
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Automata-Guided Control-Flow-Sensitive
Fuzz Driver Generation

Cen Zhang and Yuekang Li, Nanyang Technological University, Continental-NTU
Corporate Lab; Hao Zhou, The Hong Kong Polytechnic University; Xiaohan Zhang,
Xidian University; Yaowen Zheng, Nanyang Technological University, Continental-

NTU Corporate Lab; Xian Zhan, Southern University of Science and Technology;
The Hong Kong Polytechnic University; Xiaofei Xie, Singapore Management
University; Xiapu Luo, The Hong Kong Polytechnic University; Xinghua Li,

Xidian University; Yang Liu, Nanyang Technological University, Continental-NTU
Corporate Lab; Sheikh Mahbub Habib, Continental AG, Germany

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-cen

Automata-Guided Control-Flow-Sensitive Fuzz Driver Generation

Cen Zhang� Yuekang Li� < Hao Zhou� Xiaohan Zhang¶ Yaowen Zheng� Xian Zhan� �

Xiaofei Xie ¿ Xiapu Luo � Xinghua Li ¶ Yang Liu � Sheikh Mahbub Habib��
� Nanyang Technological University, Continental-NTU Corporate Lab� The Hong Kong Polytechnic University¶ Xidian University

¿ Singapore Management University� Southern University of Science and Technology�� Continental AG, Germany

Abstract

Fuzz drivers are essential for fuzzing library APIs. How-
ever, manually composing fuzz drivers is di�cult and time-
consuming. Therefore, several works have been proposed to
generate fuzz drivers automatically. Although these works can
learn correct API usage from the consumer programs of the
target library, three challenges still hinder the quality of the
generated fuzz drivers: 1) How to learn and utilize the control
dependencies in API usage; 2) How to handle the noises of
the learned API usage, especially for complex real-world con-
sumer programs; 3) How to organize independent sets of API
usage inside the fuzz driver to better coordinate with fuzzers.

To solve these challenges,we proposeRUBICK, an automata-
guided control-�ow-sensitive fuzz driver generation technique.
RUBICK has three key features: 1) it models the API usage (in-
cluding API data and control dependencies) as a deterministic
�nite automaton; 2) it leverages active automata learning algo-
rithm to distill the learned API usage; 3) it synthesizes a single
automata-guided fuzz driver, which provides scheduling inter-
face for the fuzzer to test independent sets of API usage during
fuzzing. During the experiments, the fuzz drivers generated by
RUBICK showed a signi�cant performance advantage over the
baselines by covering an average of 50.42% more edges than
fuzz drivers generated byFUZZGEN and 44.58% more edges
than manually written fuzz drivers from OSS-Fuzz or human
experts. By learning from large-scale open source projects,
RUBICK has generated fuzz drivers for 11 popular Java projects
and two of them have been merged into OSS-Fuzz. So far,
199 bugs, including four CVEs, are found using these fuzz
drivers, which can a�ect popular PC and Android software
with dozens of millions of downloads.

1 Introduction

Fuzzing is a practical dynamic analysis technique for vulnera-
bility detection. Compared with static analysis techniques,

<Corresponding Author.

fuzzing can produce more precise results with few false-
positives and provide security analysts with Proof-of-Concept
inputs to replay the bugs. However, as a dynamic technique,
fuzzing requires an executable of the target software as the
testing subject. To fuzz libraries, executable programs using
the library functions must be generated. Conventionally, these
programs are called fuzz harnesses or fuzz drivers.

Fuzz drivers can be composed manually by human experts
or generated automatically by tools. To compose fuzz drivers,
experts have to learn the usage of library APIs from docu-
mentations or example programs. Not only is this learning
process tedious and time-consuming, but also the quality of
the composed fuzz drivers heavily depends on the experience
of the human experts. Therefore, techniques for automatically
generating fuzz drivers are needed.

Several existing works [1� 3] focus on automatic fuzz driver
generation. Similar to manually writing the fuzz drivers, these
techniques also need to learn the correct usage of library APIs
to ensure testing e�ectiveness. Additionally, most existing
works learn such knowledge by analyzing how the consumer
programs (aka example programs) of the libraries utilize the
API functions. After generating the fuzz drivers, these tech-
niques also need to rank [2] or ensemble [1] the generated
fuzz drivers so that the fuzzer can test them substantially.

Despite the previous e�orts, three challenges still exist for
both learning the correct usage of library APIs and utilizing
the generated fuzz drivers:C1. Some library APIs should
reside in branches and loops where the conditions are guarded
by the results of other APIs, but the API usage learned by
existing works emphasizes on data dependencies among the
APIs while ignoring most control dependencies among them.
Not including the control dependencies can end up in failing
to invoke certain APIs properly.C2.The learned API usage of
existing works su�ers from noises such as redundant API us-
ages or wrong API dependencies. Failing to remove the noises
can limit the usability of a fuzz driver generation technique
especially when it needs to learn from complex real-world
consumer programs.C3. Multiple fuzz drivers can be gener-
ated for a single target library with existing works, but how

USENIX Association 32nd USENIX Security Symposium 2867

to organize and utilize these fuzz drivers to guarantee that
they can be substantially tested by the fuzzer is understud-
ied. Poorly organized fuzz drivers can distract the fuzzer and
hinder the fuzzing performance.

To address the three challenges, we proposeRUBICK 1 � an
automata-guided control-�ow-sensitive fuzz driver generation
technique.C1. The rationale ofRUBICK is that API control
dependencies such as branches and loops can be represented as
automatons. By properly de�ning the events (i.e., the alphabet
of an automaton), API control dependencies are interpreted
as event sequences (i.e., accepted strings of an automaton).
Based on this modeling, extraction algorithms are designed
to extract usage automatons from API consumers.C2. Since
an automaton intrinsically represents a set of accepting event
sequences, denoising extracted usages means generating a
minimized automaton which only accepts valid sequences.
RUBICK adapts L*, an active automata learning algorithm, to
accomplish this goal. By de�ning what is a valid sequence
(membership queries, abbr as MQ) and what is an acceptable
automaton (equivalence query, abbr as EQ), the algorithm
starts from an empty automaton and iteratively improves that
automaton using feedbacks from MQ and EQ until EQ is
satis�ed.RUBICK combines static and dynamic information
to answer the validity of sequences. And the automaton is
acceptable when it does not falsely accept or reject sequences.
Each extracted automaton is denoised separately and later
merged together with others as one usage automaton.C3.Note
that the usage automaton may contain multiple independent
sets of API usages. Instead of generating multiple fuzz drivers,
RUBICK generates a single automata-guided fuzz driver. It
provides a scheduling interface that fuzzers can pick the testing
usage set by mutating speci�c bytes of input. By doing so,
the utilization of independent API usage sets are bene�ted by
existing seed schedulers inside fuzzers.

In evaluation, the fuzz drivers ofRUBICK are compared
with drivers fromFUZZGEN 2 and from OSS-Fuzz [4] or
other human experts on six popular Java projects. The results
show thatRUBICK outperforms its competitors in both code
coverage (on avg. 50.42%, 44.58% more edge coverage than
FUZZGEN, manually written fuzz drivers) and unique bugs
(on avg. 45.92%, 98.59% more unique bugs thanFUZZGEN,
manually written fuzz drivers).RUBICK has generated fuzz
drivers for 11 open source projects and two of them have
been merged into OSS-Fuzz. So far, 199 bugs (four CVEs)
have been found using these fuzz drivers. These bugs are of
popular Java projects such as Apache Software Foundation,
which a�ects the PC and Android software with dozens of
millions of downloads.

In summary, our contributions are:
� We identi�ed three key challenges for generating fuzz

drivers from consumer programs. Besides, we proposed

1RUBICK is a Dota 2 hero who can learn spells from enemies and cast
them more powerfully.

2FUZZGEN is the most related work and we implemented its Java version.

an automata-based solution to solve these challenges;
� We implementedRUBICK as the �rst tool which can learn

API usage from large-scale open source projects and
generate control-�ow-sensitive fuzz drivers;

� We appliedRUBICK to 11 popular Java projects and dis-
covered 199 bugs (four CVEs). We responsibly disclosed
them and helped the vendors to �x them.

RUBICK is open-source for facilitating future research [5].

2 Preliminaries

2.1 Backgrounds
Deterministic Finite Automaton We use Deterministic Fi-
nite Automaton (DFA) to model the API usage. DFA contains
�ve elements: a �nite set of statesQ, a set of input symbols
(aka letters) called the alphabet� , a transition function� :
Q � � � Q, an initial stateq0 ¸ Q, and a set of �nal states
F Ó Q . Intrinsically, a DFA is an acceptor of strings, i.e., se-
quences of letters. Any sequence corresponding to a path from
the initial state to a �nal state is accepted by that DFA.
Automata Learning Algorithm Generally, the algorithm
learns an automaton from a set of positive examples (repre-
sents for valid strings, abbr as PE) and negative examples
(represents for invalid strings, abbr as NE). There are two
types of the algorithms: passive learning and active learning.
The former requires a �nite set of PEs and NEs of the system
under learning (SUL) before learning, whereas the latter �nds
PEs and NEs by asking teacher questions about the SUL dur-
ing the learning. Passive learning builds output automaton
based on the given learning input. It usually has adequate
time complexity but its performance heavily depends on the
representativeness of the learning input. For active learning, it
requires a teacher to answer two kinds of queries of the SUL:
the membership query (MQ) and the equivalence query (EQ).
The membership query asks about the validity of a string, i.e.,
a given string is of PE or NE. And the equivalence query asks
whether the learned automaton is equivalent to the �nal answer.
If the answer is no, the teacher also needs to return a counterex-
ample (a falsely accepted/rejected string) as feedback. The
whole process of active learning is that: the algorithm starts
from an empty automaton, then it iteratively improves that
automaton using feedback from MQ and EQ until the EQ is
satis�ed. Active learning algorithms, e.g., L* [6], have a good
learning performance (the learned automaton is minimized
and accurate) but su�er from its exponential learning costs.

2.2 Challenges of Existing Works
Fig. 1 illustrates the three challenges of building a desired fuzz
driver using an example simpli�ed from real-world cases.
C1: Modeling of API Control Dependencies The �rst
challenge is how to model and learn the control dependen-
cies among the library APIs. APIs can have di�erent types

2868 32nd USENIX Security Symposium USENIX Association

������ �� �� �� �$����

������ �� �� �� �%����

 �� �� �� �� �� �� �+����

������ �� �� �� �&����

 �� �� �� �� �� �� �,����

������ �� �� �� �'����

 �� �� �� �� �� �� �(����

������ �� �� �� �)����

������ �� �� �� �*����

�Y�R�L�G�� �P�D�L�Q�� �� �� �
̂
 �� �� �U�H�D�G�H�U�� � �� �Q�H�Z�� �3�G�I�5�H�D�G�H�U�� �� �L�Q�S�X�W�� �S�G�I�� �� ��

 �� �� �� �
 �� �H�[�W�U�D�F�W�7�H�[�W�� �Z�L�O�O�� �F�D�O�O

 �� �� �� �U�H�D�G�H�U�� �U�H�D�G�� �� �� �X�Q�W�L�O�� �(�2�)�� �
 ��

 �� �� �3�G�I�7�H�[�W�6�W�U�L�S�S�H�U�� �H�[�W�U�D�F�W�7�H�[�W�� �U�H�D�G�H�U�� ��

 �� �� �U�H�D�G�H�U�� �F�O�R�V�H�� �� ��

�`

�Y�R�L�G�� �V�K�R�Z�3�D�J�H�V�� �S�G�I�� �� �
̂
 �� �� �Z�K�L�O�H�� �� �S�G�I�� �K�D�V�1�H�[�W�3�D�J�H�� �� �� �� �
̂
 �� �� �� �� �S�D�J�H�� � �� �S�G�I�� �J�H�W�1�H�[�W�3�D�J�H�� �� ��

 �� �� �� �� �S�D�J�H�� �U�H�Q�G�H�U�� �� ��

 �� �� �`

�`

�Y�R�L�G�� �V�K�R�Z�3�G�I�� �� �� �� �� �� �I�L�O�H�� �� �
̂
 �� �� �U�H�D�G�H�U�� � �� �Q�H�Z�� �3�G�I�5�H�D�G�H�U�� �I�L�O�H�� ��

