in the sense that their computation and
communication complexity are not both O(n), where n is the
size of the set. Therefore, the problem of constructing the
optimal PSU protocol remains open.

In this work, we resolve this open problem by proposing
a generic framework of PSU from oblivious transfer and a
newly introduced protocol called multi-query reverse private
membership test (mg-RPMT). We present two generic con-
structions of mq-RPMT. The first is based on symmetric-key
encryption and general 2PC techniques. The second is based
on re-randomizable public-key encryption. Both constructions
lead to PSU with linear computation and communication com-
plexity.

We implement our two PSU protocols and compare them
with the state-of-the-art PSU. Experiments show that our
PKE-based protocol has the lowest communication of all
schemes, which is 3.7 — 14.8 x lower depending on set size.
The running time of our PSU scheme is 1.2 — 12 faster than
that of state-of-the-art depending on network environments.

1 Introduction

Private set union (PSU) enables two parties, each hold-
ing a private set of elements, to compute the union of
the two sets while revealing nothing more than the union

itself. PSU and its variants have numerous applications
[7, 18, 24, 27, 29, 32, 33, 43]. An important PSU applica-
tion is IP blacklist and vulnerability data aggregation [24, 43].
Consider two organizations (i.e. the maintainers of the IP
blacklists) want to compute their IP blacklist joint list, which
will help minimize vulnerabilities in their infrastructure. How-
ever, it is not secure to let the organizations simply exchange
their blacklists because each individual IP blacklist is gen-
erated according to the detection strategy formulated by the
maintainer and cannot be leaked. Note that a curious organiza-
tion may infer the detection strategy of another organization
from the IP address in the intersection. Therefore, it is impor-
tant to hide the intersection, which is exactly the functionality
of PSU.

Another killer application of PSU is to construct Private-ID
protocol [8, 18]. The Private-ID protocol enables two parties,
each holding a private set of items, to privately compute a set
of random universal identifiers (UID) corresponding to the
records in the union of their sets, where each party additionally
learns which UIDs correspond to which items in its set but
not if they belong to the intersection or not. The main use of
Private ID is to realize data alignment, that is, both parties can
sort their private data according to these universal identifiers.
They can then proceed item-by-item, doing any desired private
computation. Garimella et al. [18] gave a modular way to
construct Private ID from Obivious PRF (OPRF) and PSU.
Their experiments showed that the bottleneck of their Private
ID is the underlining PSU instantiations.

In addition, PSU applications also include information se-
curity risk assessment [33], joint graph computation [7], dis-
tributed network monitoring [29], building block for private
DB supporting full join [32] etc.

Over the last decade, there has been a significant amount
of work on private set operation, especially private set inter-
section (PSI) [11, 15, 31, 37, 38, 40]. We refer the reader
to [41] for an overview of different PSI paradigms. State-
of-the-art semi-honest PSI protocols in the two-party setting
[11, 19, 31, 37, 44] all mainly rely on symmetric-key opera-
tions, except for a few base OT operations in OT extension

USENIX Association

32nd USENIX Security Symposium 337

protocol [26, 30]. Let n denote the size of input set, the com-
munication complexity of these OT-based PSI protocols has
been improved from initial nonlinear O(nlogn) [31, 39, 40]
to linear complexity O(n) [11, 14, 19, 20, 37, 44].

1.1 Motivation

In contrast to the affairs of PSI, the efficiency of the state-
of-the-art PSU is less satisfactory. Roughly, there are two
known approaches for constructing PSU protocols. The first
is mainly based on public-key techniques. Existing construc-
tions along this approach [16, 23, 29, 46] have to perform a
non-constant number of additively homomorphic encryption
(AHE) operations on each set element, rendering the overall
protocols inefficient. The other is mainly based on symmetric-
key techniques in combination with OT [18, 27, 32], which is
several orders of magnitude faster than AHE-based construc-
tions. However, neither of the two approaches is optimal in
the sense that their computation and communication complex-
ity are not both O(n), where n is the size of the set. We note
that [12] is the work closest to optimal bound, but its commu-
nication and computation complexity additionally depend on
the statistical security parameter A. This leaves the following
open problem:

Can we construct PSU protocols with linear computation
and communication complexity?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the
semi-honest setting. Our contribution can be summarized as
follows:

1. We revisit the PSU protocol [32] (KRTW protocol for
short hereafter) in depth. Roughly, KRTW protocol is
built upon two building blocks, namely oblivious transfer
(OT) and reverse private membership test (RPMT). We
figure out the root causing KRTW protocol non-optimal
is that RPMT has linear communication complexity and
super-linear computation complexity, and it has to be
carried out n times independently, where 7 is the size of
sender’s private set.

2. To achieve linear complexity, we propose a new frame-
work for constructing PSU protocols. The core building
block is a newly introduced protocol called multi-query
RPMT (mqg-RPMT). We identify and overcome several
technical difficulties for building optimal mq-RPMT, and
give two realizations of mq-RPMT. Both the two con-
crete mq-RPMT protocols achieve linear communication
and computation complexity.

3. We further abstract a new primitive called membership
encryption (ME), which broadens the scope of the can-
didate encryption scheme, unifies our two constructions,

and halves the communication complexity of our SKE-
based construction on receiver side.

4. Combining OT and the above mq-RPMT, we eventually
obtain SKE-based and PKE-based PSU protocols with
optimal complexity for the first time. Experiments show
that our PKE-based protocol has the lowest communica-
tion of all schemes, which is 3.7 — 14.8 x lower depend-
ing on set size. The running time of our PSU scheme is
1.2 — 12 x faster than that of state-of-the-art depending
on network environments. In addition to our scheme,
we also use Silent OT [6, 48] to optimize the scheme
of [18, 27], and provide different parameter selection of
Ferret OT [48].

Figure 1 depicts the technical overview of our new PSU
framework. We elaborate the details in the next subsection.

Fosu

Section\

Fot

Section 3.2

OKVS

TN

/ Section 2.5
S % N
Polynomial GBF |3H-GCT++ SKE+2PC Re-randomizable PKE

Section 4.1 Section 4.2

Figure 1: Technical overview of our new PSU framework. The
new primitives and functionalities are marked with rectangles.

1.3 Overview of Our Techniques

We provide the high-level technical overview for our new
framework of PSU protocol.

KRTW protocol revisit. Our starting point is the recent PSU
protocol of Kolesnikov et al. [32]. The core of KRTW pro-
tocol is a subprotocol called reverse private membership test
(RPMT), which can test whether a sender’s element y be-
longs to the receiver’s input set X, and let the receiver obtain
the result. After that, both parties execute OT protocol to let
the receiver obtain {y} UX. The computation cost of origi-
nal RPMT [32] is O(nlog? n) and the communication cost is
O(n). For the purpose of computing the set union, the par-
ties need to execute RPMT n times independently, which
results in O(n?) communication and O(n*log?n) computa-
tion. The complexity can be further reduced to O(nlogn) and
O(nlognloglogn) separately via hash to bin technology, but
it is still super-linear. The bottleneck of the KRTW protocol
is exactly RPMT.

Zoom in on the original RPMT. The original RPMT pro-
tocol employs an oblivious PRF (OPRF) functionality
and a private equality test (PEQT) functionality Fpeqe. In

338 32nd USENIX Security Symposium

USENIX Association

OPREF, the sender learns a random PRF key k and the re-
ceiver learns the PRF output F(y1),...,Fi(y,) on its inputs
¥1,--.,yn €Y. In PEQT, the functionality receives two strings
from the receiver and the sender respectively and tells the
receiver whether the two strings are equal. Their RPMT uses
an indication string s to indicate the membership of X.

More precisely, their RPMT protocol executes as fol-
lows with sender S’s input y and receiver X ’s input X =
{x1,...,x,}: S and R execute the OPRF protocol first. The
receiver K receives a PRF key k. The sender .§ inputs y, and
receives ¢* = F(y). Next, R chooses a random indication
string s. Then, R computes and sends the interpolation poly-
nomial P which passes through points {(xi,s © Fi(x:)) }ic[s)
to the sender. After receiving P, § computes s* := ¢g* ® P(y).
Now, § and R invoke the Fyeqc-functionality with input s*
and s separately. Finally, R receives output from Fpeqt.

If y € X, i.e., there exists an x; such that y = x;, then we have
s =q" B P(y) = Fi(x;) ©P(x;) = s. If y ¢ X, then ¢" = Fi(y)
is pseudorandom, which implies that s* = ¢* @ P(y) # s with
overwhelming probability.

To identify the root of the inefficiency of the original RPMT
protocol, we first try to interpret it at an abstract level. Our
first key observation is that the polynomial actually plays the
role of oblivious key-value store (OKVS). Our second key
observation is that the usage of OPRF is three-fold. Firstly, X
uses an OPRF to derive n pseudorandom one-time pads, then
encrypts the same indication string into n ciphertexts under
these one-time pads. Secondly, S utilizes OPRF to decrypt a
ciphertext obliviously. Finally, OPRF provides OKVS with
randomness to ensure the correctness of the protocol.

Based on the above new interpretation, we are ready to
describe our new mq-RPMT protocol in an incremental way
over the original RPMT protocol.

Enhanced oblivious key-value store. One reason that ac-
counts for the super-linear complexity of the original RPMT
protocol is that the polynomial related operations are costly.
More precisely, the complexity of polynomial interpolation
is O(nlog2 n), and the amortized complexity of polynomial
evaluation is O(log?n). According to our first observation,
polynomial essentially plays the role of OKVS. This greatly
increases the space of the concrete mapping schemes that
can be used. A drop-in replacement of polynomial with more
efficient OKVS candidates can reduce the computation com-
plexity immediately. However, as we observed before, an addi-
tional randomness property should be satisfied now, since we
do not use OPRF to provide randomness anymore. To achieve
this goal, we enhance OKVS in two aspects: efficiency and
security. (See Section 2.5 for the details.)

Oblivious decryption-then-matching. Another reason that
accounts for the super-linear complexity is that the original
RPMT protocol is one-time in nature. To see this, note that in
the original RPMT protocol § learns the purported indication
string. This design lets .S learn more information than needed,
and is exactly the reason that hinders multi-query. For exam-

ple, if there are two distinct elements belonging to & ’s set,
then § will obtain the same indication string. This will let .S
know that the two elements belong to the intersection, which
violates security.

