O Eu RN EREER

usenix

THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

Automata-Guided Control-Flow-Sensitive
Fuzz Driver Generation

Cen Zhang and Yuekang Li, Nanyang Technological University, Continental-NTU
Corporate Lab; Hao Zhou, The Hong Kong Polytechnic University; Xiaohan Zhang,
Xidian University; Yaowen Zheng, Nanyang Technological University, Continental-

NTU Corporate Lab; Xian Zhan, Southern University of Science and Technology;
The Hong Kong Polytechnic University; Xiaofei Xie, Singapore Management
University; Xiapu Luo, The Hong Kong Polytechnic University; Xinghua Li,
Xidian University; Yang Liu, Nanyang Technological University, Continental-NTU
Corporate Lab; Sheikh Mahbub Habib, Continental AG, Germany

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-cen

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

|||||||'|_]Q|
CLERCEEED D A

+ > =



Automata-Guided Control-Flow-Sensitive Fuzz Driver Generation

Cen Zhang YuekanglLi = HaoZhou Xiaohan Zhand Yaowen Zheng Xian Zhan
Xiaofei Xie¢ XiapuLuo  XinghuaLiT Yang Liu Sheikh Mahbub Habib
Nanyang Technological University, Continental-NTU Corporate LabThe Hong Kong Polytechnic University T Xidian University
¢ Singapore Management University Southern University of Science and Technology Continental AG, Germany

Abstract fuzzing can produce more precise results with few false-

. . . . positives and provide security analysts with Proof-of-Concept
Fuzz drivers are esser_mal for fuz_zmg _Ilbrgry APls. _How- inputs to replay the bugs. However, as a dynamic technique,
ever, manually composing fuzz drivers is di cult and time- fuzzing requires an executable of the target software as the

consuming. Therefore, several works have been proposed tqe ging'subject. To fuzz libraries, executable programs using
generate fuzz drivers automatically. Although these works can the library functions must be generated. Conventionally, these

learn correct API usage from the consumer programs of theprograms are called fuzz harnesses or fuzz drivers.

target library, three challenges still hinder the quality of the Fuzz drivers can be composed manually by human experts

generated fuzz drivers: 1) How to learn and utilize the control . .
dependencies in APl usage: 2) How to handle the noises of°" generated automatically by tools. To compose fuzz drivers,
' experts have to learn the usage of library APIs from docu-

the learned API usage, especially for complex real-world con- . L .
i L mentations or example programs. Not only is this learning
sumer programs; 3) How to organize independent sets of API . . . .
process tedious and time-consuming, but also the quality of

usage inside the fuzz driver to better coordinate with fuzzers. . . .
the composed fuzz drivers heavily depends on the experience

-.LO ZOIVe :helse challen%es,fwe péo.pm'CK’ a? autton;]at.a— of the human experts. Therefore, techniques for automatically
guided control- ow-sensitive fuzz driver generation technique. oo rating fuzz drivers are needed.

Rusick has three key features: 1) it models the API usage (in- Several existing worksl[ 3] focus on automatic fuzz driver
cluding API data and control dependencies) as a deterministic . >ting I .
generation. Similar to manually writing the fuzz drivers, these

nite automaton; 2) it leverages active automata learning algo- . )
. - TN . . techniques also need to learn the correct usage of library APIs
rithm to distill the learned API usage; 3) it synthesizes a single ) . . L
to ensure testing e ectiveness. Additionally, most existing

automata-guided fuzz driver, which provides scheduling inter- .

. - works learn such knowledge by analyzing how the consumer
face for the fuzzer to test independent sets of APl usage durlngprograms (aka example programs) of the libraries utilize the
fuzzing. During the experiments, the fuzz drivers generated byAPI functions. After generating the fuzz drivers, these tech-

Rusick showed a signi cant performance advantage over the niques also need to rank][or ensemble ] the generated
baselines by covering an average of 50.42% more edges than q g

fuzz drivers generated HjuzzGEN and 44.58% more edges fuzz driyers o) that_the fuzzer can test them subsFantigIIy.
than manually written fuzz drivers from OSS-Fuzz or human Despite _the previous e orts, three_ challenges still ex-|§t.for
experts. By learning from large-scale open source projects,bmh learning the corrept usage of I|br§1ry APIs and utilizing
RuBICK has generated fuzz drivers for 11 popular Java projects th€ generated fuzz driver&1. Some library APIs should
and two of them have been merged into OSS-Fuzz. So far,re5|de in branches and loops where the conditions are guarded
199 bugs, including four CVEs, are found using these fuzz by the results of other APIs, but the API usage learned by

drivers, which can a ect popular PC and Android software existing works emphasizes on data dependencies among the
with dozens of millions of downloads APIs while ignoring most control dependencies among them.