 �� �� �� �
 �� �3�G�I�' �R�F�X�P�H�Q�W�� �Z�L�O�O�� �F�D�O�O

 �� �� �� �U�H�D�G�H�U�� �U�H�D�G�� �� �� �X�Q�W�L�O�� �(�2�)�� �
 ��

 �� �� �S�G�I�� � �� �Q�H�Z�� �3�G�I�' �R�F�X�P�H�Q�W�� �U�H�D�G�H�U�� ��

 �� �� �L�I�� �� �S�G�I�� �S�D�U�V�H�� �� �� � � �� �6�8�&�&��

 �� �� �� �V�K�R�Z�3�D�J�H�V�� �S�G�I�� ��

 �� �� �H�O�V�H

 �� �� �� �� �U�H�D�G�H�U�� �J�H�W�3�G�I�0�H�W�D�,�Q�I�R�� �� ��

�`

�Y�R�L�G�� �P�D�L�Q�� �� �� �
̂
 �� �� �Z�K�L�O�H�� �� �� �� �� ��

 �� �� �� �� �L�I�� �� �� �� �� �� �� �V�K�R�Z�3�G�I�� �� �� �� �� ��

 �� �� �� �� �H�O�V�H�� �V�K�R�Z�3�G�I�� �� �� �� �� ��

�`

�$

�%

�&
�' �(

�)

�*

�(

�)

�*

�$
�%
�&

�' �(

�)

�*

�$
�%
�&

�' �(
�)

�*

�$

�%

�&

�' �(

�)

�*

�+

�P�D�L�Q�����O�Q�����������V�K�R�Z�3�G�I �P�D�L�Q�����O�Q�����������V�K�R�Z�3�D�J�H�V��

��

��

��

��

��

��

��

��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�G�����)�X�]�]�*�H�Q�
�V���)�X�]�]���'�U�L�Y�H�U

�$
��

�% �& �Q �(�W �)

�+

�F�����)�X�]�]�*�H�Q�
�V���(�[�W�U�D�F�W�H�G���8�V�D�J�H�V

�E�����&�R�Q�V�X�P�H�U���3�U�R�J�U�D�P �,�,

�� ��

��

��

���� ����

�� ��

����

�� ��
�$���,���F�D�O�O���W�K�H���$�3�,

�\���U�H�W�B�&��� � ���6�8�&�&

�Q�� �U�H�W�B�&����� ���6�8�&�&

�W���U�H�W�B�(� � �W�U�X�H

�I���U�H�W�B�(� � �I�D�O�V�H

�H�����6�R�O�X�W�L�R�Q���R�I���5�X�E�L�F�N

�(

�)

�*

�$

�%

�&

�'

�$

�+

�,
 �)�X�]�]�H�U���F�D�Q���S�L�F�N���I�U�R�P�������F�R�Q�W�U�R�O���I�O�R�Z�V�����V�K�R�Z�Q���D�V���U�H�J�H�[�H�V����

���� �$�%�&���\�'�_�Q���(�W�)�*���
�(�I�� �� �� ���� �$�+�,��

�,�Q�F�R�Q�V�L�V�W�H�Q�W���V�W�D�W�H���G�X�H���W�R���W�K�H���P�H�U�J�H
�R�I���G�D�W�D���I�O�R�Z�V���E�H�W�Z�H�H�Q���W�Z�R���X�V�D�J�H�V

�\ �' �I

�$

�+

�,

�,

��
�,

D�

D

D!

D"

�*

�8�V�H�O�H�V�V���I�X�]�]�H�U���V�F�K�H�G�X�O�L�Q�J���L�Q�W�H�U�I�D�F�H

�D�����&�R�Q�V�X�P�H�U���3�U�R�J�U�D�P �,

�‚�‚
�

�
 �Á

�Á

�o
�o
�o

�$�O�S�K�D�E�H�W �8�V�D�J�H���$�X�W�R�P�D�W�R�Q

�,�G�H�D�O���8�V�D�J�H �*�U�R�X�S�V �,�V�V�X�H�V

Figure 1: Motivation Example.The lettersA - I are used to represent the call of the API function which appears at the same line with the letter in sub�gure
a), b). The symbols *,� , and� represent the example cases that existing works haven’t solved in C1, C2, C3 respectively. In sub�gure d), #1 - #6 represent group
1 - 6, anḋ represents the execution order of a group’s functions depends on the input (i.e., fuzzer scheduling interface).

of dependencies. For example, in Fig. 1.a) and Fig. 1.b),›
andfl are the explicit data dependency betweenAandBand
the implicit data dependency betweenHandI , respectively.
‹ andfi are two types of control dependencies (representing
loop and branch). Unfortunately, limited by how they model
the API usage, existing works do not consider most control
dependencies.FUZZGEN [1] uses �attenedA2DG (groups of
API call sequences) to describe the usage andAPICRAFT [2]
uses a data dependency tree. Both models are not aware of
the control dependencies‹ andfi . As a compensation, they
proposed heuristics to locate the error branches (by recog-
nizing the call of signature functions such asexit), which
covers a special case of the control dependency. Though not
emphasized in previous works, control dependencies can sig-
ni�cantly a�ect the quality of the generated fuzz drivers. For
example, in Fig. 1.a), missing the control dependencies can
cause not only the improper API invocation (showPagescan
get invoked even when the program failed to parse the input if
missingfi), but also the insu�cient exploitation of the input
(the program will not parse the second page onwards if missing
‹). Consequently, to learn and utilize control dependencies,
a more descriptive model is needed.
C2: Noises in Learned Usage The second challenge is the
learned API usage can be full of noises while learning from
real world consumer programs (e.g., open-source projects in
GitHub). The noises are introduced from the following sce-
narios:¶ The learned usage can be incomplete or redundant

when the learning starts from imperfect entry points of the
program. For instance, Fig. 1.c) shows the cases of applying
FUZZGEN to the consumer programs in Fig. 1.a) and Fig. 1.b).
The extracted usage ofshowPagesandmain (line 17) is incor-
rect. ForshowPages, the usage is incomplete since the source
of thepdf is missing. Formain (line 17), the usage has unnec-
essary complexity. In practice, starting the extraction from
main (the default strategy ofFUZZGEN) usually incurs ine�-
cient or even incorrect results since the extracted usages can
be too complex to be used;• Extracted usage can be erro-
neous due to the coupling of the usage code and the consumer
program code. For example, an usage irrelevant loop wrapping
around an API in the consumer program may add a dead loop
to the extracted usage.‚ The usage can be incorrect due to
the imprecise analysis. Failing to remove the noises not only
wastes fuzzing resources but also introduces false positives
during fuzzing. Unfortunately, existing works do not handle
the noises. Considering the ubiquity of the noises and the
vague boundaries between the noise and the usage, denoise
techniques should be introduced.
C3: Utilization of Independent Usage Scenarios The
third challenge is how to e�ectively organize independent
API usage scenarios during fuzzing so that the fuzzer can sub-
stantially test the APIs. Here we call a set of self-sustaining
API functions anusage scenario. For example, in Fig. 1.c),
the APIs extracted fromshowPdf forms one usage scenario
while the APIs extracted frommain (ln.22) forms another.

USENIX Association 32nd USENIX Security Symposium 2869

�&�R�Q�V�X�P�H�U

�3�U�R�J�U�D�P�V

�)�X�]�]

�'�U�L�Y�H�U

�8�V�D�J�H
�$�X�W�R�P�D�W�R�Q

�5�X�E�L�F�N

�$�3�,���0�H�W�D

�5�D�Z���1�)�$�V

�'�D�W�D���'�H�S�V

�7�D�U�J�H�W
�/�L�E�U�D�U�\

�†���������/�H�D�U�Q�L�Q�J���,�Q�S�X�W�V
�3�U�H�S�D�U�D�W�L�R�Q

�†������ �8�V�D�J�H���$�X�W�R�P�D�W�R�Q
�/�H�D�U�Q�L�Q�J

�†������ �)�X�]�]���'�U�L�Y�H�U �� �� ��
 �6�\�Q�W�K�H�V�L�V

�(�Y�H�Q�W�6�H�T���(�[�W�U�D�F�W�L�R�Q
�$�O�S�K�D�E�H�W �8�Q�L�I�L�F�D�W�L�R�Q

�8�V�D�J�H �'�L�V�W�L�O�O�D�W�L�R�Q

�$�X�W�R�P�D�W�D �0�H�U�J�H

�&�R�G�H �6�\�Q�W�K�H�V�L�V

�'�D�W�D�'�H�S���&�R�O�O�H�F�W�L�R�Q

�,�Q�S�X�W���V�� �2�X�W�S�X�W

Figure 2: General Work�ow of RUBICK.

Usually, more than one usage scenario can be learned from
the consumer programs and each one can be converted as one
standalone fuzz driver. The reason why there exist multiple
independent usage scenarios is two-fold. On the one hand,
for better usability or compatibility, developers may provide
multiple sets of APIs for one functionality to users. On the
other hand, the learned usages are in�uenced by consumer
program speci�cs, which cannot be thoroughly merged as
one usage scenario without additional domain knowledge. In
fact, even human experts who wrote fuzz drivers for OSS-
Fuzz get confused about what is the proper way to handle
this problem [7]. Besides, existing works have not thoroughly
tackled this problem.FUZZGEN partially solves this problem
by proposing algorithms to coalescence distinct usage sce-
narios (merging the common nodes between two scenarios)
and providing scheduling interface to fuzzer. However, as
shown in Fig. 1.d), the coalesce of two distinct control �ows is
error-prone due to the inconsistency of their data �ows (Both
BandHdepend/modify reader’s status.) Besides, scheduling
function orders inside one group (FUZZGEN divides them
into groups using relaxed top sort) tends to be unnecessary
(ReorderingD andE does not help fuzzing, so doesC and
I .) Other works, such as [2], rely on users to select the fuzz
drivers. The fuzzing performance can be hindered without
proper utilization strategy since some usage scenarios may get
starved during fuzzing. Therefore, a better utilization strategy
of usage scenarios should be proposed.

2.3 Our Approach

The key observation is that, by properly de�ning events, com-
mon API dependencies a�ecting the control �ow can be mod-
eled as an automaton accepting certain event sequences. For
example, to describe API usages of Fig. 1.a) and Fig. 1.b), we
de�ne function events(marked byA - I) andcondition events
(marked byy, n, t , f). The full de�nition is shown in the Alpha-
bet part of Fig. 1.e), and the right side of Fig. 1.a) and Fig. 1.b).
A function event represents the call of an API function, e.g.,
eventCmeans the call ofPdfDocument.parse. A condition
event means that a constraint regarding the return values of
API functions has been satis�ed, e.g., eventy represents the
last return value ofPdfDocument.parse equals toSUCC. For

simplicity, the automata representing the usage are written in
Python regex syntax [8]. Using the above de�nition, the loop
in Fig. 1.a) line 2 - 5 can be written as(EtFG)*Ef , and the
branch in line 12 - 15 can be represented asyD|n(EtFG)*Ef .
Similarly, the API usages of Consumer Program I and II are
ABC(yD|n(EtFG)*Ef) andAHI.

Based on this observation,RUBICK proposes an automata-
based solution to solve the previously discussed challenges.
Firstly,RUBICK extracts automatons from consumer programs.
The extracted automatons contain control-�ow-sensitive API
usage but are raw. Secondly, it adapts an active learning algo-
rithm to �nd a minimized automaton which removes both the
duplicate and invalid event sequences inside each automaton.
After denoising,RUBICK merges them together as one single
usage automaton. Lastly, to better utilize this usage automaton,
it synthesizes an automata-guided fuzz driver. The driver pro-
vides a scheduling interface which fuzzers can pick the testing
usage scenario by mutating speci�c bytes of input. Therefore,
the usage scenarios inside the fuzz driver can be scheduled
by existing seed schedulers inside fuzzers. Fig. 1.e) shows the
usage automatonRUBICK learned from Consumer Program I
and II. Fuzzers can choose to fuzz either usage scenario.