Based on the above discussion, the rough idea of making
RPMT support multi-query is to encode the ciphertext of in-
dication string in OKVS instead of the indication string itself.
In this way, § will obtain some ciphertexts (i.e. the value of
OKVS(y)), and R _has the corresponding key. We need to let
R decrypt these ciphertexts, and match the results with the
indication string. A naive attempt is to have S directly send
the ciphertexts to &, and in the sequel, & tries to decrypt
and match. However, this rough idea is problematic since
it is insecure even against a semi-honest receiver. Consider
R_records the correspondence between x; and OKVS(x;). In
this way, X is able to learn S’s private input y by simple
look-up when y € X, rather than merely the fact that y € X.
We overcome this difficulty in two steps. The first step is to
re-factor the functionality of OPRF to encryption and obliv-
ious decryption functionality. Let & encrypt the indication
string locally. Then & computes the corresponding OKVS
and sends it to §. To ensure the overall protocol still con-
stitutes an RPMT protocol, the second step is to merge the
oblivious decryption functionality and PEQT into a new func-
tionality, namely, vector oblivious decryption-then-matching
(VODM) functionality. In this functionality, the sender inputs
a vector of ciphertexts and the receiver inputs a key and a
plaintext. The functionality decrypts these ciphertexts with
the key and matches the results with the plaintext input by the
receiver. If it matches, the receiver outputs 1, and outputs 0
otherwise.

Putting all the pieces together, we can build mq-RPMT
protocol from OKVS, encryption, and VODM functionality
in a modular way. (See Section 3 for the technical details).
Two generic constructions of mq-RPMT. Our first generic
construction chooses probabilistic SKE as the encryption
scheme, and resorts to general 2PC to implement the VODM
functionality. See Section 4.1 for details. Our second generic
construction chooses re-randomizable PKE as the encryption
scheme and uses re-randomization technique to implement
VODM functionality, without resorting to generic 2PC.

Our idea is to let S re-randomize all the ciphertexts and then
send the results to & . In this way, R _fulfills the decryption-
then-matching functionality in an oblivious manner for all
yi € X. We note that this method will leak some information of
y ¢ X, however, as observed by KRTW, this leakage does not
cause any harm to the PSU, since the PSU protocol releases
that value anyway.

Looking ahead, one may doubt our PKE-based scheme is
inefficient. We note that our PKE-based scheme can still be
very efficient because we use PKE techniques in an entirely
different way compared to prior PKE-based protocol [12, 16,
29]. We only need to perform the encryption, rerandomization,
and decryption operations per item, while they need to carry

USENIX Association

32nd USENIX Security Symposium 339

out many ciphertext homomorphism operations per item. See
Section 4.2 for details.

Optimization with membership encryption. In the above
framework, the underlying encryption schemes must be prob-
abilistic to make the security proof go through. As a conse-
quence, this incurs considerable overhead on communication
costs due to ciphertext expansion. Observe that the VODM
functionality reveals only one-bit information for every cipher-
text. A second thought indicates that a full-fledged encryption
scheme might be overkill for our construction of mq-RPMT
protocol, and a new type of encryption scheme suffices. We
propose the new encryption scheme as membership encryp-
tion (ME).

We sketch the definition of ME in the symmetric key setting
as below. Let X be a string set. The encryption algorithm takes
a key k and an element x; € X as inputs, outputs a ciphertext
c. The decryption algorithm takes a key k and a ciphertext ¢
as inputs, outputs a bit to indicate if the encrypted element be-
longs to X. For the correctness, we require that for any x; € X
and any ¢ < Enc(k,x;), we have Dec(k,c) = 1. The secu-
rity requirement is multi-element pseudorandomness, namely,
{Enc(k,x;) }x,cx are computationally indistinguishable to C",
i.e. the uniform distribution over ciphertext space. The con-
sistency requirement is that a random ciphertext decrypts to
“0” with overwhelming probability.

Membership encryption distills the right functionality we
need for an encryption scheme in mq-RPMT protocol. It not
only encompasses the constructions from randomized SKE
and PKE in a unified manner, but also admits new construction
from deterministic SKE, which enjoys compact ciphertext.
As we elaborate in Section 4.3, this new construction helps to
halve the communication complexity on the receiver side.

1.4 Related Work

We survey existing PSU protocols with security against
semi-honest adversaries. Hereafter, unless otherwise declared,
we calculate the efficiency by assuming a balanced setting,
namely the sets of both sender and receiver are of size n.
Kissner and Song [29] proposed the first PSU protocol
based on polynomial representations and additively homo-
morphic encryption (AHE). The polynomial representation of
a set is to represent a set by a polynomial f, in which each set
item is the root of the polynomial. The main observation of
them is that when the set of two parties is represented by poly-
nomials f and g, the root of fg is exactly the union items. The
communication and computation complexity of the protocol
are both quadratic to the set size n, and the efficiency is very
low. Later, Frikken [16] found that it is enough to represent
only receiver’s set in polynomial f. Then the receiver sends
the AHE of f to the sender. The sender computes and sends
back the ciphertexts of (f(y),yf(y)) for all y € Y. In this way,
the receiver could decrypted these ciphertexts and obtained
the element outside of his set, since the intersection elements

decrypted to 0. Davidson and Cid [12] proposed a similar
PSU protocol like Frikken, the main difference is that they
use Bloom Filter (BF) instead of polynomial to represent the
set. Both their protocols are expensive due to the frequent uses
of AHE. Kolesnikov et al. [32] proposed the first PSU proto-
col mainly based on symmetric key techniques, which makes
several orders of magnitude improvement of PSU. Recently,
Garimella et al. [18] and Jia et al. [27] both use the oblivious
switching network (OSN) subprotocol [35] to construct PSU,
which futher improve 2 — 4 x over [32]. However, all these
symmetric key based PSU have the superlinear complexity.

Other PSU protocols focus on multi-party settings [5, 25,
29, 45], malicious settings [16, 23, 45] and computation with
untrusted third party’s help [9, 10, 46]. All of the above con-
structions rely heavily on expensive AHE or zero-knowledge
proof, which are out of the scope of our consideration.

Table | provides an asymptotic comparison of our design
with the previous PSU works. We note that although the
complexity of our SKE-based scheme is also related to ¢,
where ¢ is the number of AND gates in an SKE decryption
circuit, we emphasize that ¢ is a constant which is independent
of n, that is, f remains the same no matter how n changes. In
this sense, the complexity of our SKE-based scheme is strictly
linear in n, though in practice ¢ is larger than logn. We leave
the construction of a linear SKE-based PSU with a concrete
complexity smaller than logn to future work.

Protocol Communication Computation
[29] o(*n?) O(n?) pub
[16] O(xn) O(nloglogn) pub
[12] O(hn) O(An) pub
[32] O(xnlogn) | O(nlognloglogn) sym
[18] O(xnlogn) O(nlogn) sym
[27] O(xnlogn) O(nlogn) sym
Our SKE-based | O((x+1)n) O(tn) sym
Our PKE-based O(xn) O(n) pub

Table 1: Asymptotic communication and computation costs
of two-party PSU protocols in the semi-honest setting.

Pub: public-key operations; sym: symmetric cryptographic
operations. n is the size of the parties’ input sets. K and A are
computational and statistical security parameter respectively
(typically ¥ = 128 and A=40). ¢ is the number of AND gates
in an SKE decryption circuit. We ignore the pub-key cost of
K base OTs.

2 Preliminaries

Full version of this paper. Due to space constraints, we defer
details like instantiation details, omitted proofs, omitted proto-
cols, implementation details and supplementary experiments
to the full version of this paper [50].

340 32nd USENIX Security Symposium

USENIX Association

2.1 Notation

We denote the parties as receiver & and sender .S, and their
respective input sets as X and ¥ with |X| = n, and |Y| = n,.
In the balanced setting, we often just assume that n = n, = n,,.
We use K and A to denote the computational and statistical
security parameters, respectively. We use [n] to denote the
set {1,2,...,n}. For a bit string v we let v; denote the ith
bit. We use [Fos to denote finite field composed of all 6-long
bit strings. We say that a function f is negligible in K if it
vanishes faster than the inverse of any polynomial in ¥, and
write it as f(k) = negl(k). We use the abbreviation PPT to
denote probabilistic polynomial-time. By a < A, we denote
that a is randomly selected from the set A, a < A(x) denotes
that a is the output of the randomized algorithm A on input x,
and a := b denotes that a is assigned by b.

2.2 Security Model

This work, similar to most protocols for private set operation,
operates in the semi-honest model, where adversaries may try
to learn as much information as possible from a given protocol
execution but are not able to deviate from the protocol steps.
This is in contrast to malicious adversaries which are able to
deviate arbitrarily from the protocol. PSU protocols for the
malicious setting exist, e.g., [5, 16, 23, 29, 45], but they are
less efficient than protocols for the semi-honest setting.
Semi-honest security. We use the standard security definition
for two-party computation [21] in this work.

Definition 2.1 Ler view{(X,Y) and viewg (X,Y) be the
views of S and R_in the protocol, and let output(X,Y) be
the output of both parties in protocol. A protocol 11 is said
to securely compute functionality f in the semi-honest model
if for every PPT adversary A there exists a PPT simulator
Simg and Simg,_such that for all inputs X and Y,
{view!(X,Y),output(X,Y)} ~ {Sims(X, f(X,Y)), f(X,Y)}
{view (X,Y),output(X,Y)} ~ {Simg (¥, /(X,Y)), f(X,Y)}

2.3 Encryption Schemes

Our construction requires some encryption schemes. We use
the standard definition of symmetric-key encryption (SKE)
and re-randomizable public-key encryption (ReRand-PKE)
schemes. For our purpose, we require a case-tailored security
notion called single-message multi-ciphertext pseudorandom-
ness. We give these definitions in the full version.

2.4 Oblivious Transfer

Oblivious transfer (OT) [42] is an important cryptographic
primitive used in various multiparty computation protocols.
We define the functionality of 1-out-of-2 OT in Figure 2.

Parameters: Sender §, Receiver &, message length x
Functionality:

* Wait for input b € {0, 1} from the receiver .
 Wait for input (xo,x1) from the sender .
¢ Give x; to the receiver X.

Figure 2: 1-out-of-2 Oblivious Transfer Functionality Fo.

2.5 Oblivious Key-Value Stores

A key-value store [19, 38] is simply a data structure that maps
a set of keys to corresponding values. The definition is as
follows:

Definition 2.2 (Key-Value Store) A key-value store is pa-
rameterized by a set K of keys, a set 'V of values, and a
set of function H, and consists of two algorithms:

* Encodey ({(x1,y1),---,(xn,yn)}): on input key-value
pairs {(xi,yi) Yicln) © K x V, outputs an object D (or;
with statistically small probability, an error L).

* Decodey (D,x) : on input D and a key x, outputs a value

ye V.