Not including the control dependencies can end up in failing
to invoke certain APIs properl{2. The learned API usage of

1 Introduction existing works su ers from noises such as redundant API us-
ages or wrong APl dependencies. Failing to remove the noises

bility detection. Compared with static analysis techniques, €specially when it needs to learn from complex real-world
consumer program€&3. Multiple fuzz drivers can be gener-

<Corresponding Author. ated for a single target library with existing works, but how
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to organize and utilize these fuzz drivers to guarantee that an automata-based solution to solve these challenges;
they can be substantially tested by the fuzzer is understud-  We implementedRuBick as the rsttool which can learn
ied. Poorly organized fuzz drivers can distract the fuzzer and API usage from large-scale open source projects and

hinder the fuzzing performance. generate control- ow-sensitive fuzz drivers;

To address the three challenges, we projfassick * an We appliedRuBick to 11 popular Java projects and dis-
automata-guided control- ow-sensitive fuzz driver generation covered 199 bugs (four CVEs). We responsibly disclosed
techniqueC1. The rationale oRuBICK is that API control them and helped the vendors to x them.

dependencies such as branches and loops can be represented agyg|ck is open-source for facilitating future researéh [
automatons. By properly de ning the events (i.e., the alphabet

of an automaton), API control dependencies are interpreted L .

as event sequences (i.e., accepted strings of an automatord.  Preliminaries

Based on this modeling, extraction algorithms are designed

to extract usage automatons from API consum@gs.Since 2.1 Backgrounds

an automaton intrinsically represents a set of accepting eventy atarministic Finite Automaton  We use Deterministic Fi-
sequences, denoising extracted usages means generating, g automaton (DFA) to model the API usage. DFA contains
minimized automaton which only accepts valid sequences. o alements: a nite set of state®, a set of input symbols
Rusick adapts L*, an active automata learning algorithm, to (aka letters) called the alphabet a transition function :
accomplish this goal. By de ning what is a valid sequence Q, an initial stateq,, Q, and a set of nal states
(membership queries, abbr as MQ) and what is an acceptable- o |ntrinsically, a DFA is an acceptor of strings, i.e., se-
automaton (equivalence query, abbr as EQ), the algorithm, e ces of letters. Any sequence corresponding to a path from
starts from an _empty automaton and iteratively improves th_at the initial state to a nal state is accepted by that DFA.
automaton using feedbacks from MQ and EQ until EQ is ztomata Learning Algorithm ~ Generally, the algorithm

satis ed. RuBICK c.omblnes static and dynamic mformatlon. learns an automaton from a set of positive examples (repre-
to answer the va!ldlty of sequences. And the 'automaton IS sents for valid strings, abbr as PE) and negative examples
acceptable when it does not falsely a_ccept or reject seq“encefrepresents for invalid strings, abbr as NE). There are two
Each extracted automaton is denoised separately and latefy s of the algorithms: passive learning and active learning.
merged together with others as one usage autom@®mote e former requires a nite set of PEs and NES of the system
that the usage automaton may contain multiple independent,,yer learning (SUL) before learning, whereas the latter nds
sets of AP| usages. Inst.ead of generating mult|ple fuzz (.jnvers,PES and NEs by asking teacher questions about the SUL dur-
RUB!CK generates. a §|ngle automata-guided fL,JZZ drlver.' It ing the learning. Passive learning builds output automaton
provides a scheduling interface that fuzzers can pick the testingy, ;o g on the given learning input. It usually has adequate
usage set by mutating speci ¢ bytes of input. By doing SO, time complexity but its performance heavily depends on the
the utilization of independent API usage sets are bene ted by 1o resentativeness of the learning input. For active learning, it
existing See‘,j schedulers |n§|de fuzzers. requires a teacher to answer two kinds of queries of the SUL:
'In eyaluat|on, the fuzz dr|2vers druBicK are compared o membership query (MQ) and the equivalence query (EQ).
with drivers fromFuzzGeN © and from OSS-Fuzz4] or The membership query asks about the validity of a string, i.e.,
other human experts on six popular Java prOJegts. The results, given string is of PE or NE. And the equivalence query asks
show thaiRuBICK outperforms its competitors in both code  \ypetherthe learned automaton is equivalentto the nal answer.
coverage (on avg. 50.42%, 44.58% more edge coverage tha ihe answer is no, the teacher also needs to return a counterex-