Accordingly, as shown in Fig. 2,RUBICK has three com-
ponents:¶ Learning Materials Preparation. The materials
include the event sequences in Raw non-deterministic �nite
automaton (NFA) format, the API data dependencies, and the
API meta information;• Usage Automaton Learning.RU-
BICK �rst uni�es the alphabet for all Raw NFAs. Then it uses
a L* [6] based algorithm to generate a distilled (aka denoised)
DFA for each Raw NFA. After distillation,RUBICK merges
these DFAs as one usage automaton;‚ Fuzz Driver Synthesis.
RUBICK synthesizes an automata-guided fuzz driver.

3 Methodology

3.1 API Usage Modeling

API Usage Representation RUBICK uses usage automa-
ton to represent API usage. Usage automaton contains two
kinds of events: the function events and the condition events.
In the context of the automaton, a function can bind with
zero or more output variables. And a condition expression

2870 32nd USENIX Security Symposium USENIX Association

�$���U�H�W�B�$��� ���S�G�I���S�D�J�H�,�W�H�U�D�W�R�U������

�,���U�H�W�B�,��� ���P�R�F�N�B�,���U�H�W�B�$����

�-���U�H�W�B�-��� ���P�R�F�N�B�-���U�H�W�B�$����

�W���U�H�W�B�,��� � ���W�U�X�H��

�I���U�H�W�B�,��� � ���I�D�O�V�H��

�L�W��� ���S�G�I���S�D�J�H�,�W�H�U�D�W�R�U������

�Z�K�L�O�H�����L�W���K�D�V�1�H�[�W������
 ������ �L�W���J�H�W�1�H�[�W������

�Q��� ���S�G�I���J�H�W�3�D�J�H�1�X�P������

�I�R�U�����L��� �� �� �����L�������Q�����L��� ���L������ �� ��

���������S�G�I���J�H�W�3�D�J�H���L����

�$���U�H�W�B�$��� ���S�G�I���J�H�W�3�D�J�H�1�X�P������

�%���U�H�W�B�%��� ���S�G�I���J�H�W�3�D�J�H���U�H�W�B�,����

�,���U�H�W�B�,��� ���P�R�F�N�B�,������

�-���U�H�W�B�,��� ���P�R�F�N�B�-���U�H�W�B�,����

�W���U�H�W�B�,�������U�H�W�B�$��

�I���U�H�W�B�,���!� ���U�H�W�B�$��

�E�R�R�O���P�R�F�N�B�,���,�W�H�U�D�W�R�U���L�W����

�^���U�H�W�X�U�Q���L�W���K�D�V�1�H�[�W���������`

�3�G�I�3�D�J�H���P�R�F�N�B�-���,�W�H�U�D�W�R�U���L�W��

�^���U�H�W�X�U�Q���L�W���J�H�W�1�H�[�W���������`

�L�Q�W���P�R�F�N�B�,������

�^���U�H�W�X�U�Q�� �� �����`

�L�Q�W���P�R�F�N�B�-���L�Q�W���L��

�^���U�H�W�X�U�Q���L������ �� �����`�0

�R
�F

�N
���

$�
3�

,�V
�$

�O
�S

�K
�D

�E
�H

�W
�$

�X
�W

�R
�P

�D
�W

�R
�Q

�$
��

�, �W
�-

�� �� �� ��
�I

�$
��

�, �W
�� �� ��

�I

�%
�� ��

�-

�&
�R

�G
�H

 �� ���/�R�R�S���&�D�V�H���, �/�R�R�S���&�D�V�H���,�,

Figure 3: Loop Cases Requiring Extra Events.The usage of I and II are
A(ItJ)*If andAI(tBJ)*f respectively (represented in regexes).

consists of constants and output variables. A function event
represents an action calling an API function and updating the
value of its bound output variables. A condition event rep-
resents an action that a condition expression is evaluated as
true. Naively, using API functions to de�ne function events
and condition events, all sequential and branch usage can be
described. However, the above events can only describe the
loop whose control variables’ data �ow (initialization, incre-
ment, and condition) can be fully recorded by these events.
For example, the loop in Fig. 1.a) is fully recorded usingE, G,
t , f . Fig. 3 shows two types of partially recorded loops. For
case I, the condition and increment ofit are missed since
it.hasNext() andit.getNext() are not API functions. For
case II, the initialization and increment of loop’s control vari-
able i are missed sincei = 0 , i = i + 1 are not recorded.
Mock APIs are introduced to describe the missing data �ow of
control variables. Section 3.2.1 discusses how to locate them.
Speci�cally, in case I, by introducing mock APIsmock_I and
mock_J, new function eventsI , J and condition eventst , f
(tainted byret_I) are identi�ed. Therefore, the loop usage
in case I can be fully described asA(ItJ)*If . Similarly, the
usage in case II can be written asAI(tBJ)*f .
Properties of Usage Automaton P1: No initial state can
be a �nal state. This is becauseRUBICK treats empty usage
as invalid usage.P2: Any non-empty pre�x of a valid event
sequence is a valid event sequence. For example, in Fig. 1.b),
given thatAHI is valid, obviouslyAHis valid too.P3: Any event
sequence containing a non-empty invalid pre�x is invalid. For
instance, sinceAIH is invalid, any event sequence starting with
AIH is also invalid. This means that all invalid strings lead the
state machine into a trap state [9]. P2 andP3 are useful in
inferring the validity of event sequences which can boost the
distillation process in Section 3.3.2.

3.2 Learning Inputs Preparation

RUBICK collects learning inputs from consumer programs
via static analysis. Note thatRUBICK requires no a priori

Algorithm 1 Raw Usage Automatons Extraction
Input: C (Consumer Program)
Output: As(Raw Usage Automatons)

1: procedure EXTRACT-USAGE(iCFG, F, ctxt)
2: A, Q, insn2State} empty nfa,[] , ^‘
3: startS, endS} new State(), new AcceptState()
4: for Insnentry ¸ Get-Entries(F)

5: Q
+
} [ŒstartS,Insnentry, ctxt.clone()º]

6: while Q is not empty
7: curS, curI, ctxt} Q.pop()
8: if curI is a non-API func call instruction

. Extract and mergesubA
9: Fcallee } iCFG.getCallee(curI)

10: subA} EXTRACT-USAGE(ICFG,Fcallee, ctxt)
11: curS, A} Merge-SubNFA(curS, A, subA)
12: else

. Add transitions to identi�ed new events toA
13: ctxt, event} Event-Identi�cation(ctxt, curI)
14: if event� null
15: nextS} new AcceptState()
16: A

+
} new Transition(curS, nextS, event)

17: curS} nextS
18: insn2State

+
} ^ curI : curS ‘

19: if curI has no succs
20: A

+
} new Transition(curS, endS,�)

21: else
22: for nextI¸ iCFG.getSuccs(curI)
23: if nextI¸ insn2State
24: nextS} insn2State.get(nextI)
25: A

+
} new Transition(curS, nextS,�)

26: else
27: Q

+
} ŒcurS, nextI, ctxt.clone()º

28: return A
29: end procedure
30: As, ICFG} [], Get-ICFG(C)
31: for Ftarget ¸ Get-Functions(C)

32: As
+
} EXTRACT-USAGE(ICFG,Ftarget, empty context)

knowledge about the target library. Given a library,RUBICK
collects:¶ the candidate events and event sequences;• the
API data dependencies;‚ the API meta information. The
API meta information refers to the basic information of API
functions, e.g., the function signature, the type of arguments
and return value, etc. Its collection is straightforward and is
done once per library. In the following, we only detail the
collection of the learning inputs¶ and• .

3.2.1 Event Sequence Extraction

RUBICK extracts event sequences from the consumer pro-
grams by converting its control �ow graph (CFG) into a non-
deterministic �nite automata (NFA). Generally this is done by
translating some instructions into events and removing the ir-

USENIX Association 32nd USENIX Security Symposium 2871

relevant instructions. We �rst discuss how events are identi�ed
from instructions, then explain the extraction algorithm.
Events Identi�cation The identi�cation of API function
related events is straightforward: an instruction calling any
API function is a function event, and any branch instruction
whose condition expression is tainted by output of API func-
tions is a pair of condition events (true and false branches).
For the identi�cation of mock API related events,RUBICK
needs to �rst locate the mock APIs and then apply the above
identi�cation. RUBICK identi�es the mock APIs of the two
types of loop cases discussed in Section 3.1 separately. For
case I,RUBICK additionally models the iterator interface. The
instructions which call iterator functions with a tainted class
object will be identi�ed as mock API functions. For case II, the
identi�cation is based on the results of the extraction. Hence,
RUBICK may run the extraction twice. After �rst run,RUBICK
checks whether the expressions of any extracted loop condi-
tion contain non-output variables. If no one contains such
variables, the extraction process is complete and all loops are
fully represented by the events. Otherwise, the data �ows of
control variables for loop conditions with non-output variables
are not fully recorded. Therefore,RUBICK conducts data de-
pendency analysis to locate the instructions which initialize or
update that variable. After setting these instructions as mock
API functions,RUBICK reruns the extraction for �nal results.
Raw NFA Extraction For clarity, Algorithm 1 shows a
single-pass extraction process. As shown in line 31 � 32, in-
stead of requiring a perfect entry function for extraction,RU-
BICK extracts a raw usage automaton (namely Raw NFA) for
each function inside the consumer program. This is feasible
since the subsequent learning process will remove the invalid
or the redundant usages. The basic idea is to build the Raw
NFA along the traverse of the ICFG. The traverse starts from
the entry instruction of target functionFtarget. Line 7 � 27
shows the analysis of each traversed instruction.curI points
to the instruction under analysis.curS points to the state in
Raw NFA which new states should be linked with.ctxt holds
the taint information for analyzingcurI . If curI is a non-API
function call instruction,RUBICK extracts the Raw NFA of the
callee (subA) and merges it into current NFA (A). The merge
is accomplished by adding transition fromcurS to the start
state (startS) of subAwith epsilon event (�) and adjusting
thecurS to point to the end state (endS) of subA. If curI is
not of the above case, the event identi�cation strategies are
applied. New transition will be added toA once a new event is
identi�ed, andcurS also will be updated. Last, the successors
of curI are added toQ for analysis. IfcurI is an exit point
of the function , e.g.,return , the edge fromcurS to endS is
added. If a successor instruction is already analyzed, a transi-
tion fromcurS to the instruction’s corresponding state under
event� is added. For simplicity, the algorithm only shows
the key �ow. In implementation, the algorithm also maintains
a stack to prevent the in�nite loop caused by the recursive
call of the target function. Besides, multiple callees can be

returned byiCFG.getCallee(ICFG stands for Interprocedu-
ral Control Flow Graph) in line 9 whencurI is an indirect
call. RUBICK empirically picks the �rst callee. If the callee
is picked wrongly, the extracted wrong usage is expected to
be �ltered by usage distillation. The extracted automaton is
named as Raw NFA since it contains� and can have multiple
transitions given one speci�c state and event, e.g., same events
can be identi�ed in both paths of a branch.

3.2.2 Data Dependency Collection

The extracted Raw NFA contains control �ow information of
the fuzz driver, such as the correct order of API functions, or
the condition to call an API function, etc. Comparatively, API
data dependencies indicate the possible values for arguments
of API functions, or the data linkages between API functions.
Both are necessary information for generating a valid fuzz
driver. Speci�cally, one set of control �ow usage can have
multiple sets of data dependencies. For example, given three
API functionsFA , FB , FC, and assuming the return values
of bothFA andFB can be used as the �rst argument ofFC,
the control �ow usageFA � FB � FC has two sets of data
dependencies:FC can use the return value of eitherFA or FB .
Currently,RUBICK collects data dependencies between two
API functions and between an API function and a constant.
Speci�cally, RUBICK abstracts them as the tupleŒProvider,
Consumerº where provider can be any output of an API func-
tion or a constant and the consumer can be any input needed
by an API function. They are collected together with Raw
NFAs by statically analyzing the consumer programs.