Correctness. For all A C K x ¥ with distinct keys:
(x,y) € A and L# D + Encodey (A) = Decodey (D,x) =y

Obliviousness. For all distinct {x?,...,x9} and all dis-
tinct {x},...,x}}, if Encodey does not output L for
{x9,...,29) or {xl,...,x!}, then the distribution of
{Dly; «+ %,i € [n],Encodey((x3,y1),...,(x%yn))} is
computationally indistinguishable to {Dl|y; + ¥,i €
[n]v EnCOdeH((x% 1)7 R (xilﬂyﬂ))}'

A key-value store is an oblivious key-value store (OKVS)
if it satisfies the obliviousness property.

Intuitively, obliviousness means that when value is ran-

domly selected, the distribution of D is independent from
key’s set. In addition, our application requires OKVS to meet
the Randomness property defined below to argue the correct-
ness of our scheme.
Randomness. For any A = {(x1,y1),...,(xs,y,)} and x* ¢
{x1,...,x,}, the output of Decodey (D, x*) is statistically in-
distinguishable to that of uniform distribution over ¥/, where
D < Encodeg (A).

The efficiency of an OKVS scheme can be measured by
following three parameters:

* Rate: Let ratio n/m be the rate of key-value store, where
m is the size of object D. Note that the optimal rate is 1.

* Encoding complexity: The computational cost of the
Encodey algorithm, as a function of the number n of
key-value pairs.

USENIX Association

32nd USENIX Security Symposium 341

* Decoding complexity: The computational cost of the
Decodey algorithm.

We investigated the existing schemes and found that
the main candidates for OKVS are: Polynomial, Garbled
Bloom Filter (GBF) [13] and Garbled Cuckoo Table (GCT)
[19, 38, 44] etc. We give the general introduction and detailed
comparisons of above OKVS in the full version.

Before instantiation, 3H-GCT recently proposed by
Garimella et al. [19] could be a good candidate, which has lin-
ear encoding complexity O(n) and a rate of 0.81. However, we
find that the original 3H-GCT did not meet the Randomness
we defined before because it was set to O in some positions
of D. To solve this problem, a natural idea is to set random
values in these positions like [44] does. We call this modified
3H-GCT as 3H-GCT++. We give the formal description of
3H-GCT++ in Figure 3 and we give the proof that our 3H-
GCT++ satisfies obliviousness and randomness in the full
version.

2.6 Private Set Union

PSU is a special case of secure two-party computation. The
ideal functionality for PSU is given in Figure 4.

3 Multi-Query Reverse Private Membership
Test

3.1 Definition

We propose mq-RPMT and give the formal definition of mq-
RPMT functionality in Figure 5. For generality we set |Y | =n,
and |X| = ny in our definition.

We define the vector oblivious decryption-then-matching
Fuodm corresponding to encryption scheme ‘£ in Figure 6, as
a component of mq-RPMT.

3.2 Framework of Multi-Query RPMT

Now we describe our framework of mq-RPMT protocol. As
we said in Section 1.3, the cryptographic primitives we use
are a single-message multi-ciphertext pseudorandomness en-
cryption scheme £ = (Setup, KeyGen, Enc, Dec), an OKVS
scheme (Encodep, Decodey) and the Foqm functionality.
LetY = {y1,...,yn,} and X = {xi,..., X, } be the input
of mg-RPMT sender S and receiver &. First, the receiver
R picks an indication string s'. Then ® chooses a ran-
dom key k used in encryption scheme ‘E to encrypt s for ny
times, and obtains (s1,...,s,,). Next, ® computes an OKVS
D := Encodey ((x1,51),. -, (Xn,,5n,)) and sends D to S. Af-
ter receiving D, S computes s} = Decodey (D, y;) for i € [n,].
Now § and X invoke the VODM functionality F,odm- S acts

n fact, our indication string s could be any fixed value, e.g. s = 0, while
s in KRTW must be selected randomly.

as sender with input § = {s7,...,s; } and R acts as receiver
with input (k,s). As a result, § receives nothing and &, re-
ceives b € {0,1}", satisfying b; = 1 if and only if s} decrypts
to s. Now, we give our framework of mq-RPMT protocol in
Figure 7.

Correctness. For all i € [n|,if y; € X, thereisanx; € X, j €
[ny] s.t. y; = x;. In this case, s; = Decodey (D, h(x;)) = s;.
Since s; = Enc(k,s), we have Dec(k,s;) = s, which means
b; = 1. In the case y; ¢ X, if hash functions collide, that is,
h(y;) = h(x) for some y; ¢ X, the correctness will be violated.
By setting 6 = A+ lognyny, a union bound shows probabil-
ity of collision is negligible 2~*. When no collision occurs,
from the randomness of OKVS, s¥ = Decodey (D, h(y;)) is a
random ciphertext, resulting in s is not the encryption of s
with overwhelming probability. The union bound guarantees
that for all y; ¢ X, the probability that there exists an s} s.t.
Dec(k,s}) = s is negligible.

We now prove the security properties of our mq-RPMT.

Theorem 3.1 Assume the encryption scheme ‘E satisfies
single-message multi-ciphertext pseudorandomness. The pro-
tocol in Figure 7 securely computes Fmq-rpmt against semi-
honest adversaries in the Fyodm-hybrid model.

Proof Due to space limitation, we only sketch here the sim-
ulators for the two cases of corrupt .§ and corrupt R, the full
proof (via hybrid arguments) is deferred to the full version.
Corrupt sender: To simulate OKVS in Step 3, the sim-
ulator computes a random OKVS D by selecting ny
random key-value pairs. Then, the simulator sets s} :=
Decodey (D, h(y;)) and invokes underlying VODM simulator
with inputs (s7,...,s},).

Briefly, this simulation is indistinguishable for the follow-
ing reasons: the single-message multi-ciphertext pseudoran-
domness of the encryption ensures that value (ciphertext) is
indistinguishable from random, and then by the obliviousness
of OKVS, D is distributed uniformly.

Corrupt receiver: The simulator for a corrupt R_first obtains
b from the ideal mq-RPMT functionality. The only message
that needs to be simulated is the VODM functionality in Step
5. The simulator just executes Step 1 honestly and invokes
the underlying VODM simulator with inputs (k, s, b). O

4 Generic Constructions of Multi-Query
RPMT

In this section, we give two generic constructions of mq-
RPMT protocol. In the first construction, we use SKE as the
encryption scheme and generic 2PC to implement VODM.
The advantage is that this scheme only uses OT and symmetric
operations. In the second construction, we use PKE and a re-
randomization method to implement the encryption scheme
and a leaky version of VODM respectively, which leads to a
leaky version of mq-RPMT. However, as observed by KRTW,

342 32nd USENIX Security Symposium

USENIX Association

Parameters:

Encodeg ({(x1,¥1),- -, (Xn,¥n) }):

Computational security parameter k and statistical security parameter A.

Input length 7.

A finite group G.

Random fuctions hy,/p,h3 : {0,1}* — [m'] and r: {0,1}* — {0, 1}4+*,

Parameters m’ = 1.3n and d = 0.5logn, as shown in [19], where d upper bound the size of 2-core of a (m’,n)-Cuckoo
graph.

Output length m = m’ +d + A.

1.

e

10.
11.

Decodey (D, x):

1.

While there is a node j € [m] such that the set {x; ¢ P|j € {hi1(x;),h2(x;), h3(x;) } } is a singleton: Let x; be the element
of that singleton, and push x; onto P.
. Let S = {x;|x; ¢ P}, and let R C [n] index the rows of M in S, i.e. R = {z|Ml((;l)1) = Mfﬂ(})ll(x_) = Mf(;ll(x_> =1Ax; € S}

Define /(x) € {0,1}™ to be all zeroes except 1s at positions h; (x), hy(x), h3(x). Here we assume the weight of /(x) is
3. Let row(x) := I(x)||r(x),

I(x1) r(x1)
MO — c {07 l}nxm/’M(l) = : c {07 1}n><(d+)n)
1(xn) r(xn)
and let
row(x)
M=m| MV = : € {0,117,
row(x,)

Initialize empty vectors Dy, € G™ and Dg € G4 let D = Dy ||Dg.
Initialize stack P.

Letd := |R| and abort if d > d.
Let M) € {0, I}Jx<d+~7‘) be the submatrix of M(!) obtained by taking the row indexed by R. Abort if M) does not
contain an invertible d x d matrix. Otherwise let M* be one such matrix and C C [d +] index the corresponding
columns of M),
Let C':={j|i € R,Ml.(s.> =1}U([d+A\C+m') and for i € C' assign D; + G. For i € R, define y; :=y; — (MD");
where D; is assumed to be zero if unssigned.
Using Gaussian elimination solve the system M* (Dprscy s ,Dm/+Cd_)T = (y}el ey y}ej)T.
While P not empty:

(a) pop x; from P.

(b) Dy, is undefined in at least one of the positions A (x;),h2(x;),h3(x;). Set the undefined position(s) so that

<I‘OW(X,‘),D> = i-

Set any empty position in D with a random value from G.
Output D.

Return (row(x),D).

Figure 3: 3H-GCT++ algorithm

USENIX Association 32nd USENIX Security Symposium 343

Parameters: Sender §, Receiver R, set sizes n, and ny.

Functionality:
* Wait for input X = {xy,...,x, } C {0,1}* from the
receiver R .
* Wait for input ¥ = {y1,...,ys, } C{0,1}" from the
sender S.

* Give output X UY to the receiver R.

Figure 4: Private Set Union Functionality Fps,

Parameters: Sender S, Receiver R, set sizes n, and n,

Functionality:
* Wait for input ¥ = {y1,...,yn, } C {0,1}" from the
sender S.
o Wait for input X = {x1,...,x, } C {0,1}* from the
receiver K.

e Setb; = 1if and only if y; € X and b; = 0 otherwise
for i € [ny]. Give output b € {0,1}" to the receiver
R.

Figure 5: Multi-Query Reverse Private Membership Test
Functionality Fmq-rpmt

Parameters: Sender S, Receiver &, set sizes n, an en-
cryption scheme E = (Setup, KeyGen, Enc, Dec).

Functionality:

* Wait for input k and s from the receiver .
* Wait forinput {s},...,s;} C {0,1}" from the sender
S.
* Forie€ [n]:
Compute s, = Dec(k,s}). If s} = 5, let b; = 1,
otherwise b; = 0.
* Give output b € {0,1}" to the receiver R..

Figure 6: Vector Oblivious Decryption-then-Matching Func-
tionality Fyodm

this leaky version can still be used to construct a secure PSU.
Both schemes achieve linear computation and communication
complexity.

4.1 Construction from SKE and 2PC

As we noted before, a single-message multi-ciphertext pseu-
dorandom SKE and 2PC are sufficient for constructing mq-
RPMT. The correctness and security can be directly derived

Parameters:

* Two parties: sender S and receiver R.