FUZZGEN, mar;ually wri(t)ten fuzz drivers) and unique bugs  5mpje (4 falsely accepted/rejected string) as feedback. The
(on avg. 45.92%, 98.59% more unique bugs MaZZCEN,  \hole process of active learning is that: the algorithm starts
manually written fuzz driversRusick has generated fuzz  f4m an empty automaton, then it iteratively improves that

drivers for 11 open source projects and two of them have g 1omaton using feedback from MQ and EQ until the EQ is
been merged into OSS-Fuzz. So far, 199 bugs (four CVES)g4is ed. Active learning algorithms, e.g., LB], have a good

have been found using these fuzz drivers. These bugs are Ofgarning performance (the learned automaton is minimized

popular Java projects such as Apache Software Foundation, g accurate) but su er from its exponential learning costs.
which a ects the PC and Android software with dozens of

millions of downloads. ..
In summary, our contributions are: 2.2 Challenges of Existing Works

We identi ed three key challenges for generating fuzz Fig. 1 llustrates the three challenges of building a desired fuzz
drivers from consumer programs. Besides, we proposeddriver using an example simpli ed from real-world cases.
I , . C1: Modeling of API Control Dependencies The rst
RuBICK is a Dota 2 hero who can learn spells from enemies and cast .
them more powerfully. c_hallenge is how to model and learn the cont_rol dependen-
2FuzzGEN is the most related work and we implemented its Java version. cies among the library APIs. APIs can have di erent types
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Figure 1: Motivation ExampleThe lettersA - | are used to represent the call of the API function which appears at the same line with the letter in sub gure

a), b). The symbols *,, and represent the example cases that existing works haven't solved in C1, C2, C3 respectively. In sub gure d), #1 - #6 represent group
1-6,and represents the execution order of a group’s functions depends on the input (i.e., fuzzer scheduling interface).

of dependencies. For example, in Fig. 1.a) and Fig. 3.b), when the learning starts from imperfect entry points of the
andfl are the explicit data dependency betweemdB and program. For instance, Fig. 1.c) shows the cases of applying
the implicit data dependency betweigandl, respectively.  FuzzGEeN to the consumer programs in Fig. 1.a) and Fig. 1.b).

< andfi are two types of control dependencies (representing The extracted usage showPagesandmain (line 17) is incor-

loop and branch). Unfortunately, limited by how they model rect. ForshowPagesthe usage is incomplete since the source
the API usage, existing works do not consider most control of thepdf is missing. Fomain (line 17), the usage has unnec-
dependenciesuzzGEN [1] uses attenedA?DG (groups of essary complexity. In practice, starting the extraction from
API call sequences) to describe the usageARUCRAFT [2] main (the default strategy dfuzzGEN) usually incurs ine -

uses a data dependency tree. Both models are not aware afient or even incorrect results since the extracted usages can
the control dependenciesandfi . As a compensation, they be too complex to be usee; Extracted usage can be erro-
proposed heuristics to locate the error branches (by recogneous due to the coupling of the usage code and the consumer
nizing the call of signature functions suchedt ), which program code. For example, an usage irrelevant loop wrapping
covers a special case of the control dependency. Though notround an API in the consumer program may add a dead loop
emphasized in previous works, control dependencies can sigto the extracted usage. The usage can be incorrect due to

ni cantly a ect the quality of the generated fuzz drivers. For the imprecise analysis. Failing to remove the noises not only
example, in Fig. 1.a), missing the control dependencies canwastes fuzzing resources but also introduces false positives
cause not only the improper API invocatich¢wPagescan during fuzzing. Unfortunately, existing works do not handle
get invoked even when the program failed to parse the input if the noises. Considering the ubiquity of the noises and the
missingfi ), but also the insu cient exploitation of the input ~ vague boundaries between the noise and the usage, denoise
(the program will not parse the second page onwards if missingtechniques should be introduced.