3.3 Usage Automaton Learning
3.3.1 Alphabet Uni�cation

The collected Raw NFAs have their own alphabets.RUBICK
uni�es them as one alphabet by identifying the equivalent
letters and assigning them the same letter.¶ For API func-
tion events,RUBICK assigns same letter for events have same
function signatures.• For condition events,RUBICK needs
to align their condition expressions and solve the potential
con�icts before assigning letters. For example, assuming Raw
NFA A hasCA1: ret_C == SUCC, CA2: ret_C != SUCC, and
Raw NFAB containsCB1: ret_C == SUCC, CB2: ret_C ==
STOP. IdeallyRUBICK can use the following letters to replace
all above letters:CU1: ret_C == SUCC, CU2: ret_C == STOP,
CU3: (ret_C != SUCC) && (ret_C != STOP). For instance,
all edges representing eventCA2 inside NFAA can be replaced
with two edges representingCU2 andCU3. RUBICK models
this con�ict solving problem as a solution set division prob-
lem. Generally, each condition expression is equivalent to its
solution set satisfying the condition. The goal is to �nd a set of
solution sets where each solution set is non-intersect with each
other and any original solution set can be the union of them.
Using that set, any original condition event can be replaced by

2872 32nd USENIX Security Symposium USENIX Association

several new events (see Appendix A for the algorithm detail).
From our experience, con�ict case rarely happens andRU-
BICK only met con�ict of simple conditions containing single
variable expressions.‚ For the mock API function related
events,RUBICK compares their identity by group. Speci�cally,
a group of events contain all related events a�ecting the loop
condition. Two groups are identical if their loop condition
expressions, the value update expression of the mocked API
functions, and the execution order of these events are equal.
Otherwise, RUBICK assigns di�erent sets of letters to them.

3.3.2 Usage Distillation

The extracted Raw NFAs can contain invalid event sequences.
The goal of usage distillation is to �nd a minimized automa-
ton which only accepts the correct event sequences inside a
NFA. Automata learning algorithms �t this task. Note that the
Raw NFA only provides the scope of PEs but not the exact
sets. Besides, the NFA can contain in�nite amounts of PEs
and NEs. In this case, active learning is more suitable since
sampling a representative set of learning input for passive
learning is challengeable. If we gather the knowledge related
with validating event sequences to build a teacher, it can learn
a minimized DFA to represent the SUL (the correct parts of
the Raw NFA). The knowledge includes the Raw NFA, the
static checker and the dynamic validator for event sequences.
For the active learning algorithm, RUBICK uses L*[6].

To build a teacher required by L*,RUBICK has to answer two
types of queries: membership query and equivalence query.
For membership query,RUBICK needs to answer the validity
of any queried event sequence.RUBICK validates a sequence
both statically and dynamically (see Algorithm 2).¶ In line
8, RUBICK checks whether the used variables of any event
have been initialized in its pre�x events. If the check fails,
the sequence is invalid since the fuzz driver based on it will
have uninitialized variables.• In line 9,RUBICK converts the
event sequence to a fuzz driver and executes it. The sequence is
invalid if the execution fails (crash or stuck). Note that this fuzz
driver is only a sequence of API calls and condition checks
without branches or loops. Sometimes, the sequence can only
be partially executed since the execution may not satisfy a
condition when the sequence contains condition events. In this
case, the validity is roughly measured by the executed parts.
This is an optimistic strategy and can cause the �nal automaton
containing invalid sequences. Obviously, the e�ectiveness of
dynamic validation is in�uenced by the diversity of the input
�les. Practically we suggest using one to three valid inputs as
seeds. In evaluation,RUBICK uses one valid seed (< 100K)
downloaded from the Internet for each target.‚ In line 7,
RUBICK checks two properties: First, the condition event can
only appear after its expression’s value has been updated by
other events. This helps to �lter out the dead loop caused by
condition events whose value will never be updated. Second,
the API function accepting the input �le should appear once

Algorithm 2 Membership Query Pseudo Code
Input: eventseq(A string represents an event sequence),rawNFA

(an extracted Raw NFA)
Output: boolean(boolean value foreventseqis accepted or not)

1: procedure MEMBERSHIP-QUERY(eventseq, rawNFA)
2: if eventseq̧ neCache
3: return false
4: if eventseq̧ peCache
5: return true
6: if eventseq̧ rawNFA
7: if Fit-Properties-Of-Desired-Fuzz-Drivers(eventseq)
8: if No-Unsatis�ed-Data-Dependency(eventseq)
9: if Pass-Dynamic-Validation(eventseq)

10: peCache
+
} eventseq

11: return true
12: neCache

+
} eventseq

13: return false
14: end procedure

and only once. For the equivalence query,RUBICK uses wp-
method [10] to sample a test set of the automaton.RUBICK
selects wp-method since it generates a slightly smaller test
set than w-method while keeping similar representativeness.
The lookahead value is the only adjustable parameter in wp-
method. During the EQ, the L* algorithm tries to search for test
cases which are counterexamples. The test cases are generated
by adding post�xes to the accepted strings. The lookahead
value determines the maximum length of the added post�xes.
Therefore, a higher lookahead value means a more complete
check in EQ but brings more performance penalty. Empirically,
RUBICK sets it as 2 (see evaluation in Section 4.2).

After learning,RUBICK removes dead loops and trap states
of the output automaton. A dead loop is a loop which does
not contain any condition event. Removing the trap states and
the related transitions simpli�es the automaton while keeping
its accepted event sequences (P3 in Section 3.1).

3.3.3 Automata Merge

RUBICK uses DFA combination and minimization algorithms
to generate the �nal usage automaton from the distilled ones.
These algorithms, such as Hopcroft’s DFA minimization al-
gorithm [11], have reasonable time complexity. The merge
process cannot be done before distillation. The reason is that
the merge will exponentially increase the performance costs
(the distillation will face a giant Raw NFA) while gaining little
bene�ts on distillation outcomes.

3.4 Automata-Guided Fuzz Driver Synthesis
As the last step,RUBICK synthesizes a fuzz driver based on
the learned usage automaton. However, the synthesis is non-
trivial since the learned usage can inevitably contain multi-
ple independent usage scenarios (Section 2.2 C3). For better

USENIX Association 32nd USENIX Security Symposium 2873

Table 1: The Attack Surfaces Used for Evaluation.A: Apache Software
Foundation, C: Commercial Company, G: Github Individual.

Format Project Version Vendor # of APIs

apachetar TAR Apache Commons Compress [12]1.21 A 195
apachepoi XLS Apache POI [13] 5.2.1 A 1,320
itextpdf PDF iText 7 [14] 7.2.2 C 810
junrar RAR Junrar [15] 7.4.1 G 619
pdfbox PDF Apache PDFBox [16] 2.0.26 A 2,779
zip4j ZIP Zip4j [17] 2.9.1 G 521

scheduling of fuzzing multiple scenarios,RUBICK synthesizes
an automata-guided fuzz driver. It provides a scheduling inter-
face where the fuzzer can pick the testing scenario by mutating
the speci�c bytes of the input. Therefore, the scenario schedul-
ing can be done by the existing seed schedulers inside fuzzers.
For example, in Fig. 1.e), fuzzers can pick to fuzz 1) or 2)
by mutating the �rst byte of the input. Fig. 9 in Appendix C
details the implementation of our fuzz driver.

Generally,RUBICK �rst uses a Depth-First-Search (DFS)
based algorithm to count all independent usage scenarios in-
side the automaton (see detail in Appendix B). Second, the
fuzz driver is designed as event-driven. It loads the usage au-
tomaton and maintains its states during execution. For each
execution, it starts from the initial state and tries to traverse the
automaton until there are no successor state. After each step
of the traverse, the driver executes the corresponding code,
and updates the status accordingly. During the traverse, when
there are multiple choices for picking the next states, the pick
is determined by either the mutated input or the execution
context. If the next events belong to multiple usage scenarios,
the pick is determined by input, e.g., for state 1 in Fig. 1.e),
choosingB or Hdepends on the input. Otherwise, it should
be determined by the execution context, e.g., for state 3 in
Fig. 1.e), choosingy or n depends on the value ofret_E .

4 Implementation & Evaluation

Implementation The main components ofRUBICK contain
6,979 lines of Java code, 1,656 lines of Python code, and 654
lines of Bash scripts. Speci�cally, Java code includes most
functionalities such as the learning inputs collection, usage
distillation, fuzz driver synthesis, etc. The python code is
mainly used for alphabet uni�cation. The bash scripts are used
for gluing the work�ow. The automata related algorithms
are developed uponlearnlib [18], and the �rst-order logical
formulas related algorithms are developed uponz3py [19].
Currently,RUBICK can generate fuzz drivers for Java libraries.
Evaluation Questions The evaluation aims to answer:
� RQ1: How is the performance when applyingRUBICK on

real world fuzzing projects?
� RQ2: How is the quality of the fuzz drivers generated by

RUBICK compared with fuzz drivers generated by state-of-
the-art techniques and manually written ones?

� RQ3: Are the fuzz drivers improved by addressing the three
key challenges?

� RQ4: How are the false positives produced by the fuzz
drivers of RUBICK and other existing methods?

� RQ5: Can the fuzz drivers generated byRUBICK help to
�nd vulnerabilities in real world fuzzing scenarios?

Evaluation Targets We applyRUBICK on library targets
which are top usage (used by other apps/programs) third-party
libraries supporting both PC and Android platforms. The usage
data is crawled from maven repository [20] and appbrain [21].
The evaluated targets are the top six ranked by the number of
APIs (Appendix D). Tbl. 1 details the attack surfaces identi-
�ed from the six popular Java libraries. Note that the libraries
and attack surfaces have a many-to-many relationship. Mul-
tiple attack surfaces inside one library are separated by the
input formats they accept. For example, forapachepoi and
apachetar , their libraries provide APIs to parse 12 and 22
di�erent types of input formats, which means that they have
12 and 22 attack surfaces respectively. For these libraries, we
pick the attack surface which accepts a popular input format.
Experiment Setup To fuzz Java programs, we use
jazzer [22], which is a libfuzzer-based fuzzer used by
OSS-FUZZ and ClusterFuzz. Following the suggestions
from [23], all the evaluated fuzz drivers share the same input
seeds, machine, and fuzzer options (�jvm_args="-Xmx2048m"
-close_fd_mask=3 -timeout=60 -rss_limit_mb=10240).
For fairness, the coverage of the fuzz driver itself is excluded,
i.e., the comparison only covers the edge coverage of the
target attack surfaces. All data used in evaluation are collected
from 24 hours, 10 times repeated fuzzing results. In the plots,
lines are average values and the shadows around the lines
represent 95% con�dence intervals. All the listed unique
bugs including the false positives are manually deduplicated.
First we group bugs based on their full stacks, then manually
merge the groups whose root cause stacks have the same code
location (function & line). The experiments are conducted on
a Linux server with two Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz processors and 188GB RAM.

4.1 Fuzz Driver Generation

To applyRUBICK on these attack surfaces, we built a crawler
to collect the consumer programs. The crawler �rst locates the
open-source consumer programs, then retrieves their jars as
RUBICK ’s input. Speci�cally, a project is a consumer program
if its code contains the package path of the attack surface,
e.g.,com.github.junrar . We usesrc , a CLI tool of Source-
graph [24], to launch the match query among all open-source
projects of Github, Gitlab, Bitbucket, etc. Our website [5] lists
the used search patterns. For the matched consumer programs,
we use heuristics to automatically retrieve their jars:¶ �nd
latest released jars from their webpages;• try to build jars
using common building commands, e.g.,mvn package. As
shown in Tbl. 2, we collect dozens to hundreds consumer pro-
grams for each attack surface. The second column shows the
number of usable/matched consumers. A consumer is usable

2874 32nd USENIX Security Symposium USENIX Association

Table 2: Statistics of Intermediate Results of RUBICK.