* A single-message multi-ciphertext pseudorandom-
ness encryption scheme
E = (Setup, KeyGen, Enc, Dec).

* Ideal F,o4m primitives specified in Figure 6.

* An OKVS scheme (Encodey, Decodey).

* A collision-resistant hash function A(x) : {0,1}* —

{0,1}°.
Input of S: ¥ = {y1,...,yn, } C{0,1}"
Input of R: X = {x1,...,x, } C{0,1}*
Protocol:

1. R selects a random indication string s € Fys. R
also runs pp < Setup(1¥) and KeyGen(pp) to ob-
tain a key k (public or symmetric key depend on
concrete scheme). Then, K runs Enc(k,s) for ny
times to obtain (sy,..., s,).

2. R computes an OKVS
D := Encodeg ((h(x1),81),.-., (h(xn,),8n,))-

3. R sends Dto S.

4. S computes s} := Decodey (D, h(y;)) fori € [ny].

5. S and R invoke the VODM functionality Fiodm-
S acts as sender with input § = {s7,...,s, } and
R acts as receiver with input k,s. As a result, S
receives nothing and R receives b € {0, 1}".

Figure 7: General Construction of mq-RPMT Protocol
qu—rpmt

from the general construction in Section 3.2. It is straight-
forward to show that PRF-based SKE satisfies the single-
message multi-ciphertext pseudorandomness property. We
give proof in the full version for completeness.

We use the general 2PC as the implementation of VODM.
Formally,

Theorem 4.1 Taking the PRF-based SKE as the encryption
scheme in Figure 7. Assuming that the 2PC implementing
VODM is semi-honest secure, then the protocol in Figure 7
securely computes Fmnq-rpmt against semi-honest adversaries.

This theorem immediately follows from the fact that PRF-
based SKE satisfies the single-message multi-ciphertext pseu-
dorandomness property (proved in the full version) and Theo-
rem 3.1.

4.2 Construction from Re-randomizable PKE

Now we consider a specialized way to construct F,odm. Our
main idea is that since the receiver cannot know the random-
ness used in each ciphertext, as long as the encryption scheme

344 32nd USENIX Security Symposium

USENIX Association

satisfies the property of rerandomization, the sender can re-
randomize all ciphertexts and send the new ciphertexts to the
receiver so that the receiver can not obtain additional infor-
mation by comparing randomness. Note that another problem
arises here. The property of re-randomization can only guar-
antee that for y € X, the receiver is not allowed to learn which
one is the sender’s element. For y ¢ X, the ciphertext s} ob-
tained by the sender is related to y, so the plaintext obtained
by the receiver is also related to y, which will reveal the infor-
mation of y. However, as observed by KRTW, in the case of
y ¢ X, we want (in the overall PSU protocol) the receiver to
learn y anyway. Fully secure mq-RPMT is actually overkill for
PSU, a relaxed version suffices. We define the leaky VODM
functionality in Figure 8.

Parameters: Sender S, Receiver &, set sizes n, an en-
cryption scheme £ = (Setup, KeyGen, Enc, Dec).

Functionality:

e Wait for input k£ and s from the receiver & .

» Wait forinput {s7,...,s5} C {0, 1}* from the sender
S.

* Fori € [n]:

Compute s; = Dec(k,s}), if st =s,let b; =1

otherwise b; = 0.

* Give output b € {0,1}" and {s|b; = 0} to the re-
ceiver R.

Figure 8: Leaky VODM Functionality Fiyodm

Since the SKE scheme is hard to re-randomize, we con-
sider the use of public-key encryption (PKE) which is easier
to re-randomize. We describe our PKE-based leaky VODM
protocol in Figure 9.

We now state and prove the security of the above leaky
VODM protocol.

Theorem 4.2 Assume the security of the ReRand-PKE
scheme. The protocol in Figure 9 securely computes Fryodm
against semi-honest adversaries.

Proof Because the sender does not receive messages in the
protocol, we just need to simulate the view of the receiver.
We exhibit simulator Simg for simulating corrupt &..

Corrupt receiver: Simg (pk, sk, s, b, {s}|b; = 0}) simulates the
view of corrupt semi-honest receiver. Note that the only mes-
sages that need to be simulated by the simulator are cipher-
texts {fl}ze[n]

Simg computes §; := Enc(pk,s;r;) if b; = 1 and §; :=
Enc(pk,sj;ri) if b; = 0 for i € [n]. Simg appends {S;};c(y
to the view.

Parameters:

* Two parties: sender S and receiver R.
* A re-randomizable PKE scheme
(Setup, KeyGen, Enc, Dec, ReRand).

Input of S: (pk,S* = {s7,...,s5})
Input of R: ((pk,sk),s)
Protocol:

1. S selects random r,...,r, and computes §; :=
ReRand(pk, s;;r) fori € [n].

2. Ssends sy,...,5, to R.
3. R sets b; = 1 if and only if Dec(sk,§;) = s for i €

[n].

Figure 9: PKE-based Leaky VODM Protocol ITjyodm

The indistinguishability of ReRand-PKE scheme guaran-
tees the view output by Simg is indistinguishable from the
real one. (]

Note that the mq-RPMT constructed with the above leaky
VODM is also a leaky version. We don’t give a specific
description of this leaky mq-RPMT. Instead, we use leaky
VODM to construct PSU protocol directly and prove its secu-
rity in the full version.

4.3 Unification with Membership Encryption

We have presented two generic constructions of mq-RPMT
protocols from probabilistic SKE and probabilistic PKE re-
spectively. It is intriguing to study if there is a unified way to
encompass the two different constructions.

We retrospect the high level idea underlying our mq-RPMT
protocol. If privacy is not a concern, reverse membership
test can be simply done by having the receiver first create
a membership relation R for his set ¥, namely R(y) = 1 iff
y € Y, then having the sender send his elements to the re-
ceiver in clear. To make the reverse membership test private,
the receiver can “encrypt” his membership relation and send
the “encoding” of resulting ciphertexts to the sender. After
receiving the “encoding”, the sender is able to retrieve the
membership encryptions corresponding to his elements. In the
sequel, the receiver can fulfill the reverse private membership
test by decrypting the ciphertexts in an oblivious manner.

Based on the above discussion, we realize that the right
encryption scheme needed in our mg-RPMT protocol is an
abstract new notion called membership encryption (ME).
Roughly speaking, ME for set X encrypts an element x into a
ciphertext, which decrypts to “1” if x € X. We formalize the
syntax and security notion of ME in the private-key setting as
below.

USENIX Association

32nd USENIX Security Symposium 345

Definition 4.1 (Membership Encryption) Membership en-
cryption for set X consists of four polynomial time algorithms
satisfying the following properties.

* Setup(1%): on input a security parameter K, outputs pub-
lic parameters pp, which include the ciphertext space
C.

KeyGen(pp,X): on input public parameters pp and X C

{0, 1}, outputs a key k.

* Enc(k,x): on input a key k and an element x € X, out-
puts a ciphertext ¢ € C. For uttermost generality, the
behavior of Enc on x ¢ X is unspecified. Looking ahead,
such treatment suffices for the construction of mq-RPMT
protocol.

» Dec(k,c): on input a key k and a ciphertext ¢ € C, out-
puts “1” indicating c is an encryption of an element x in
X and “0” if not.

Correctness. For any x € X, Vk < KeyGen(pp,X),
Dec(k,c = Enc(k,x)) = 1.

Consistency. For any x ¢ X, Pr[Dec(k,c) = 0] = 1 —&(x),
where pp < Setup(1¥), k < KeyGen(pp,X), ¢ < C. Here, €
is the consistency error, which must be negligible in k.
Multi-element pseudorandomness. For any »n distinct ele-
ments x1,...,%, € X, {Enc(k,x;) }ic[n) % Ucn.

The ME notion naturally extends to the public-key setting
by letting the KeyGen algorithm generate a keypair (pk, sk),
in which pk is used to encrypt and sk is used to decrypt. We
omit the details for its straightforwardness.

We then study the generic construction of ME. Note that the
essence of ME is to encrypt element’s membership relation,
rather than the element itself. The membership relation can
be created by establishing a mapping H from elements to
the set under test. Basically, there are two extreme cases of
mapping. The first is to select a single indication string s as
the characteristic of the set, then map all elements to s, i.e.,
H : x; — s, which we refer to as lossy mapping. The second is
to select n indication strings s; as the characteristic of the set,
then map elements to distinct indication strings, i.e., H : x; —
si, which we refer to as injective mapping. With the above
understanding in head, we present various constructions of
ME by mixing encryption schemes and membership mapping.

ME from probabilistic SKE and lossy mapping. The con-
struction is as below.

* Setup(1*): runs SKE.Setup(1¥) to generate pp.

* KeyGen(pp,X): runs SKE.KeyGen(pp) to sample ke,
picks a random element s € M, where M is the message
space of SKE, sets H be a mapping that maps all elements
in X to s, outputs k = (kgke, H)

e Enc(k,x): parses k = (kse,H), outputs ¢ <«
SKE.Enc(kske, H(x)).
e Dec(k,c): parses k = (kse,H), outputs “1” iff

SKE.Dec(kgke,c) = s.

We note that the above construction can be naturally extended
to the public-key case.

Theorem 4.3 If SKE (resp. PKE) satisfies single-message
multi-ciphertext pseudorandomness, then the above ME con-
struction satisfies multi-element pseudorandomness with con-
sistency error 1/|M]|.

The above ME constructions are exactly the backbones of
our generic constructions of mq-RPMT protocol presented in
Section 4.1 and 4.2. Since ME requires multi-element pseu-
dorandomness, the use of lossy mapping inherently stipulates
that the accompanying encryption schemes are probabilistic.
Therefore, in this case the ciphertext expansion is unavoid-
able. For example, in PRF-based probabilistic SKE, the length
of ciphertext is twice that of plaintext. In the design of our
mq-RPMT protocol, the value in OKVS is exactly ciphertext.
As a consequence, ciphertext expansion incurs overhead to
the size of OKVS and thus also the communication cost on
the receiver side. For this reason, reducing the ciphertext ex-
pansion factor will immediately improve the performance of
the overall mq-RPMT protocol.

An important observation is that if we switch to injective
mapping, then ME can be built from deterministic encryption
schemes satisfying multi-message multi-ciphertext pseudo-
randomness. The constructions are similar as above except
the decryption algorithm outputs ‘1’ iff the decryption result
falls into the prior-fixed indication string set S = {s; };c[,- In
instantiation, we take H : x; — i as the membership mapping,
which renders efficient membership decryption by testing
whether the decryption is less than n.