< ). Consequently, to learn and utilize control dependencies,C3: Utilization of Independent Usage Scenarios The

a more descriptive model is needed. third challenge is how to e ectively organize independent
C2: Noises in Learned Usage The second challenge is the API usage scenarios during fuzzing so that the fuzzer can sub-
learned API usage can be full of noises while learning from stantially test the APIs. Here we call a set of self-sustaining
real world consumer programs (e.g., open-source projects inAPI functions arusage scenario~or example, in Fig. 1.c),
GitHub). The noises are introduced from the following sce- the APIs extracted frorshowPdfforms one usage scenario
narios:f The learned usage can be incomplete or redundantwhile the APIs extracted frommain (In.22) forms another.
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Figure 2: General Work ow of RBICK.

Usually, more than one usage scenario can be learned fronsimplicity, the automata representing the usage are written in
the consumer programs and each one can be converted as orfeython regex syntaxg]. Using the above de nition, the loop
standalone fuzz driver. The reason why there exist multiple in Fig. 1.a) line 2 - 5 can be written #&8tFG)*Ef , and the
independent usage scenarios is two-fold. On the one handbranch in line 12 - 15 can be representeg@a(EtFG)*Ef .

for better usability or compatibility, developers may provide Similarly, the API usages of Consumer Program | and Il are
multiple sets of APIs for one functionality to users. On the ABC(yD|n(EtFG)*Ef) andAHI.

other hand, the learned usages are in uenced by consumer Based on this observatioRUBICK proposes an automata-
program speci cs, which cannot be thoroughly merged as based solution to solve the previously discussed challenges.
one usage scenario without additional domain knowledge. In Firstly, RuBiCK extracts automatons from consumer programs.
fact, even human experts who wrote fuzz drivers for OSS-The extracted automatons contain control- ow-sensitive API
Fuzz get confused about what is the proper way to handleusage but are raw. Secondly, it adapts an active learning algo-
this problem ]. Besides, existing works have not thoroughly rithm to nd a minimized automaton which removes both the
tackled this problemFuzzGEN partially solves this problem  duplicate and invalid event sequences inside each automaton.
by proposing algorithms to coalescence distinct usage sceAfter denoising RUBICK merges them together as one single
narios (merging the common nodes between two scenarioslisage automaton. Lastly, to better utilize this usage automaton,
and providing scheduling interface to fuzzer. However, as it synthesizes an automata-guided fuzz driver. The driver pro-
shown in Fig. 1.d), the coalesce of two distinct control ows is vides a scheduling interface which fuzzers can pick the testing
error-prone due to the inconsistency of their data ows (Both usage scenario by mutating speci ¢ bytes of input. Therefore,
BandHdepend/modify reader’s status.) Besides, schedulingthe usage scenarios inside the fuzz driver can be scheduled
function orders inside one group{zzGEN divides them by existing seed schedulers inside fuzzers. Fig. 1.e) shows the
into groups using relaxed top sort) tends to be unnecessaryisage automatoRuBick learned from Consumer Program |
(ReorderingD and E does not help fuzzing, so do€sand and Il. Fuzzers can choose to fuzz either usage scenario.

I.) Other works, such ag], rely on users to select the fuzz Accordingly, as shown in Fig. RuBick has three com-
drivers. The fuzzing performance can be hindered without ponentsq| Learning Materials Preparation. The materials
proper utilization strategy since some usage scenarios may geinclude the event sequences in Raw non-deterministic nite
starved during fuzzing. Therefore, a better utilization strategy automaton (NFA) format, the API data dependencies, and the
of usage scenarios should be proposed. API meta informationy Usage Automaton Learningru-

BICK rst uni es the alphabet for all Raw NFAs. Then it uses

a L*[6] based algorithm to generate a distilled (aka denoised)
2.3 Our Approach DFA[fgr each ng NFA. After distillationRuBiCK merges

The key observation is that, by properly de ning events, com- (hes€ DFAS as one usage automajoiftuzz Driver Synthesis.
mon API dependencies a ecting the control ow can be mod- RUBICK synthesizes an automata-guided fuzz driver.

eled as an automaton accepting certain event sequences. For

example, to describe API usages of Fig. 1.a) and Fig. 1.b), we 3 Methodology

de ne function eventémarked byA - 1) andcondition events

(marked byy, n,t,f). The full de nition is shown in the Alpha- 3.1 API Usage Modeling

bet part of Fig. 1.e), and the right side of Fig. 1.a) and Fig. 1.b).