Attack
Surface

Crawling Learning Inputs Preparation Usage Automaton Learning Fuzz Driver Synthesis

of
Projs

of
Jars

of
Entries

of
Raw NFAs

of
APIs

of
Data Deps

CPU Sec
(Pct.)

of
CC

of
CMG

of
EAP I

of
EMock

of
ECond

of
ET otal

of
State

of
Tran

CPU Sec
(Pct.)

of
Ctrl Flow

of
Data Flow

CPU
Sec

apachetar 36/911 39/92 34,905 91 33 2,089 1,647 (66%) 0 0 22/33 0/1 16/54 38/88 165 223 832 (34%) 319 319 < 1
apachepoi 40/984 74/1,197 26,534 247 243 6,619 656 (34%) 1 3 69/243 8/15 12/109 89/367 89 94 1,289 (66%) 20 20 < 1
itextpdf 25/89 33/44 14,632 2,236 311 8,560 194 (3%) 1 3 75/311 59/88 78/365 212/764 308 348 7,223 (97%) 16 131,088 < 1
junrar 16/72 24/441 9,737 143 147 1,023 114 (16%) 0 0 49/147 0/0 14/52 63/199 120 150 617 (84%) 12 13 < 1
pdfbox 34/326 138/4,835 83,481 455 339 13,680 1,260 (29%) 0 2 54/339 9/14 36/184 99/537 127 148 3,127 (71%) 21 21 < 1
zip4j 62/514 28/262 9,175 41 49 1,635 298 (69%) 0 1 34/49 1/2 14/22 49/73 65 75 132 (31%) 5 5 < 1

if its jars are retrieved. The third column shows the number
of usable/retrieved jars. A jar is usable if it contains the usage
code and can be analyzed bysoot [25].

First,RUBICK prepares the learning inputs from usable jars.
For every function inside the consumers,RUBICK applies Raw
NFA extraction. In 4th column of Tbl. 2,RUBICK analyzed
more than 9,000 functions for every attack surface. The �fth
column shows the amount of extracted non-empty Raw NFAs.
The amounts of the contained API functions and the data
dependencies are listed in the next two columns. The reason
RUBICK can practically analyze large amount of real world
projectsis two-fold:¶ The time complexity of its extraction
algorithm isO.E / whereE is the amount of edges of the
traversed ICFG;• RUBICK con�guressoot to build a partial
ICFG. Before ICFG construction, the classes of third party
libraries were excluded usingSootClass.setPhantomClass .

Next,RUBICK learns one usage automaton from the inputs.
It �rst uni�es the alphabet for all extracted Raw NFAs, then it
distills all the Raw NFAs and merges them as the �nal usage
automaton. The ninth and tenth columns show the number
of the con�icts in unifying condition eventsCC and mock
API related event groupsCMG . The eleventh to fourteenth
columns list the number of API eventsEAP I , mock API events
EMock, condition eventsECond, and total eventsET otal used
in all automatons after/before distillation. The distillation de-
creases the number of the events since it removes invalid event
sequences. Lastly,RUBICK synthesizes the fuzz driver. The
last three columns show its detailed statistics.

4.2 Performance Assessment (RQ1)

Overall Performance In Tbl. 2, the last column in each
component lists the cost of that component in CPU second and
the percentage cost

total cost. The percentages of Fuzz Driver Syn-
thesis are ignored since most values are less than 1� . Overall,
RUBICK can generate fuzz drivers for real world projects with
a reasonable time cost. For large targets likepdfbox (~2700
APIs, ~100 consumers),RUBICK generates its fuzz driver in 2
CPU Hours. Besides, the Automata Learning component costs
most cpu resources (63.88% on average). Note that the cost
of Learning Input Preparation varies according to the amount
and complexity of the entry functions inside the consumers.
And the cost of Automata Learning increases exponentially
when its lookahead value increases (see paragraphParam-
eter Selection in Distillation). Therefore, cost comparison

Lower Whisker 1st Quartile Median 3rd Quartile Upper Whisker

2.74 6.11 6.66 9.02 13.38

Figure 4: Boxplot and Statistics of Distillation Time Per Raw NFA.
X-axis is the time in seconds. The axis is in log scale.

results can vary under di�erent settings. However, mostly the
Automata Learning component will have highest costs.
Performance of Usage Distillation To understand the per-
formance of distillation, we did statistics for the distillation
time of each automaton. Fig. 4 shows the box plot and the
statistics. According to the 3rd Quartile (9.02) and Upper
Whisker value (13.38), we conclude thatmostly distilling an
automaton costs less than 14 CPU seconds.
Parameter Selection in Distillation The only adjustable
parameter in L* is the lookahead value (abbr as L) of the wp-
method. We study the e�ects of L by comparing the learning
cost and the learned automaton under di�erent L. Tbl. 4 shows
the total time/number of MQ when using four di�erent L. Note
that EQ is also counted since EQ intrinsically is using a set of
MQ to �nd the counterexample. The results show that the cost
increases exponentially when L increases. By comparing the
learned automata, we found that:¶ In most cases (99.47%,
3196/3213), all settings can learn the same automaton;• In
the rest 17 cases, L = 3 and L = 4 learn the same automaton.
Compared with L = 4, L = 2 learns 8 automatons di�erently
and L = 1 learns 17 automatons di�erently. By analyzing these
17 cases, we found that lower L increase the possibility of miss-
ing correct usage and summarizing false usage. Speci�cally,
when L = m, the algorithm can falsely summarize the m + 1
repeated call sequences as a loop. Besides, it also misses the
following correct call sequences.Considering the high cost
and minor learning outcome improvement of using a high L,
we conclude that both 2 and 3 are suitable values in practice
and we use 2 as the default value.

4.3 State-of-the-Art Comparison (RQ2)

Baselines We evaluated the e�ectiveness ofRUBICK by
comparing the fuzzing performance of its fuzz drivers with

USENIX Association 32nd USENIX Security Symposium 2875

(a)apachetar (b) apachepoi

�0
�3�

0�0
�6�

0�0
�9�

0�0

�1�
2�0

�0

�1�
5�0

�0

�.�
� �

� �
� �

� �0� �
� �

� �4� �
� �

� �8� �
� �

�1�
2

(c) itextpdf

�0
�3�

0�0
�6�

0�0
�9�

0�0

�1�
2�0

�0

�1�
5�0

�0

�.�
� �

� �
� �

� �0

� �
�1�

0�0
�0

� �
�2�

0�0
�0

� �
�3�

0�0
�0

� �
�4�

0�0
�0

�0
�3�

0�0
�6�

0�0
�9�

0�0

�1�
2�0

�0

�1�
5�0

�0

�.�
� �

� �
� �

� �0� �
� �

� �1� �
� �

� �2� �
� �

� �3

(d) junrar

�0
�3�

0�0
�6�

0�0
�9�

0�0

�1�
2�0

�0

�1�
5�0

�0

�.�
� �

� �
� �

� �0

� �
�1�

5�0
�0

� �
�3�

0�0
�0

� �
�4�

5�0
�0

(e)pdfbox (f) zip4j

Figure 5: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ2.X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

(a)apachetar (b) apachepoi (c) itextpdf (d) junrar (e)pdfbox (f) zip4j

Figure 6: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C1.X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 3: Comparison on Metrics of Covered APIs (APIs) and API
Sequence Cyclomatic Complexity (CC).

Attack
Surface

apachetar apachepoi itextpdf junrar pdfbox zip4j

APIs CC APIs CC APIs CC APIs CC APIs CC APIs CC

manual 2 1 12 2 2 1 3 2 9 2 3 3
fuzzgen 23 1 56 1 55 1 18 1 21 1 24 1
rubick 22 60 69 7 54 23 49 32 75 42 34 12

w.o. cf 16 1 15 1 47 1 42 1 46 1 12 1

raw 28 224 217 435 307 939 116 169 210 1313 47 27

Table 4: Statistics of Learning Under Di�erent Lookahead Values.

Metric L = 1 L = 2 L = 3 L = 4

Time (CPU Sec) 1.21E+04 1.74E+04 7.89E+04 1.65E+06
of Queries 1.22E+07 1.38E+08 2.86E+09 1.14E+11

the drivers fromFUZZGEN (abbr asfuzzgen) and manually
written fuzz drivers (abbr asmanual). Originally,FUZZGEN is
written for C/C++ programs. We developed its Java version.
We strictly followed the algorithms discussed in its paper and
aligned the implementation detail with its released source code.
Besides, since the fuzz drivers generated byFUZZGEN are too
complex to be fuzzed when there are hundreds or thousands of
consumer programs(as discussed in its paper). We manually
�ltered out the consumers with invalid usage and select the
top �ve consumers ranked by including the most unique API
calls. The �ltered consumers contain usages which crash even
under a valid input, e.g., the usage which misses necessary data
dependencies for calling an API. If these consumers are used
for FUZZGEN, its fuzz driver will always crash since the driver
tries to execute all usages in every execution. The manually

written fuzz drivers ofapachetar , pdfbox are collected from
OSS-Fuzz. For the rest, we invited a human expert who is not
the author of this paper to manually write them. The expert is
familiar with fuzzing and coding in Java but has no a priori
knowledge of these attack surfaces. Writing these four fuzz
drivers costs the expert around one week.

Fig. 5 shows the comparison results in metrics of edge
coverage and unique bugs. The blue, yellow, and black lines
stand for the coverage ofrubick , fuzzgen , andmanual, respec-
tively. In both metrics,rubick shows apparent performance
advantage over the other two baselines. Speci�cally, almost
all p-values ofrubick � fuzzgen andrubick � manual are
smaller than 5.00e-2, which shows the statistical signi�cance
(see full �gures in Appendix E Tbl. 8). Tbl. 3 lists the compar-
ison on three more metrics. Results show thatRUBICK mostly
�nds more unique bugs, covers more APIs, and has a higher
API sequence complexity.Overall, we conclude thatRUBICK
can generate more e�ective fuzz drivers than existing methods.

4.4 Ablation Study (RQ3)
4.4.1 API Control Dependencies (C1)

To study the e�ectiveness of the API control dependency, we
compare the fuzzing performance of the fuzz drivers with con-
trol �ow sensitivity (abbr asw. cf) and without control �ow
sensitivity (abbr asw.o. cf). Both fuzz drivers are generated
usingRUBICK except that the condition events and mock API
events are not identi�ed forw.o. cf . Fig. 6 shows the compar-
ison on the metrics of edge coverage and unique bugs. Blue
solid line and red dotted line arew. cf andw.o. cf respec-

2876 32nd USENIX Security Symposium USENIX Association

(a)apachetar (b) apachepoi (c) itextpdf (d) junrar (e)pdfbox (f) zip4j

Figure 7: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C2.X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 5: No. of Independent Usage Scenarios w. & w.o. Denoise

apachetar apachepoi itextpdf junrar pdfbox zip4j

raw 1,099 22,625 17,713 222 7,861 24
denoised 319 20 16 12 21 5
R (1 - denoised

raw) 70.97% 99.91% 99.91% 94.59% 99.73% 79.17%

tively. w. cf shows clear advantage in the plots. Almost all
p-values ofw. cf � w.o. cf are smaller than 5.00e-2, which
shows the statistical signi�cance (see Tbl. 8). Besides, by com-
paring therubick (w.cf) andw.o. cf in Tbl. 3, we found that
control �ow sensitivity also helps the fuzz driver to carry more
diverse usages by covering more APIs. Appendix F further
provides a case study revealing how control-�ow-sensitivity
helps for more e�cient bug hunting.The evaluation shows
that considering control �ow sensitivity can improve both the
quality and performance of the fuzz drivers.

4.4.2 Denoise (C2)

To study the e�ectiveness of the denoise techniques, we com-
pare the fuzz drivers generated with the usage distillation
techniques (abbr asdenoised) and without these techniques
(abbr asraw). Speci�cally, the process of generatingraw skips
the techniques described in Section 3.3.2. Tbl. 5 lists the
number of the independent usage scenarios fordenoised and
raw. Apparently,raw has a signi�cantly more complex usage
automaton thandenoised . However, most of the complexity
is unnecessary since a majority of the usage insideraw are
noises (redundant or invalid event sequences). As shown in the
Tbl. 5, RUBICK �lters out 70.97% to 99.91% usage scenarios.
Fig. 7 lists the comparison in metrics of edge coverage and
unique bugs. The blue solid line and red dotted line repre-
sentdenoised andraw respectively. In most cases,denoised
reaches higher coverage and �nds more unique bugs with sta-
tistical signi�cance (see p-values in Tbl. 8). Interestingly, as
shown in Tbl. 3, theraw covers more APIs and has a notably
higher API sequence complexity. This further proves that the
unnecessary complexity inside theraw does not bene�t but
hurt its fuzzing performance.Usage distillation is a neces-
sary step, which improves the overall fuzzing performance by
signi�cantly reducing the complexity of usage automaton.