Formally, we have the following theorem:

Theorem 4.4 If SKE (resp. PKE) satisfies multi-message
multi-ciphertext pseudorandomness, then the ME construction
satisfies multi-element pseudorandomness with consistency
errorn/|M|.

If we instantiate the ME from the PRP-based deterministic
SKE and injective mapping, the ciphertext expansion factor
is optimal. Therefore, a drop-in replacement to the ME from
PRF-based probabilistic SKE and lossy mapping will reduce
the size of OKVS in the mq-RPMT protocol by half.

Due to space constraints, we put the description that how
to construct mq-RPMT using the language of ME in the full
version.

5 Our PSU Protocol

In this section, we describe our PSU construction achieving
linear complexity and prove its semi-honest security.

5.1 Generic Construction of PSU Protocols

With mg-RPMT and OT, we can simply combine them to
construct a PSU protocol. We give the formal description in

346 32nd USENIX Security Symposium

USENIX Association

Figure 10.

Parameters:

* Two parties: sender .S and receiver X..
* Ideal Fmqg-rpmt and Fo; primitives specified in Figure
5, and Figure 2, respectively.

Input of $: Y = {y1,...,yn, } C{0,1}"
Input of R: X = {x,...,x,, } C {0,1}*
Protocol:

1. § and R invoke the mq-RPMT functionality
Feng-romt first. The sender S acts as the sender in
mq-RPMT with input Y and receives nothing. The
receiver R_acts as the receiver in mq-RPMT with
input X and receives b € {0,1}".

2. R initialize set Z := {}.

3. Forie€ [ny]:

(a) S and R invoke the OT functionality Fo:.

(b) S acts as sender with input (y;, L).

(c) R acts as receiver with input b;.

(d) R receives z; from OT and sets Z = ZU {z;}.
4. R outputs X UZ.

Figure 10: Private Set Union Protocol Iy,

We now state and prove the security properties of the above
PSU protocol.

Theorem 5.1 The protocol in Figure 10 securely computes
Fosu against semi-honest adversaries in the (Fmg-romt, Fot)-
hybrid model.

Proof We exhibit simulators Simg and Sim for simulating
corrupt R_and S respectively, and argue the indistinguishabil-
ity of the produced transcript from the real execution.

Corrupt Sender: Simg(Y = {y1,...,yn, }) simulates the view
of corrupt semi-honest sender. It executes as follows:

1. Simg invokes mq-RPMT simulator Simqu,rpmt(Y) and
appends the output to the view.

2. Fori € [ny], Simg invokes OT simulator Sim3, (y;, 1) and
appends the output to the view.

Now we argue that the view output by Sim is indistinguish-
able from the real one. This is obtained by the underlying
simulators’ indistinguishability directly.

Corrupt Receiver: Simg (X = {x1,...,X,,},X UY) simulates
the view of corrupt semi-honest receiver. It executes as fol-
lows:

1. SimR defines the set Z := X UY \ X, i.e. the set of el-
ements that ¥ “brings to the union”. Next, it uses L
to pad Z to n, elements and permutates these elements
randomly. Let Z = {z1,...,2, }-

2. Simg sets b; = 1 if and only if z; € X for i € [ny]. Then,
it invokes mq-RPMT simulator Siquq_rpmt (X,b) and ap-
pends the output to the view.

3. For i € [n,], Simg invokes OT simulator SimZ, (b;,z;)
and appends the output to the view.

Now we argue that the view output by Simg is indistinguish-
able from the real one. In the simulation, the way & obtains
the elements in Z = X \ Y is identical to the real execution. By
the underlying simulators’ indistinguishability, the simulated
view is computationally indistinguishable from the real. [

5.2 Instantiation of PSU

For our SKE-based construction, we can use a PRP as we men-
tioned in Section 4.3 to instantiate SKE, which can achieve
an optimal ciphertext expansion factor. Since we need to per-
form the 2PC decryption computation, we use the LowMC
[1] as our PRP instantiation to minimize the circuit size. As
for generic 2PC, there are two classical methods, e.g. garbled
circuit [49] or GMW [22]. The former has a constant number
of rounds, while the latter has a lower communication. Since
the communication has a greater impact on our scheme, we
consider instantiating 2PC by GMW.

For our PKE-based construction, we use the well-known
ECC ElGamal [17] scheme as our ReRand-PKE.

5.3 Communication Cost

Now we analyze the communication cost of our two PSU
constructions. For the SKE-based construction, we use our
ME optimization in Section 4.3.

Let’s first analyze the size of decryption circuit in our
SKE-based construction: the circuit needs to compute de-
cryption of every {s;} ic[n,] and compare the result with 7.
If Dec(k,s}) < ny, it sets b; = 1 and b; = 0 otherwise. The
total number of decryption computations is n,. To compare
whether a ¢ long string is less than n,, we only need to com-
pute whether the OR of its first ¢ — logny bits are 1, which
requires 6 — logn, — 1 AND gates (since aV b = a A b). The
total number of AND gates is ny(f + 6 — logny) = O(tny),
where ¢ is the number of AND gates in a PRP decryption
circuit.

Now we are ready to calculate the communication of PSU
protocol. Note that the communication of our protocol con-
sists of OKVS, VODM protocol and OT protocol. We ana-
lyze their complexity respectively. We use the symbol @ to
represent the communication complexity, and its subscripts
represent different components.

USENIX Association

32nd USENIX Security Symposium 347

Protocol Communication H14 " 2—18ny M)22
Frikken [16] N +2nN +4n, N 12288n 12288n 12288n
DC[12] 2N +4n,N 172032n | 172032n | 172032n
KRTW [32] | Bu(2p+A+ (u+2)0)+Bu(k+0) 149770 | 169270 | 18956n
GMRSS [18] | 1.27n,p+3n6+ (1.27n,logn, +n,)(k+0) 54170 | 6687Tn | 7947n
ISZDG-R [27] | p(K+2.18n,) +4nyl> + (1.09n, logny +ny) (K +6) 5757n | 6931n | 8105n
ISZDG-S [27] | p(k+2.18n,) + 1.09n, (ul, + &) +2.18n, logn (K + ©) 10640n | 13140n | 15658n
SKE-PSU (1.3ny+d+A)o+x+n,6+4n,(t + 6 —logn,) +ny(x+0) | 3768n 3810n 3853n

| PKE-PSU | 4x(1.3n,+d +A) +dxn, +n,(x+0) | 1373n | 1381n | 1389n |

Table 2: Theoretical communication costs of PSU protocols (in bits), calculated using computational security k= 128 and
statistical security A= 40. Ignore costs of base OTs which are independent of input size. N is the size of the public key in Pallier
encryption scheme (2048 is used here). B and u are the number of bins and maximum bin size respectively. p is the width of OT

extension matrix (depends on n and protocol).

* OKVS in both constructions: as we showed in Sec-
tion 2.5, we use 3H-GCT++ as our OKVS scheme:
Dowys(nx) = (1.3nx +d + A)|c| , where |c| is the size
of ciphertext, |c| = A+ lognn, and 4k for SKE-based
and PKE-based scheme respectively.

* Oblivious decryption:

— In SKE-based construction: we use @55 (ny,n,) to
denote the communication of computing oblivious
decryption circuit. As we said in Section 5.2, we
use GMW as our 2PC instantiation, the commu-
nication consists of input sharing, multiplication
gate computation and output reconstruction. In the
input sharing phase, the communication is K+ n,6
bits, and in the output reconstruction phase, it is
ny bits. Using Beaver triple [4], 4n, (1 + 6 —logny)
bits are needed in multiplication phase. So we have
DX (n,,n) = K+ ny6+4ny (t + 6 — logny) +ny

vod

— In PKE based construction: the communica-
tion of leaky VODM functionality, denoted by
Prke (ny,ny) = 4nyx

lvodm

* OT in both constructions: ®ot(ny) = ny(k+0).

Let @;‘;ﬁ (ny,ny) denote communication of SKE-based con-

struction and let DB (ny, 1) denote communication of PKE-
based construction. The overall communication cost of our
PSU protocol is:

q’lil;i (ny,11x) = Pokys (11x) + DX (ny,nx) + Pot (1y)

vod

k k
Dpsu (1, 71x) = Pokus (1) + P 1y, 1) + Dot (1y)

5.4 Discussion: Difference between PSI and
PSU

Although PSI and PSU are quite similar, as discussed in [32],
the techniques they use are different, and building PSU is
more challenging than building PSI.

Since the output of PSI is the elements of the receiver’s own
set, it is only necessary to test whether each element belongs
to the sender’s set (i.e., PMT), and the difficulty of PSU is how
to retrieve the elements outside the intersection (i.e., RPMT
+ OT) without disclosing the intersection. In PSI, PMT can
be easily obtained by OPRF: the sender obtains a PRF key k
while the receiver obtains Fi(y) on his input y, then the sender
computes and sends {F;(x)}xex to the receiver. The receiver
tests whether Fy () € {Fr(X) }xex to determine whether y € X.
As a result, OPRF is enough for PSI, and all the state-of-the-
art PSI protocols [11, 31, 44] follow this paradigm and mainly
focus on designing efficient OPRF protocols.

However, the conversion from PMT to RPMT is not triv-
ial, as discussed in [32], this seemingly simple functional-
ity adjustment (PMT — RPMT) doesn’t seem to be fixable
by a small tweak of PMT. Although OPRF is enough for
PSI, this is not the case for PSU. In the state-of-the-art PSU
[18, 27], OPREF is only one component, and the design of
PSU protocol usually requires the use of a variety of different
components, e.g., oblivious switch network functionality, and
combine them in a clever method.

5.5 Discussion: the Relationship with Existing
PSI/PSU-Related Primitives

Here we also discuss the relationship with existing PSI/PSU-
related primitives.

OKYVS. Garimella et al. [19] proposed the notion of Oblivious
Key-Value Store (OKVS), which is useful in both PSI and
PSU. The OKVS is a data structure in which a sender has
a set of key-value mapping ({x;,y;}) with (pseudo)random
yi’s, and she wishes to hand that mapping over to a receiver,
allowing the receiver to evaluate the mapping on any input but
without revealing the keys x;. Correctness of the data structure
must ensure that if the other party evaluates the OKVS on
some g = x; then the resultis y;. Obliviousness here is that the
receiver cannot tell what keys x;’s are encoded from a given

348 32nd USENIX Security Symposium

USENIX Association

OKYVS. The most compact OKVS that one can think of is a
polynomial. The recent excellent works on OKVS [19, 38]
make it very efficient to encode a large number of key-value
pairs, for example, using 3H-GCT, it takes only about 4.9s to
encode 2%° key-value pairs.

OTSA. Zhao and Chow [51] proposed a primitives called
oblivious transfer for a sparse array (OTSA), which can be
used to construct a variant of PSI, i.e. threshold private set
intersection (t-PSI). In fact, the OTSA is strictly stronger than
OKYVS. The OTSA is actually a protocol for obliviously de-
coding OKVS, that is, the input of receiver is a set /,, the input
of sender is OKVS D := Encode({(s,€;)} je[,]), the output
of the receiver is { Decode(D, r;)} jc|,,]- The main differences
between OKVS and OTSA are:

¢ OTSA enforces the receiver to decode D on limited ele-
ments of queries, i.e. I, whereas OKVS is simply a data
structure that is sent in the clear to the receiver, thus, no
limit on the elements of decoding is set.

* In OTSA, the receiver does not know the correspondence
between r; and Decode(D,r;) (i.e. sender indices pri-
vacy), while in OKVS, the receiver directly knows the
relationship between r; and Decode(D, ;).

These limitations have a significant impact on their perfor-

mance, for example, the experiment in [51] showed that their
most efficient OTSA protocol takes about 400s for input size
n =2'0 Tt is enough for our construction to use simpler and
more efficient OKVS instead of OTSA.
OVDM. In our PSU construction, we proposed a new
primitive called oblivious vector decryption-then-matching
(OVDM), which is also a protocol aiming to decrypt a vector
of ciphertexts obliviously and then match the decrypted ci-
phertext to a given string. The significant differences between
OVDM and OTSA are:

* OTSA is the protocol for decoding an OKVS, while
OVDM is the protocol for decrypting an encryption
scheme.

e OTSA allows the party providing the decoding material
(i.e. I;) to obtain the decoding result (since the decoding
algorithm is written as Decode(D, r;), D can be regarded
as a "key" in some sense), while OVDM allows the party
providing the key to obtain the decryption result.

* The output of OVDM is only 1 bit information of plain-
text, i.e. whether the plaintext is equal to a string input
by the receiver.

* The order of the decryption results output by OVDM
is the same as the order of the ciphertext input by the
sender, while OTSA does not preserve this order (i.e.
sender indices privacy).

Due to the above differences, the ideas for constructing
OTSA and OVDM are different. Our OVDM is more efficient
than OTSA because we only need PKE to meet the Re-rand
property, while OTSA requires more complex homomorphic

PKE.

One may wonder whether the construction of OVDM de-
pends on the particular OKVS construction. We clarify that
OVDM and OKVS are two different notions of different
usages. We use the combination of OKVS and OVDM to
construct mqRPMT, as shown in Section 3. Any OKVS
instantiation that meets Randomness can be used for our
mgRPMT construction. The only connection between OKVS
and OVDM is that they share the same encryption scheme,
that is, the value encoded by OKVS is the ciphertext of the
encryption scheme, and the sender takes the ciphertext de-
coded from OKVS as her OVDM input. Since decryption is
required, the construction of OVDM is related to the selection
of encryption schemes (therefore, we classify our schemes as
SKE-based and PKE-based).

6 Implementation and Performance

Recall that we have presented two variants of our protocol. In
this section, we will refer to them as:

* SKE-PSU: PSU protocol with SKE-based mq-RPMT,
where SKE and VODM are instantiated with PRP and
GMW [22] respectively.

* PKE-PSU: PSU protocol with PKE-based mq-RPMT,
where ReRand-PKE is instantiated with ECC ElGamal
encryption scheme.

The OKVS instantiation of both schemes uses the 3H-
GCT++ in Figure 3. We focus on the case where n, = ny, = n,
i.e., both parties have equal-size sets.

6.1 Theoretical Analysis of Communication

In Table 2, we show the theoretical communication complex-
ity of our protocol compared with the Frikken protocol [16],
the DC protocol [12], the KRTW protocol [32], the GMRSS
protocol [18] and the JSZDG protocol [27] (note that [27]
proposed two protocols, i.e. JSZDG-R and JSZDG-S, which
focus on balanced and unbanlanced setting, respectively) in
the semi-honest setting. Empirical measurements of such real-
world costs are given later in Table 3.

For set sizes in the range 2'* to 222, our PKE-PSU vari-
ant has the least communication of any of the protocols
we consider: up to an 8.8 x improvement of Frikken, 125 x
improvement of DC, 10.9 — 13.6x improvement of KRTW,
3.9 —5.7x improvement of GMRSS, and 4.2 — 11.3x im-
provement of JSZDG. It means that our scheme has great
advantages in low bandwidth scenarios.

For our SKE-based protocol, as mentioned in Section 5.2,
we use LowMC [1] to minimize the number of AND gates.
Though the communication of our SKE-PSU protocol is about
3x heigher than PKE-PSU, it is still lower than all previous
schemes.

USENIX Association

32nd USENIX Security Symposium 349

6.2 Experimental Setup

We run our experiments on a single Intel Core 19-9900K with
3.6GHz and 128GB RAM. We simulate the network connec-
tion using Linux tc command. To better meet the potential
deployment requirements, we use Netty” to maintain the com-
munication channel. And we use Protocol Buffers® for data
(de-)serialization. Refer to the full version for details of Netty
and Protocol Buffers.

6.3 Implementation Details

Existing PSU implementations are under different MPC
frameworks and different experimental settings. For example,
the [32] implementation is under 128-bit element length while
the [18] implementation is under 64-bit element length. Also,
the [27, 32] implementation supports multi-thread execution,
while the [18] implementation does not. Further, the [18] and
[27] implementation heavily relies on 1-out-of-2 Oblivious
Transfer (OT). Introducing recent silent OT technique may
further reduce its communication cost [6, 48]. However, ex-
isting efficient silent OT implementation [48] is available in
emp-toolkit [47]. Combining these implementations rely on
relatively heavy source code modification works.

After carefully studying existing open-source codes, we
fully re-implement state-of-the-art PSU protocols [18, 27, 32]
and their underlying basic protocols using Java, including
base OT [36], OT extension [2], silent OT [48], the specific
OPREF variant [31], and GCT data structures.

We choose Java as our primary programming language for
the following reasons. First, recent advances in MPC make
this attractive data security technique from theory into practi-
cal usage. Introducing big data frameworks into MPC would
further increase its efficiency and integrate MPC with existing
data pipelines [3]. Current widely adopted big data analytical
engines, for example, Hadoop and Spark, are built upon Java
or JVM-based programming languages. We hope our imple-
mentation can help developers from the big data community
leverage and deploy MPC in a more scaling manner. Second,
one may think that Java is much slower than C/C++. It is
shown that although there is some performance gap, most ba-
sic operations in Java and C/C++ have similar performances”.

For operations that have a huge efficiency gap between Java
and C/C++, we use the Java Native Interface (JNI) technique
to invoke C/C++ libraries. The details can be found in the full
version.

We note that our implementations support multi-
thread executions for all the PSU schemes, including
[18], achieved by using Java ‘Stream.parallel()’. In our

Zhttps://netty.io/

3https://developers.google.com/protocol-buffers

4Qur tests show that on Macbook Pro 2019, Java needs 0.095us for one
AES operation, while C/C++ under AES instruction needs 0.07 lus. This is
because Java would automatically use AES instruction if it detects that the
current operating system supports it.

experiments, we limit the number of threads during
the protocol execution by setting the JVM parameter
‘java.util.concurrent.ForkJoinPool.common.parallelism’, and
submit all parallel executions into that common thread pool.
In the single-thread setting, we let all procedures run in the
main thread instead of simply setting the number of threads
to be one under the multi-thread setting, thus avoiding ad-
ditional costs for creating and destroying sub-threads. Our
performance reports show that we obtained improved perfor-
mance results for the [18] PSU scheme.

Although most operations in Java and C/C++ have similar
performances, there are some operations in which Java op-
erates much slower than C/C++. For example, our JSZDG
performance results (See Table 3) are about 3 times slower
than the report shown in the original work [27]. We carefully
analyze our implementation and find that the gap is from its
underlying batch OPRF proposed by Chase and Miao [11].
Briefly speaking, this batched OPRF needs to map each el-
ement into a long pseudo-random byte array via a PRF and
then convert that to be an integer array as coordinates in the
random encoding matrix. In C/C++, the transformation can
be done by simply changing the pointer type from uint8_t*
to uint32_t* with almost no additional cost. However, such
an operation is not supported in Java due to the memory pro-
tection mechanism. One has to explicitly convert byte[] to
int[], involving dramatic costs. In addition, the type conver-
sion operation cost is, unfortunately, lower than JNI invoking.
Introducing JNI in this operation leads to even more costs.
How to efficiently implement the batch OPRF proposed by
Chase and Miao [11] in memory-safe programming language
as in C/C++ remains an open problem in the implementa-
tion. We emphasize that designing a unified framework for all
PSU protocols while compatible with widely adopted big data
analytical engines under C/C++ would further lead to better
performance results. We hope that our implementation can be
a starting point. Our complete implementation is available on
GitHub: http://github.com/alibaba-edu/mpc4].

6.4 Experimental Details

The SKE-PSU protocol is instantiated with the LowMC en-
cryption scheme [1] where the block size and the key length
are both 128 bits, and the number of Sboxes is m = 10 (i.e.,
the SboxLayer is a 10-folded parallel application of the basic
3-bit Sbox on the first 30 bits of the state, and for the re-
maining 88 bits, the SboxLayer is the identity). The concrete
parameters in LowMC are from the Mobile PSI implemen-
tations provided by Kales et al. [28]°. We use the improved
inverse of the SBoxLayer provided by Liu et al. [34] and
follow the SBoxLayer implementation idea by Kales et al.
[28] to implement the (non-2PC) decryption procedure. The

Shttps://github.com/contact-discovery/mobile_psi_cpp/
blob/master/droidCrypto/lowmc/lowmc_128_128_20.c

350 32nd USENIX Security Symposium

USENIX Association

https://netty.io/
https://developers.google.com/protocol-buffers
http://github.com/alibaba-edu/mpc4j
https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_128_128_20.c
https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_128_128_20.c

Comm. (MB) Running time (s)
N R S LAN 1Gbps 100Mbps 10Mbps

n | Protocol . 1 total T=1 T=3 =T [T=% T=1 =3 T=1 T

setup| online |setup | online . - - - - - - -

setup | online |setup [online|setup | online |setup | online |setup | online |setup | online [setup| online [setup| online