4.4.3 Automata-Guided Fuzz Driver (C3)

Baselines In RUBICK ’s fuzz driver, the fuzzer can change
the testing usage scenario by changing the value of leading
bytes of the input. To understand the e�ectiveness of the
scheduling interface, we compared the fuzz drivers with the
following four settings.¶ rnd1seed, the default strategy used
by RUBICK. The fuzzing is started with one initial input seed
whose leading bytes are assigned with random values. In other
words, the fuzzer has a randomly picked testing scenario as
the startup. For repeated experiments, each fuzzer instance
will have its own starting scenario.• cfseeds , it is same as
rnd1seed except that there are multiple initial seeds where
each seed picks a di�erent scenario. In other words,cfseeds
gives fuzzer full information for its scenario scheduling at
the beginning of the fuzzing.‚ rnd1cf , a setting that the
schedule interface is disabled. Before fuzzing, it will be ran-
domly bound with one usage scenario and the fuzzer can only
fuzz that scenario throughout the 24h experiment. In repeated
experiments, the scenarios among the fuzzing instances are
picked and bound independently.rnd1cf stands for the nor-
mal fuzzing strategy without scenario scheduling.„ itercf ,
a setting that the schedule interface is also disabled. However,
di�erent from rnd1cf , it iterates all usage scenarios in each
single fuzzing iteration.rnd1cf represents the strategy that
every usage scenario is equally scheduled.

Fig. 8 shows the comparison results of four settings on
metrics of edge coverage and unique bug:¶ In all attack
surfaces,rnd1seed andcfseeds are higher thanitercf and
rnd1cf in both two metrics with statistical signi�cance (see
p-value detail in Tbl. 8). This shows the scheduling interface
is e�ective. • Overall, it is hard to pick the dominant set-
ting betweencfseeds andrnd1seed. For coverage,cfseeds
has higher initial coverage thanrnd1seed in apachepoi and
itextpdf , which is reasonable sincecfseeds has more initial
seeds. However, the �nal performances of them are similar.
For unique bugs,cfseeds performs better thanrnd1seed in
apachepoi anditextpdf but worse inpdfbox andjunrar . An
explanation is that the exploration ability of the fuzzer itself
is good enough, therefore the fuzzer can quickly explore all
usage scenarios.‚ Mostly, the con�dence intervals (shadows
along the lines) ofrnd1cf are observably wider than others.

USENIX Association 32nd USENIX Security Symposium 2877

(a)apachetar (b) apachepoi (c) itextpdf (d) junrar (e)pdfbox (f) zip4j

Figure 8: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C3.X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 6: Unique False Positives Statistics.Bad Data Dep, Invalid
Call Seq, andImproper Cond stand for the false crashes caused by missing
or invalid API data dependencies, invalid API call sequences, and missing
API control dependencies, respectively. The number of false dead loops are
counted into a standalone typeDead Loop.

fuzzgen rubick w.o. cf raw

Bad Data Dep 7 0 0 4
Invalid Call Seq 2 0 0 0
Improper Cond 22 7 10 2
Dead Loop 0 0 0 2

Total 31 7 10 8

This indicates that the performance ofrnd1cf among multiple
rounds of fuzzing is less stable. Interestingly, this reveals that
the potentials of di�erent usage scenarios are di�erent; there-
fore, a scheduling interface for maximizing the utilization of
multiple usages is necessary. Besides, the execution speed of
itercf is many times slower than others since it executes all
usage scenarios during one fuzzing iteration.In summary, the
scheduling interface provided byRUBICK can signi�cantly
improve the utilization of the multiple usage scenarios, and
bothrnd1seed andcfseeds are suitable setups.

4.5 False Positives (RQ4)

To study the false positives produced by the fuzz drivers, we
manually identi�ed and deduplicated false positives from all
evaluated fuzz drivers. Tbl. 6 provides the FP statistics (Tbl. 9
in Appendix G details the FP rate statistics.) Note that man-
ually written fuzz drivers are not listed since they have not
produced any false positives.rubick has the least number
of false positives. The root cause of the false positives from
rubick is that it has learned unsound usage from the con-
sumers. Besides, the rest of the false positives from other fuzz
drivers can either be avoided byRUBICK ’s control �ow mod-
eling or be �ltered out byRUBICK ’s distillation. Generally,
RUBICK produces less false positives thanFUZZGEN. And the
control �ow sensitivity and denoising helps in reducing the
false positives caused by fuzz drivers.

All of rubick ’s false positives have the same root cause.
They are of typeImproper Cond and appear initextpdf .

Typically, a consumer can contain an unsound usage which
calls page.getxxx() without checking whether thepage is
null or not. The distillation inrubick cannot �lter this un-
sound usage out since this usage works well with a valid pdf
�le. Except this, the rest false positives found in other fuzz
drivers can be �ltered or avoided byrubick : ¶ ForBad Data
Dep, fuzzgen passes �xed values which are supposed to be
loop control variables for some APIs. For example,fuzzgen
usesgetSheet(0) while the correct usage isgetSheet(i)
where i ranges from0 to the number of sheets in this in-
put. When the mutated input contains zero pages, the fuzz
driver will crash. raw has false positives since it calls an
API with missing arguments. Indeed it does not have enough
data dependencies to �ll in all arguments of that API.• For
Invalid Call Seq, fuzzgen calls pdf.getNumberOfPages()
after it callspdf.close() . This invalid sequence does not
come from the consumer but is introduced byfuzzgen ’s co-
alescing strategy.‚ For Improper Cond , fuzzgen andw.o.
cf call APIs without checking the API usage precondition.
For example, they calliteratorX.next() without checking
iteratorX.hasNext() == true , which causes false crashes.
„ For Dead Loop, raw got stuck since it does not �lter out
dead loops inside its automata. All the cases can be solved
with rubick ’s control �ow modeling and distillation features.

4.6 Real-world Application (RQ5)
Fuzz Driver Generation RUBICK has been used to generate
fuzz drivers for eleven attack surfaces, including the attack
surfaces in evaluated projects,metadata-extractor , Apache
Tika , fastjson , andjackson . The selection criteria is that
they are popular Java projects on both PC and Android systems.
Therefore, �nding the bugs of these projects can bene�t the
software of both systems. Additionally, we directly generated
human readable fuzz drivers containing one usage scenario.
Two of them have been merged into OSS-FUZZ.
Long-term Fuzzing Campaign With the generated fuzz
drivers, we conducted a three-month fuzzing campaign. In
total, 199 bugs have been found and responsibly reported
to the vendors (see full list in Appendix H). The types of
the found bugs cover Uncaught Exception, Stack Over�ow,
Out-Of-Memory, and In�nite Loop. Four CVE numbers have

2878 32nd USENIX Security Symposium USENIX Association

been assigned. To further evaluate the impact of these bugs,
we built a work�ow to semi-automatically identify the APPs
which are truely exploitable by these bugs. We successfully
exploited eleven APPs and four of them have 10,000,000+
download counts in Google Store. Speci�cally, the APPs can
behave abnormally (crash, stuck, etc) when users try to open
the POCs. One interesting case is that a top APP (10,000,000+
download count) will be stuck and occupy all memory as long
as the POC exists in the �le system of the phone and the user
refreshes the �le list in UI. Simply restarting the APP cannot
solve this issue since the APP tries to recover the last opened
�le list in the background. We’ve responsibly noti�ed all APP
vendors about the security issues and provided �x suggestions.
More details can be found in our website [5].

5 Limitation & Future Work

More Types of API Dependencies Currently,RUBICK only
extracts common API control dependencies (branches and
loops related with outputs of API functions) from the con-
sumers. However, there exists API dependencies that cannot
be precisely described byRUBICK. For example, the input
value of the API functions may also a�ect its following us-
ages, or some usages can be out of the description ability of
DFA such as time related usage. To fully support these de-
pendencies, extra modeling or even new models need to be
developed. We leave the support as future work.
More Learning Sources The two major learning sources
of RUBICK are the static analysis of the example code and the
execution information of the generated code. On one hand,
these sources provide necessary information for generating
valid fuzz drivers. On the other hand, the learning ability of
RUBICK is limited by them. For instance, due to the lack of
proper semantic guidance, it is hard to reasonably infer usage
of the APIs which are not used in the consumer programs
from the used. Domain knowledge, documentations, code
comments, or even function names are complementary sources
containing high level API semantics which are promising to
improve the learned usage. In the future, we plan to research
learning usage from multiple dimensions of sources.
Other Programming Languages Currently,RUBICK gen-
erates fuzz drivers for Java code. There are no fundamental
di�erences for applyingRUBICK to other languages since its
core methods are based on general concepts of modern lan-
guages. However, besides engineering e�orts for adaptation,
extendingRUBICK to other languages may require additional
e�orts to solve language-speci�c challenges. For example, for
languages requiring standalone compilation, collecting analyz-
able consumer programs requires language-speci�c heuristics
for compilation. For generating C/C++ fuzz drivers, the data
dependency extraction inRUBICK may need additional strate-
gies for handling pointers and structs.

6 Related Work

Fuzz Driver Generation Recently, several works have been
published on this emerging research topic.FUDGE [26] syn-
thesizes candidate fuzz drivers based on the code snippets
sliced from the consumer programs. After that, human experts
need to re�ne the drivers and determine which driver should
be used. Comparatively,FUZZGEN [1] is more automatic. It
learns an Abstract API Dependency Graph (A2DG) which
contains the call sequences of the APIs leveraging the data
�ow information. By traversing theA2DG, it synthesizes the
fuzz drivers.INTELLIGEN [3] proposes metrics to rank the API
functions and synthesizes fuzz drivers for APIs with higher
ranking.GRAPHFUZZ [27] is a semi-automatic tool which gen-
erates fuzz drivers from mutated object lifetime-aware data
�ow graphs to test the target libraries.WINNIE [28] andAP-
ICRAFT [2] focus on solving the challenges of generating fuzz
drivers for closed-source targets.WINNIE synthesizes the
fuzz driver from traces and develops a fast cloning technique
to boost the fuzzer in Windows systems. Comparatively,AP-
ICRAFT focuses more on �nding better combinations of the
API data dependencies. Among them,FUZZGEN is the most
related work toRUBICK since both of them aim to automati-
cally generate fuzz drivers via static analysis on the consumer
programs. However,RUBICK di�ers from FUZZGEN by focus-
ing on solving the discussed three challenges (Section 2.2).
API Usage and Speci�cation Mining One popular way to
learn the API speci�cation is through dynamic analysis [29,
30]. This approach learns �nite state machines (FSMs) which
describe legal sequences of method calls from large method
traces. Besides, some works mine the usage or API properties
to check the misuse or unsafe use of the APIs [31� 34]. These
works do not focus on fuzz driver generation, but they provide
inspirations for the current as well as future design ofRUBICK.
Advanced Fuzzing Techniques Fuzzing is one of the most
practical techniques for detecting zero-day software vulner-
abilities [35]. Many techniques on improving fuzzing have
been published in recent years [36� 52]. These techniques are
orthogonal toRUBICK since the fuzz drivers generated by
RUBICK can be supplied to any fuzzer.

7 Conclusion

In this paper, we proposeRUBICK, an automata based fuzz
driver generation technique. Comparing with existing works,
RUBICK has three key merits:¶ it embeds more diverse API
usages such as branches and loops;• it learns API usages from
large-scale real world projects;‚ it improves the utilization
of multiple usage scenarios. In evaluation,RUBICK shows
great advantage over the baselines.RUBICK has been used to
generate fuzz drivers for 11 popular Java libraries and two
of them have been merged into OSS-Fuzz. In total,RUBICK
has discovered 199 new bugs, including four CVEs, a�ecting
popular PC and Android software (10,000,000+ downloads).