KRTW [0.02| 4.17 [0.01]29.63 | 33.8 [0.07| 3.5 [0.03| 1.07 {0.49 | 16.13 | 0.37 | 14.06 | 0.83 | 27.36 [0.72 | 24.66 [0.81 | 55.9 [0.73| 55.32
GMRSS [0.02] 5.89 [0.02] 796 | 13.85 | 0.1 | 1.0 [0.04] 0.42 [0.66 | 1.96 | 0.46| 1.28 1 353 1091 2.97 [1.06] 14.44 [0.93] 13.97

o4 JSZDG-R [0.01] 4.65 [0.01| 5.63 | 10.28 [0.07] I.81 [0.02] 0.52 [0.27] 2.65 [0.23| 1.34 [0.49] 4.19 [0.4I| 2.66 [0.45] 12.08 [0.37| 10.63
SKE-PSU [0.01] 3.16 | 0 | 3.36 | 6.52 [0.03]0:65 [0.02}0.29 [0.12] 6.76 [0.11| 6.48 [0.21 [12.66 [0.19] 12.09 | 0.2 | 15.62 [0.19]| 15.59
PKE-PSU [0.01 | 1.16 | O | 1.59 | 2.75 | 4.6 | 2.37 [4.58] 1.07 [4.78 | 2.63 [4.75| 1.34 [4.92| 3.02 | 49 | 1.77 |4.99| 443 |491| 3.79
PKE-PSU*[0.01| 2.16 | 0 2.9 505 [46] 1.96 [46]059 [475] 236 [476] 1 4951276 [491] 1.54 [492] 572 [493] 531
KRTW [0.02| 17.64 | 0.01 |122.05| 139.69 [0.07 | 12.57 [0.03 | 3.76 | 0.46 | 26.27 [0.39 | 20.96 [0.82 | 40.09 [0.73 | 36.3 [0.81 | 163.48 [0.75| 161.63
GMRSS [0.02]2595[0.02]34.11 | 60.06 [0.1T] 4.79 [0.04] 1.95 [0.64 | 6.61 |0.48] 425 |I.11[12.67[0.92] 9.78 [1.04] 60.75 [0.94] 57.5

216 JSZDG-R [0.01]20.75[0.01|24.74] 4549 [0.07] 7.5 [0.02] 22503] 929 [0.2 | 445 [044[1378] 0.4 | 858 [0.47 49.41 [0.42]| 4458
SKE-PSU [0.01 | 12.61 | 0 |13.41] 26.03 [0.04] 2:66 |0.02 | 1.15 [0.13] 8.66 [0.11| 7.32 [0.2 [1584 [0.19] 1439 0.2 | 31.79 [0.19] 30.98
PKE-PSU [0.01| 462 | 0 | 6.37 | 10.99 [4.62]| 9.75 [4.59] 439 [4.82| 10.21 |4.76| 522 | 49 | 10.94 [4.91| 5.83 |5.01 | 16.38 |4.92| 13.61
PKE-PSU*[0.01 | 863 | 0 |11.57] 20.19 [4.57| 7.96 | 4.6 | 2.58 |4.76| 8.68 |4.77 | 3.37 |493| 994 [491| 465 |4.94| 21.46 [4.93| 19.67
KRTW [0.02] 69.29 | 0.01 |562.76| 632.05 [0.08 | 63.02 [0.03 [17.67 | 0.52 | 85.56 [0.39 | 45.31 [0.76 [111.14]0.71 [113.83]0.84 | 660.33 | 0.74 | 664.93
GMRSS [0.02] 113.7 [0.02 [145.11] 258.81 [0.1320.74 [0.03] 9.8 [0.5828.62 [0.55[16.63 [1.09 [49.68 [0.93 [38.82 [1.03 [251.84 [0.97 | 243.63

218 JSZDG-R [0.01]92.67 | 0.01 [107.89] 200.56 [0.07 | 41.15 [0.03 | 10.71[0.25] 43.17 [0.21 | 16.84 [0.42] 64.06 | 0.4 | 33.8 [0.53[221.27[0.39| 191.2
SKE-PSU [0.01]50.34| 0 |53.51]103.85[0.04|10.780.02 | 488 [0.12|17.83 | 0.1 | 12.32| 0.2 | 2838 | 0.18] 22.54 [0.21 | 98.96 [0.19]| 95.72
PKE-PSU [0.01| 185 | O |2545| 43.95 | 4.6 | 41.5 [4.59]19.82]4.79|42.37 | 4.75]| 20.97 | 4.92| 44.8 [4.91]23.38 [4.92] 66.68 | 4.9 | 54.39
PKE-PSU*| 0.01 | 34.5 0 |46.26 | 80.76 |4.61[34.63 [4.58[12.26|4.78 | 37.1 |4.75]13.99 |4.92]40.62 |4.92|18.45 | 491 | 8531 [4.92| 79.22
KRTW | 0.02{300.14] 0.01 [2305.8]{2605.95| 0.11 |245.37| 0.04 | 67.97 | 0.52 |281.96| 0.38 | 120.35 0.82 |363.95| 0.74 |361.12| 0.84 {2643.84| 0.75 [2638.05
GMRSS [0.02]493.2[0.02| 6159 | 1109.1 | 0.11 [100.48] 0.04 [48.530.62 [119.98] 0.51 | 75.76 | 1.11 [207.83] 0.95 [164.25] 1.09 [1074.33] 0.95 | 1030.3
220 JSZDG-R | 0.01 [405.53] 0.01 [467.26] 872.79 [0.08 [173.07[0.04 | 54.41]0.48 [184.63| 0.2 | 73.28 [0.47 [266.51]0.73 [146.13[0.47 | 941.5 [0.72] 825.16
SKE-PSU [0.01 [200.88] 0 [213.55] 414.43 [0.05|44.73[0.03 |22.78]0.1359.65 | 0.11 | 35.71 | 0.2 [86.11 | 0.2 | 65.18 | 0.21 | 378.57 | 0.4 | 369.24
PKE-PSU | 0.01 | 74 0 | 101.8 | 175.8 | 4.65[168.79] 4.6 |79.95[4.78 [169.18[4.79 | 86.49 [4.97 [179.58[4.94] 96.32 | 4.97 | 269.32 | 4.87 | 216.19
PKE-PSU*| 0.01 | 138 0 185 323 [4.64[144.24[4.58 [50.56|4.75[146.41|4.74 | 60.5 | 4.9 [161.26] 5 [76.33[4.99| 345 4.9 | 313.37

Table 3: Communication cost (in MB) and running time (in seconds) comparing our protocols to KRTW GMRSS, and JSZDG-R.
The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. Communication cost of §/%_ indicates the outgoing
communication from §/R_to the other party. The best protocol within a setting is marked in blue.

underlying OKVSs for our PSU protocols are instantiated
with our 3H-GCT++ in Figure 3.

Since both [18] and [27] protocols rely heavily on OSN
[35] and involve a large number of OT. We further introduce
Silent OT [6, 48] in the GMRSS and JSZDG schemes. See
details in the full version.

In SKE-PSU, we assume a commonly used setting where
Boolean multiplication triples are pre-computed offline and
stored locally in a temporary file. This follows real scenarios
where Boolean multiplication triples are pre-generated by
parties themselves or with the help of a Trusted-Third Party
under the Trusted Dealer model. For completeness, we give
the costs of triple generation in the full version.

In PKE-PSU, the ReRand-PKE is instantiated with the ECC
ElGamal encryption scheme under the curve SecP256K1. We
found an interesting point in the implementation of PKE-PSU:
In elliptic-curve-based cryptography, point compression is a
standard trick, which can roughly reduce the representation
of an EC point by half. The cost of this trick is that one has to
perform point decompression in the future, which is typically
considered to be cheap. Somewhat surprisingly, it turns out
that point decompression is very costly. According to existing
implementations provided in MCL and OpenSSL libraries,

point decompression is as expensive as point exponentiation.

Due to this fact, we prefer to use standard point representation

for better efficiency when bandwidth is not of first priority.

In the implementation, we use PKE-PSU* to represent the
version that does not perform point compression.
The simulated network settings include typical LAN

(10Gbps bandwidth and 0.02ms RTT latency) and WAN (in-
cluding 1Gbps with 40ms latency, 100Mbps and 10Mbps
bandwidth with 80ms latency). In our KRTW implementa-
tion, we follow the pipelining optimization shown in [32]
with 28 pipelining size when the receiver sends polynomials
to the sender. In our PKE-PSU, we also leverage the pipelin-
ing optimization with the same 2% pipelining size when the
sender sends ReRand outputs to the receiver.

We divide all protocols into two phases: the one-time setup
phase and the online phase. As the name suggests, the one-
time setup phase does necessary operations before actual
protocol execution, including key distribution, base OT exe-
cution, and the one-time setup phase for Ferret OT [48]. The
online phase does subsequent protocol executions. Note that
in our PKE-PSU, the receiver can send the public key to the
sender in the one-time setup phase, and all fixed-point pre-
computations related to the public key can also be done in
that phase. We emphasize that fixed-point precomputations
only need to be performed once, regardless of the number of
subsequent protocol executions.

Since the JSZDG-S scheme [27] focus on unbalanced set-
ting and its perfomance is about 2x worse than the JSZDG-R
scheme, we only compare our schemes with JSZDG-R here.
Detailed comparisons for set sizes 2!4,216 218 220 and con-
trolled network configurations are shown in Table 3. To be
more intuitive, we show the variation of the running time with
the bandwidth in different setting in Figure 11.

USENIX Association

32nd USENIX Security Symposium 351

—e— KRTW ||
—— GMRSS | 102 4

f —— SKE-PSU |}
L PKE-PSU ||
——JSZDGR || f —e-PKE-PSU* ||

10' 4

— \r‘f';';"'—ﬂ’

Running time (s)
=)
L

10° 4

3 T T T T T T T T T T
100 10t 102 103 10t 100 10t 102 108 10*
Network bandwidth (Mbps) Network bandwidth (Mbps)

P10
;]023

10' H

Running time (s)

10° 4
T T T

T T T T T T T
100 10t 102 103 10t 100 10t 102 108 10t
Network bandwidth (Mbps) Network bandwidth (Mbps)

Running time (s)

T T T T i T T T T T
100 10t 102 103 10t 100 10t 102 108 10t
Network bandwidth (Mbps) Network bandwidth (Mbps)

E10% g

L0y

Running time (s)
S
L

10 E

T T T T T T T T T T
10° 10t 102 103 10 100 10t 102 108 10t
Network bandwidth (Mbps) Network bandwidth (Mbps)

Figure 11: Decline of running time (in seconds) on increasing
network bandwidth for our protocols compared with KRTW,
GMRSS and JSZDG-R. Both x and y-axis are in log scale.
The four figures on the left correspond to 7 = 1 and the right
correspond to T = 8. The corresponding set sizes from the
first row to the last row are n = 214,216 2183 220 regpectively.

6.5 Performance Evaluation

Communication improvement. As shown in Table 3, our
PKE-PSU protocol has the lowest communication among
all protocols, which is 12.3 — 14.8x lower than KRTW,
5.1 —6.3x lower than GMRSS and 3.7 — 5x lower than
JSZDG-R. The communication of PKE-PSU* is about 2 x
higher than that of PKE-PSU, which is due to the absence of
point compression. The communication of our SKE-PSU is
about 2.5x higher than that of PKE-PSU. Nevertheless, all
our schemes have lower communication than that of KRTW,
GMRSS and JSZDG-R schemes. Since the communication
costs of all our protocols are linear with the parties’ set sizes,
while the communication costs of the other protocols are not.
The larger the parties’ set sizes are, the larger the communi-
cation cost ratios are.

Computation improvement. As shown in Table 3 and Fig-
ure 11, our SKE-PSU performs best when the set size and
the bandwidth are large. For example, for n = 220 with 7 = 1
thread in LAN setting, SKE-PSU requires 44.73 seconds,

achieving a 5.5 x improvement over KRTW, a 2.2 x improve-
ment over GMRSS, and a factor of 3.9 x improvement over
JSZDG-R.

Our PKE-PSU and PKE-PSU* could be seen as a trade-
off between communication and computation. Both schemes
perform better in lower bandwidth. Our PKE-PSU scheme
is the fastest one under 10Mbps, which is due to its lowest
communication, e.g., for n = 220 PKE-PSU requires 216.19
seconds with 7' = 8 threads, while KRTW requires 2638.05
seconds, a 12.2 x improvement, GMRSS requires 1030.3 sec-
onds, a 4.8 x improvement, and JSZDG-R requires 825.16
seconds, a 3.8 x improvement. Our PKE-PSU* performs bet-
ter in medium bandwidth (100Mbps and 1Gbps). For example,
for n = 2'8 with T = 8 threads in 100Mbps, PKE-PSU* re-
quires 18.45 seconds, while KRTW requires 113.83 seconds,
a6.2x improvement, GMRSS requires 38.82 seconds, a 2.1 x
improvement, and JSZDG-R requires 33.8 seconds, a 1.8
improvement. We also noticed that the performance of PKE-
PSU* improved significantly (about 3 x speedup) in the case
of multithreading because of its heavy computation cost.

6.6 Applications

We further gave the experiment results of two PSU applica-
tions introduced in Section |, namely IP blacklist aggregation
and Private ID. Due to space limitations, the detailed experi-
ment is shown in the full version.

Acknowledgement

We are grateful for the helpful comments from the anony-
mous reviewers. Cong Zhang and Dongdai Lin are supported
by the National Key Research and Development Program
of China (No. 2020YFB1805402) and the National Natural
Science Foundation of China (Grants No. 61872359 and No.
61936008). Yu Chen and Min Zhang are supported by the
National Key Research and Development Program of China
(Grant No. 2021 YFA1000600) and the National Natural Sci-
ence Foundation of China (Grant No. 62272269).

References

[1] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In EUROCRYPT 2015, 2015.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More efficient oblivious transfer and
extensions for faster secure computation. In CCS 2013,
2013.

[3] Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai
Christodorescu, Vinjith Nagaraja, Karan Patel, Srini-
vasan Raghuraman, Peter Rindal, Wei Sun, and Minghua
Xu. A plug-n-play framework for scaling private set

352 32nd USENIX Security Symposium

USENIX Association

intersection to billion-sized sets. Cryptology ePrint
Archive, Paper 2022/294, 2022. https://eprint.
iacr.org/2022/294.

[4] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO 1991, 1991.

[5] Marina Blanton and Everaldo Aguiar. Private and obliv-
ious set and multiset operations. In ASIACCS 2012,
2012.

[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient two-
round OT extension and silent non-interactive secure
computation. In CCS 2019, 2019.

[7] Justin Brickell and Vitaly Shmatikov. Privacy-
preserving graph algorithms in the semi-honest model.
In ASIACRYPT 2005, 2005.

[8] Prasad Buddhavarapu, Andrew Knox, Payman Mo-
hassel, Shubho Sengupta, Erik Taubeneck, and Vlad
Vlaskin. Private matching for compute. Cryptol-
ogy ePrint Archive, Paper 2020/599, 2020. https:
//eprint.iacr.org/2020/599.

[9] M. Burkhart and Xenofontas Dimitropoulos fontas. Fast
private set operations with sepia. 2012.

[10] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and
Nikos Triandopoulos. Verifiable set operations over
outsourced databases. In PKC, 2014.

[11] Melissa Chase and Peihan Miao. Private set intersection
in the internet setting from lightweight oblivious PRF.
In CRYPTO 2020, 2020.

[12] Alex Davidson and Carlos Cid. An efficient toolkit for
computing private set operations. In ACISP 2017, 2017.

[13] Changyu Dong, Liqun Chen, and Zikai Wen. When
private set intersection meets big data: an efficient and
scalable protocol. In CCS 2013, 2013.

[14] Brett Hemenway Falk, Daniel Noble, and Rafail Ostro-
vsky. Private set intersection with linear communication
from general assumptions. In WPES@ CCS 2019, 2019.

[15] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In EU-
ROCRYPT 2004, 2004.

[16] Keith B. Frikken. Privacy-preserving set union. In
ACNS 2007, 2007.

[17] Taher El Gamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans.
Inf. Theory, 31(4):469-472, 1985.

[18] Gayathri Garimella, Payman Mohassel, Mike Rosulek,
Saeed Sadeghian, and Jaspal Singh. Private set opera-
tions from oblivious switching. In PKC 2021, 2021.

[19] Gayathri Garimella, Benny Pinkas, Mike Rosulek,
Ni Trieu, and Avishay Yanai. Oblivious key-value

stores and amplification for private set intersection. In
CRYPTO 2021, 2021.

[20] Satrajit Ghosh and Tobias Nilges. An algebraic ap-
proach to maliciously secure private set intersection. In
EUROCRYPT 2019, 2019.

[21] Oded Goldreich. The Foundations of Cryptography -
Volume 2: Basic Applications. Cambridge University
Press, 2004.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In STOC 1987, 1987.

[23] Carmit Hazay and Kobbi Nissim. Efficient set operations
in the presence of malicious adversaries. In PKC 2010,
2010.

[24] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen,
David Stott, Sophia Yakoubov, and Arkady Yerukhi-
movich. Secure multiparty computation for cooperative
cyber risk assessment. In SecDev 2016, 2016.

[25] Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo
Park, and Jung Hee Cheon. Constant-round privacy
preserving multiset union. Cryptology ePrint Archive,
Report 2011/138, 2011. https://ia.cr/2011/138.

[26] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In CRYPTO
2003, 2003.

[27] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du,
and Dawu Gu. Shuffle-based private set union: Faster
and more secure. In USENIX Security 22, 2022.

[28] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In USENIX Security 2019,
2019.

[29] Lea Kissner and Dawn Xiaodong Song. Privacy-
preserving set operations. In CRYPTO 2005, 2005.

[30] Vladimir Kolesnikov and Ranjit Kumaresan. Improved
OT extension for transferring short secrets. In CRYPTO
2013,2013.

[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In CCS 2016,
2016.

[32] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao
Wang. Scalable private set union from symmetric-key
techniques. In ASIACRYPT, 2019.

[33] Arjen K. Lenstra and Tim Voss. Information security

risk assessment, aggregation, and mitigation. In ACISP
2004, 2004.

[34] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanal-
ysis of full lowmc and lowmc-m with algebraic tech-
niques. In CRYPTO 2021, 2021.

[35] Payman Mohassel and Seyed Saeed Sadeghian. How to
hide circuits in MPC an efficient framework for private
function evaluation. In EUROCRYPT 2013, 2013.

USENIX Association

32nd USENIX Security Symposium 353

https://eprint.iacr.org/2022/294
https://eprint.iacr.org/2022/294
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599
https://ia.cr/2011/138

[36] Moni Naor and Benny Pinkas. Efficient oblivious trans-
fer protocols. In Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, 2001.

[37] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Spot-light: Lightweight private set intersection
from sparse OT extension. In CRYPTO 2019, 2019.

[38] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. PSI from paxos: Fast, malicious private set inter-
section. In EUROCRYPT 2020, 2020.

[39] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security 2015,
2015.

[40] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
USENIX Security, 2014.

[41] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on OT extension.
ACM Trans. Priv. Secur., 21(2):7:1-7:35, 2018.

[42] Michael O. Rabin. How to exchange secrets with obliv-
ious transfer. TACR Cryptol. ePrint Arch., 2005:187,
2005.

[43] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and
Minlan Yu. BLAG: improving the accuracy of blacklists.
In NDSS, 2020.

[44] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast
OPREF and circuit-psi from vector-ole. In EUROCRYPT
2021, 2021.

[45] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz.
Constant-round multi-party private set union using re-
versed laurent series. In PKC 2012, 2012.

[46] Katsunari Shishido and Atsuko Miyaji. Efficient and
quasi-accurate multiparty private set union. In SMART-
COMP 2018, 2018.

[47] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[48] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and
Xiao Wang. Ferret: Fast extension for correlated OT
with small communication. In CCS 2020, 2020.

[49] Andrew Chi-Chih Yao. How to generate and exchange
secrets (extended abstract). In FOCS, 1986.

[50] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and
Dongdai Lin. Optimal private set union from multi-
query reverse private membership test. Cryptology
ePrint Archive, Paper 2022/358, 2022. https://
eprint.iacr.org/2022/358.

[51] Yongjun Zhao and Sherman S. M. Chow. Are you
the one to share? secret transfer with access struc-
ture. Cryptology ePrint Archive, Paper 2015/929, 2015.
https://eprint.iacr.org/2015/929.

354 32nd USENIX Security Symposium

USENIX Association

https://github.com/emp-toolkit
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2015/929

	Introduction
	Motivation
	Our Contribution
	Overview of Our Techniques
	Related Work

	Preliminaries
	Notation
	Security Model
	Encryption Schemes
	Oblivious Transfer
	Oblivious Key-Value Stores
	Private Set Union

	Multi-Query Reverse Private Membership Test
	Definition
	Framework of Multi-Query RPMT

	Generic Constructions of Multi-Query RPMT
	Construction from SKE and 2PC
	Construction from Re-randomizable PKE
	Unification with Membership Encryption

	Our PSU Protocol
	Generic Construction of PSU Protocols
	Instantiation of PSU
	Communication Cost
	Discussion: Difference between PSI and PSU
	Discussion: the Relationship with Existing PSI/PSU-Related Primitives

	Implementation and Performance
	Theoretical Analysis of Communication
	Experimental Setup
	Implementation Details
	Experimental Details
	Performance Evaluation
	Applications

	References