USENIX Association 32nd USENIX Security Symposium 2879

8 Acknowledgments

We thank our anonymous shepherd and reviewers for their
insightful comments on our work, thank Dr. Li Yeting for his
valuable suggestions related with automata learning, and thank
Mr. Huang Wenjie for his helps on real world application of
RUBICK. This research is supported by the National Research
Foundation, Singapore under its the AI Singapore Programme
(AISG2-RP-2020-019), the National Research Foundation
through its National Satellite of Excellence in Trustworthy
Software Systems (NSOE-TSS) project under the National
Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-
NSOE003-0001, the RIE2020 Industry Alignment Fund �In-
dustry Collaboration Projects (IAF-ICP) Funding Initiative,
as well as cash and in-kind contribution from the industry part-
ner(s), the Hong Kong RGC Project (No. PolyU15222320) and
HKPolyU Grant (ZVG0), and the National Natural Science
Foundation of China (Grant Nos. 62125205).

References

[1] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. Fuz-
zgen: Automatic fuzzer generation. In29th^USENIX‘
Security Symposium (^USENIX‘ Security 20).

[2] C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying,
J. Wang, and Y. Liu. Apicraft: Fuzz driver generation for
closed-source sdk libraries. In30th USENIX Security
Symposium (USENIX Security 21).

[3] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang. In-
telligen: automatic driver synthesis for fuzz testing. In
2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Software Engineering in Practice
(ICSE-SEIP).

[4] K. Serebryany. ^OSS-Fuzz‘ -google’s continuous
fuzzing service for open source software.

[5] Website ofRUBICK. https://sites :google:com/
view/rubick-lore/home .

[6] D. Angluin. Learning regular sets from queries and
counterexamples.Information and computation.

[7] Human expert’s confusion on writing fuzz drivers in
oss-fuzz.https://bit :ly/3tdZT8k .

[8] Regular expression syntax of python re.https://
bit :ly/3MeAulT .

[9] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to automata theory, languages, and computation.
Acm Sigact News.

[10] F. B. Khendek, S. Fujiwara, G. Bochmann, F. Khendek,
M. Amalou, and A. Ghedamsi. Test selection based

on �nite state models.IEEE Transactions on software
engineering.

[11] J. Hopcroft. An n log n algorithm for minimizing states
in a �nite automaton. InTheory of machines and com-
putations.

[12] Apache commons compress project.https://bit :ly/
3NnNzuo.

[13] Apache poi - the java api for microsoft documents.
https://bit :ly/3x4QiBX .

[14] itext 7 - a java pdf solution.https://bit :ly/3az3CH7.

[15] junrar - java rar library.https://bit :ly/3Q17fpv .

[16] Apache pdfbox - a java pdf library.https://bit :ly/
3GQtf2v.

[17] zip4j - a java zip libraries.https://bit :ly/3zn8nOF.

[18] M. Isberner, F. Howar, and B. Ste�en. The open-source
learnlib. InComputer Aided Veri�cation.

[19] z3py � z3 api in python.https://bit :ly/3O1DKlP.

[20] Maven repository.https://bit :ly/3RU2EGe.

[21] Appbrain.https://bit :ly/3S8mI7y .

[22] Coverage-guided, in-process fuzzing for the jvm.https:
//bit :ly/3anbZWg.

[23] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating fuzz testing. InProceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security.

[24] Sourcegraph.https://bit :ly/3mn2yJj .

[25] Soot.https://bit :ly/3MgKI55 .

[26] D. Babi¢, S. Bucur, Y. Chen, F. Ivan£i¢, T. King, M. Ku-
sano, C. Lemieux, L. Szekeres, and W. Wang. Fudge:
fuzz driver generation at scale. InProceedings of the
2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering.

[27] H. Green and T. Avgerinos. Graphfuzz: Library api
fuzzing with lifetime-aware data�ow graphs. InProceed-
ings of the ACM/IEEE 44th International Conference on
Software Engineering.

[28] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim. Win-
nie: Fuzzing windows applications with harness synthe-
sis and fast cloning.

2880 32nd USENIX Security Symposium USENIX Association

https://sites.google.com/view/rubick-lore/home
https://sites.google.com/view/rubick-lore/home
https://bit.ly/3tdZT8k
https://bit.ly/3MeAulT
https://bit.ly/3MeAulT
https://bit.ly/3NnNzuo
https://bit.ly/3NnNzuo
https://bit.ly/3x4QiBX
https://bit.ly/3az3CH7
https://bit.ly/3Q17fpv
https://bit.ly/3GQtf2v
https://bit.ly/3GQtf2v
https://bit.ly/3zn8nOF
https://bit.ly/3O1DKlP
https://bit.ly/3RU2EGe
https://bit.ly/3S8mI7y
https://bit.ly/3anbZWg
https://bit.ly/3anbZWg
https://bit.ly/3mn2yJj
https://bit.ly/3MgKI55

[29] M. Pradel and T. R. Gross. Automatic generation of
object usage speci�cations from large method traces.
In 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering.

[30] M. Pradel and T. R. Gross. Leveraging test generation
and speci�cation mining for automated bug detection
without false positives. In2012 34th International Con-
ference on Software Engineering (ICSE).

[31] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik.
^APISan‘ : Sanitizing^API‘ usages through semantic
^Cross-Checking‘ . In 25th USENIX Security Sympo-
sium (USENIX Security 16).

[32] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan,
R. Yang, and Z. Zhang. Vetting ssl usage in applications
with sslint. In2015 IEEE Symposium on Security and
Privacy.

[33] H. Chen and D. Wagner. Mops: an infrastructure for ex-
amining security properties of software. InProceedings
of the 9th ACM Conference on Computer and Communi-
cations Security.

[34] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Model-
ing and discovering vulnerabilities with code property
graphs. In2014 IEEE Symposium on Security and Pri-
vacy.

[35] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of unix utilities.

[36] M. Böhme, V. Pham, and A. Roychoudhury. Coverage-
based greybox fuzzing as markov chain.

[37] Y. Li, B. Chen, M. Chandramohan, S. Lin, Y. Liu, and
A. Tiu. Steelix: program-state based binary fuzzing. In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering.

[38] P. Chen and H. Chen. Angora: E�cient fuzzing by
principled search. In2018 IEEE Symposium on Security
and Privacy (SP).

[39] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li,
H. Wang, and Y. Liu. ^MUZZ‘ : Thread-aware grey-
box fuzzing for e�ective bug hunting in multithreaded
programs. In29th ^USENIX‘ Security Symposium
(^USENIX‘ Security 20).

[40] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie,
H. Wang, and Y. Liu. Cerebro: context-aware adaptive
fuzzing for e�ective vulnerability detection. InProceed-
ings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[41] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei,
and L. Lu. Savior: Towards bug-driven hybrid testing.
In 2020 IEEE Symposium on Security and Privacy (SP).

[42] C. Lyu, S. Ji, C. Zhang, Y. Li, W. Lee, Y. Song, and
R. Beyah. Mopt: Optimized mutation scheduling for
fuzzers. In28th USENIX Security Symposium (USENIX
Security 19).

[43] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and
X. Zhou. Ecofuzz: Adaptive energy-saving greybox
fuzzing as a variant of the adversarial multi-armed bandit.
In 29th USENIX Security Symposium (USENIX Security
20).

[44] C. Zhang, Y. Li, H. Chen, X. Luo, M. Li, A. Q. Nguyen,
and Y. Liu. Bi�: Practical binary fuzzing framework
for programs of iot and mobile devices. In2021 36th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE).

[45] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K.
Cha. Smartian: Enhancing smart contract fuzzing with
static and dynamic data-�ow analyses. In2021 36th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE).

[46] J. Choi, K. Kim, D. Lee, and S. K. Cha. Ntfuzz: Enabling
type-aware kernel fuzzing on windows with static binary
analysis. In2021 IEEE Symposium on Security and
Privacy (SP).

[47] M. Böhme, V. J. ManŁs, and S. K. Cha. Boosting fuzzer
e�ciency: An information theoretic perspective. In
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[48] Y. Zheng, Y. Li, C. Zhang, H. Zhu, Y. Liu, and L. Sun. Ef-
�cient greybox fuzzing of applications in linux-based iot
devices via enhanced user-mode emulation. InProceed-
ings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis.

[49] Y. Aafer, W. You, Y. Sun, Y. Shi, X. Zhang, and H. Yin.
Android^SmartTVs‘ vulnerability discovery viâ Log-
Guided‘ fuzzing. In30th USENIX Security Symposium
(USENIX Security 21).

[50] T. Cloosters, J. Willbold, T. Holz, and L. Davi. Sgxfuzz:
E�ciently synthesizing nested structures for sgx enclave
fuzzing. InUSENIX Security.

[51] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi,
and T. Holz. Nyx-net: network fuzzing with incremental
snapshots. InProceedings of the Seventeenth European
Conference on Computer Systems.

USENIX Association 32nd USENIX Security Symposium 2881

Algorithm 3 Solution Set Division
Input: L I (List of solution setŝ R1;R2 ::: Rm‘)
Output: L O (List of solution setŝ R¤

1;R¤

2 ::: R¤

n‘)
1: procedureSOLUTION-SET-DIVISION(L I)
2: L O } L I
3: while ˙ R¤

i ;R
¤

j ¸ L O;R¤

i ª R¤

j � ç
4: Eliminateç insideL O
5: Remove duplicateR¤ insideL O
6: for k in [len.L O/; len.L O/ * 1 ::: 2]
7: if ˙ R¤

x1;R¤

x2 ::: R¤

xk ¸ L O;R¤

x1 ª R¤

x2 ::: ª R¤

xk � ç
8: RemoveR¤

x1;R¤

x2 ::: R¤

xk from L O

9: R¤

new } R¤

x1 ª R¤

x2 ::: ª R¤

xk

10: L O
+
} R¤

new;.R¤

x1 * R¤

new/;.R¤

x2 *
R¤

new/ ::: .R¤

xk * R¤

new/
11: break
12: return L O
13: end procedure

[52] Q. Liu, C. Zhang, L. Ma, M. Jiang, Y. Zhou, L. Wu,
W. Shen, X. Luo, Y. Liu, and K. Ren. Firmguide: Boost-
ing the capability of rehosting embedded linux kernels
through model-guided kernel execution. In2021 36th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE).

[53] Multiplication principle.https://bit :ly/3MjY6W7.

[54] N. Nachar et al. The mann-whitney u: A test for assessing
whether two independent samples come from the same
distribution.

A Algorithm for Unifying Condition Letters

To solve the con�ict of two sets of condition letters,RUBICK
needs to �nd a set of new condition letters which can represent
both two sets. For example, given two sets of con�icting condi-
tion lettersA1 : v < 1;A2 : v g 1 andB1 : v < 2;B2 : v g 2,
the new set can beC1 : v < 1;C2 : 1 f v < 2;C3 : v g 2
whereA1 � C1, A2 � C2ðð C3, B1 � C1ðð C2, B2 � C3.

Note that each condition letter intrinsically represents a so-
lution set which satis�es the condition. And the operations of
the conditions can be mapped to the operations of the solu-
tion sets. For example, given two conditionsCi , Cj and their
solution setsRi , Rj , Ci �� Cj == true � Ri ª Rj , Ci ==
true �� Cj == false � Ri * Rj ,Ci ðð Cj == true � Ri ä Rj .

The con�ict of two sets of condition letters is caused by the
intersection among two or more solution sets. Intuitively, by
de�ning all intersected and disjoint parts among the solution
sets as standalone condition letters, each original condition
letter can be represented as their combinations. Algorithm 3
shows howRUBICK divides the solution set to a new set sepa-
rating the intersected and disjointed parts. It accepts a list of
all related solution sets as inputL I and outputs the divided

Algorithm 4 Independent Usage Scenarios Collection
Input: A (Usage Automaton)
Output: L cf (Control Flow Usage List)

1: procedureDFS(A, curS, curPath, curColorBox)
2: colorBoxSet} ç
3: numOfChoices, choices} Calc-Choices(A, curS)
4: if numOfChoices== 0

. reaches the end of automaton

5: colorBoxSet
+
} curColorBox

6: else
7: dye} (numOfChoices> 1)
8: for choice¸ choices
9: curPath

+
} curS

10: if dye
11: curColorBox

+
} Gen-Color(choice)

12: subColorBoxSetList} []
13: for event, nextŞ choice
14: if nextSÌ curPath
15: subColorBoxSetList

+
} DFS(A, nextS, cur-

Path, curColorBox)
16: else

. meets the loop

17: colorBoxSet
+
} curColorBox

18: colorBoxSet
+
} Crossover(subColorBoxSetList)

19: if dye
20: curColorBox} curColorBox* color
21: curPath} curPath* curS
22: return colorBoxSet
23: end procedure
24: L cf } []
25: for initialS ¸ Get-Initial-States(A)
26: colorBoxSet} DFS(A, initialS, [] , ç)
27: L cf

+
} Convert-ColorBox-To-CF(colorBoxSet)

solution sets. In each iteration (line 4 to line 11), it picks one
intersection which has highest k (k is the number of the in-
tersected solution sets). The rationale is that starting from
picking an intersection with highest k can avoid missing the
intersected solution sets. The algorithm can �nally stop since
it removes one intersection of the solution sets per iteration
(line 4 to line 11) and the number of intersections is �nite.
Besides, any original solution setRx whereRx ¸ L I can be
represented as the union of solution sets fromL O. To repre-
sentRx , we only need to �nd all subsets ofRx from L O. Our
website [5] posts a running example of this algorithm.

In implementation, the SAT solver is used to answer whether
the condition represented by a solution set has an answer or
not. For example,Ri ª Rj � ç means SAT solver can �nd a
solution satis�esCi �� Cj == true. The SAT solver provides
base functionality for this algorithm, it is used in line 3, 4, 5,
7, used for simplifying the conditions represented byL O, and
for �nding the subsets to represent the original solution set.

2882 32nd USENIX Security Symposium USENIX Association

https://bit.ly/3MjY6W7

Table 7: Statistics of All Applied Projects of RUBICK.

Attack Surface pdfbox apachepoi itextpdf junrar zip4j apachetar jackson tika-jpeg fastjson java-json metadata-jpeg

of APIs 2779 1320 810 619 521 195 175 162 159 137 58

Table 8: P-values (Mann Whitney u test) for Evaluation.The p-value which means statistical signi�cance (f 5e-2) is highlighted as bold.

apachetar apachepoi itextpdf junrar pdfbox zip4j

cov bug cov bug cov bug cov bug cov bug cov bug

RQ1
rubick � fuzzgen 8.73e-05 - 1.06e-01 3.34e-03 8.93e-05 3.00e-04 9.13e-05 1.61e-02 9.13e-05 7.83e-05 2.95e-05 7.97e-06
rubick � manual 8.01e-05 7.97e-06 9.13e-05 8.54e-05 9.13e-053.23e-01 9.13e-05 1.64e-05 9.13e-05 7.69e-05 5.16e-05 7.97e-06

RQ2 C1 w.o. cf � w. cf 6.59e-02 7.97e-06 9.13e-05 8.63e-05 1.81e-03 4.53e-01 3.19e-05 1.64e-05 1.10e-03 6.02e-03 7.21e-05 7.97e-06

RQ2 C2 denoised� raw 5.20e-02 7.97e-06 7.43e-05 3.12e-05 9.08e-05 1.15e-043.39e-01 4.81e-01 1.41e-03 3.29e-03 1.11e-02 7.97e-06

RQ2 C3

rnd1seed � cfseeds 4.70e-01 - 1.36e-01 8.50e-03 2.85e-01 1.25e-01 1.29e-02 6.12e-02 1.37e-01 8.77e-02 3.23e-02 -
rnd1seed � itercf 9.08e-05 3.84e-02 9.13e-05 7.83e-05 9.08e-056.63e-02 9.13e-05 4.08e-03 9.13e-05 7.81e-04 8.49e-05 2.71e-03
rnd1seed � rnd1cf 1.63e-01 7.97e-06 9.13e-05 8.83e-05 9.13e-05 4.40e-04 2.09e-04 3.68e-05 1.64e-04 7.65e-05 8.54e-05 1.64e-05
cfseeds � itercf 8.98e-05 3.84e-02 9.08e-05 4.74e-05 9.08e-05 8.83e-03 1.06e-021.51e-01 9.13e-05 3.21e-03 2.82e-04 2.71e-03
cfseeds � rnd1cf 3.11e-01 7.97e-06 9.08e-05 5.43e-05 9.13e-05 7.97e-05 1.36e-03 5.02e-05 6.55e-04 7.60e-05 3.58e-03 1.64e-05
itercf � rnd1cf 9.13e-05 8.08e-04 1.41e-03 7.83e-05 9.08e-05 3.61e-04 1.03e-02 4.99e-057.02e-02 6.39e-05 8.06e-02 4.52e-05

B Algorithm for Independent Usage Scenario
Collection

Algorithm 4 lists the details of collecting independent usage
scenarios from a given usage automaton. Before discussing
the algorithm, we explain some properties for counting the
independent usage scenarios. Take the automaton in Fig. 1.e)
as an example, only the branch in state 1 increases the number
of independent usage scenarios. This is because eventsBand
Hare independent of each other. When the fuzz driver reaches
state 1, it can decide to follow any branch by triggering eitherB
or H, i.e., calling any of the two API functions. Comparatively,
the branches of state 3 and 5 do not a�ect the number of
independent usage scenarios since the events on all branches
are related with each other, e.g., in state 3, fuzz driver can
only trigger eithery or n depending on the value ofret_C .
Note that the case can be more complicated when both the
function events and condition events appear in the branches of
a given state. To correctly collect the usage scenarios, a base
observation is that every independent usage scenario can be
identi�ed by the choices it made in these branches. Therefore,
using the choice set as the signature, we can group all paths
of the automaton. Each group is identi�ed as an independent
usage scenario. Algorithm 4 presents a DFS-based approach
to this idea. Each choice is assigned with a unique color and
every path has its own color box containing the colors it has
been dyed (the choices it made along this path). The algorithm
traverses the automaton starting from every initial state (line
25 � 27). For each state, it �rst calculates its independent
choices. Zero choice means the end of the path (line 4). The
colorbox will only be dyed when there are multiple choices
(line 10 � 11). The algorithm iterates each transition of each
choice to continue the DFS traverse. For the choice which has
more than one transition (such as they andn for state 3 in
above example), thecolorBoxSetof each transition should
be crossovered according to the Multiplication Principle [53]

Figure 9: Work�ow of Automata-Guided Fuzz Driver

Figure 10: Work�ow of Membership Query (MQ)

(line 18). Finally, it converts each color box into an usage
scenario (line 27).

C Detail of Automata-Guided Fuzz Driver

General Work�ow Fig. 9 illustrates the work�ow of our
fuzz driver. Step 1 is a one-time e�ort which is done at the
beginning of the fuzzing. Step 2-5 represent one fuzzing it-
eration. Speci�cally, the italic sentence indicates that some
bytes of the mutated input are used for specifying the testing
target scenario, which is the designed scheduling interface.
Boosting Active Learning The automata-guided fuzz
driver technique not only helps the scenario scheduling but
also signi�cantly boosts the usage distillation process. In dis-
tillation, RUBICK needs to dynamically validate the event se-
quences for answering MQ. Initially,RUBICK did this in three
steps:¶ conversion from usage to code;• code compila-
tion; ‚ code execution.RUBICK met performance issues since
millions of compilations are una�ordable.RUBICK uses the

USENIX Association 32nd USENIX Security Symposium 2883

Table 9: Statistics of False Positive Rate.FP, Ttl stand for the amount of deduplicated false positives, total bugs respectively. FP-raw, Ttl-raw stand for the
amount of their non-deduplication versions. Pct. stands for false positive rate whose value is eitherF P

T tl or F P* raw
T tl* raw according to its column. The �eld which has

the smallest Pct. in that column is highlighted in bold.

Attack
Surface

apachetar apachepoi itextpdf junrar pdfbox zip4j

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

fuzzgen 16/18(88.89%) 160/77655(0.21%) 4/42(9.52%) 40/8458(0.47%) 3/12(25.00%) 30/3430(0.87%) 1/4(25.00%) 10/8446(0.12%) 1/9(11.11%) 10/37107(0.03%) 6/15(40.00%) 60/398(15.08%)
rubick 0/2(0.00%) 0/2660(0.00%) 0/46(0.00%) 0/5124(0.00%) 7/28(25.00%) 48/2123(2.26%)0/4(0.00%) 0/691(0.00%) 0/16(0.00%) 0/43039(0.00%) 0/10(0.00%) 0/338(0.00%)
wocf 2/3(66.67%) 20/9960(0.20%) 0/24(0.00%) 0/5916(0.00%) 3/20(15.00%) 43/4600(0.93%) 3/5(60.00%) 30/40(75.00%) 0/10(0.00%) 0/55105(0.00%) 2/11(18.18%) 20/310(6.45%)
raw 3/4(75.00%) 8732/9137(95.57%) 2/2(100.00%) 1946/1946(100.00%) 3/15(20.00%) 14/897(1.56%) 1/5(20.00%) 10/653(1.53%)0/11(0.00%) 0/21270(0.00%) 1/8(12.50%) 10/280(3.57%)

Figure 11: Case Study of CVE-2022-23596

automata-guided fuzz driver to solve this performance bot-
tleneck. As shown in Fig. 10, the amount of compilation is
reduced to one. By building a general model interpreter, the
validating event sequence can be fed in as data. Note that the
sequence can be represented as a naive DFA without branches
and loops. Then the interpreter translates the sequence into
real actions, e.g., calls an API, updates a variable, etc. For a
given alphabet, only one fuzz driver needs to be generated and
compiled. In practice,RUBICK can test thousands to tens of
thousands event sequences per second, which is thousands of
times faster than the initial implementation.

D Statistics of All Projects

Tbl. 7 lists the number of APIs of these tested attack surfaces.
RUBICK evaluates the top six.tika-jpeg andmetadata-jpeg
represent the attack surface accepting JPEG input format in
Apache Tika and metadata-extractor.

E List of the P-values in Evaluation

Tbl. 8 lists all p-values used in evaluation. The p-values are
acquired from Mann-Whitney U-test [54]. The p-values which
are smaller than 5e-2 are highlighted in bold. "-" represents
that the p-values cannot be calculated since the data in both
sides are equal, which also means one side is not statistically
signi�cant than the other side.

F Case Study of Control-Flow-Sensitivity

Fig. 11 shows a case which demonstrates how control �ow
sensitivity improves fuzzing performance. The case comes
from one of our found bugs. It shows a fuzz driver accepting

Table 10: Statistics of Reported Bugs.Bugs are deduplicated manually.

CVE Uncaught
Exception

Stack
Over�ow

Out of
Memory

In�nite
Loop

Apache PdfBox Under Review 59 8 - -
Apache POI - 6 - - -
fastjson - 15 7 - -
iText 7 CVE-2022-24196/7 27 27 2 -
jackson - 2 - - -
json-java - 1 - - -
junrar CVE-2022-23596 - - - 1
metadata-extractor CVE-2022-24613 30 - 3 -
zip4j - 11 - - -

SUM 4 151 42 5 1

an input �le which is of a certain archive format. Since the
input �le can archive multiple �les, it iterates the �le head-
ers (FileHeader) to extract all contained �les. The function
extractFile (line 7) contains an in�nite loop bug which can
be triggered by malformed �le headers. The loop iteration
of fileHeader (line 2 � 7) increases the possibility to �nd
this bug since the iteration can force the fuzz driver to apply
extractFile on every �le header. In other words, by adding
execution states to di�erentiate the API invoking contexts, the
iteration loop maximizes the exploitation of mutated input. If
the fuzz driver is not aware of the states for loop, the muta-
tions of the content which belong to non-�rst �le headers will
be wasted.Conclusively, control �ow sensitivity improves the
performance of the fuzz drivers by providing additional states
to distinguish di�erent API invoking contexts.

G Statistics of False Positive Rate

Tbl. 9 lists the statistics of false positive rate. The results
support the conclusion discussed in Section 4.5. In most cases
(5/6), RUBICK has the lowest false positive rate (0.00 %).

H List of Found Bugs

Tbl. 10 lists the bugs we found and reported for the fuzzed
attack surfaces using the fuzz drivers generated byRUBICK.
The listed bugs are already deduplicated. Till now, most bugs
are �xed or under the �x plan of the vendors.

2884 32nd USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	

	