A function event represents the call of an API function, e.g., APl Usage Representation RUBICK uses usage automa-
eventC means the call oPdfDocument.parse. A condition ton to represent API usage. Usage automaton contains two
event means that a constraint regarding the return values okinds of events: the function events and the condition events.
API functions has been satis ed, e.g., evgmepresents the  In the context of the automaton, a function can bind with
last return value oPdfDocument.parse equals toSUCCFor zero or more output variables. And a condition expression
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Figure 3: Loop Cases Requiring Extra Eventse usage of | and Il are
A(ItD)*If  andAl(tBJ)*f respectively (represented in regexes).

SGI JHW3DJH1X
SGI JHW3DJH
PRFNB,

$XWRP

11:
12:

consists of constants and output variables. A function event

represents an action calling an API function and updating the 13f

value of its bound output variables. A condition event rep-

resents an action that a condition expression is evaluated as
16:

true. Naively, using API functions to de ne function events

and condition events, all sequential and branch usage can bé”f
described. However, the above events can only describe thelSj

loop whose control variables’ data ow (initialization, incre-
ment, and condition) can be fully recorded by these events.2?
For example, the loop in Fig. 1.a) is fully recorded usih@

. i 22:
t,f. Fig. 3 shows two types of partially recorded loops. For .
case |, the condition and incrementiof are missed since  ,,.

ithasNext() —andit.getNext() are not API functions. For
case ll, the initialization and increment of loop’s control vari-
ablei are missed since= 0,i =i + 1 are not recorded.
Mock APlIs are introduced to describe the missing data ow of
control variables. Section 3.2.1 discusses how to locate them29
Speci cally, in case |, by introducing mock APtsock_I and
mock_J new function events, J and condition events, f 31
(tainted byret_| ) are identi ed. Therefore, the loop usage
in case | can be fully described agtd)*If . Similarly, the

N g Aol

=
o

21:

26:

28:

30:

Input: C (Consumer Program)
Output: As(Raw Usage Automatons)

1: procedure EXTRACT-USAGE(ICFG, F, ctx)
3GI3DJH PRFNB- ,WHUQWF LQW PRFNB- ITQW L 2:

A, Q, insn2Stat¢ empty nfa[],
startS, end$ new State(), new AcceptState()
for Insngnyy, , Get-Entries(F)

Q }+ [ GBtartS,Insngpyy, ctxt.clone(f ]

while Q is not empty
curS, curl, ctx¢  Q.pop()
if curl is a non-API func call instruction
. Extract and mergsubA
Fealee} ICFG.getCallee(curl)
subA} EXTRACT-USAGE(ICFG5 gjjee CtX1)
curS, A} Merge-SubNFA(curS, A, subA)
else
. Add transitions to identi ed new events o
ctxt, even} Event-ldenti cation(ctxt, curl)
if event null
nextS} new AcceptState()

A}+ new Transition(curS, nextS, event)
cur§} nexts
insn2Statg  curl : curS*
if cuthas no succs
A} new Transition(curS, endS)
else
for nextl, iICFG.getSuccs(curl)
if nextl, insn2State
nextS} insn2State.get(nextl)

A}+ new Transition(curS, nextS)
else
Q}+ QeurS, nextl, ctxt.clonef)
return A

. end procedure
As, ICFG} [], Get-ICFG(C)
s for Fearget. Get-Functions(C)

32:

As} EXTRACT-USAGE(ICFGiarger, €Mply CONtEXY)

usage in case Il can be written &i$tBJ)*f

Properties of Usage Automaton P1No initial state can
be a nal state. This is becaus®BICK treats empty usage
as invalid usageR2: Any non-empty pre x of a valid event

knowledge about the target library. Given a libreRyBIck
collects:y the candidate events and event sequencdlp

sequence is a valid event sequence. For example, in Fig. 1.b)API data dependencies; the APl meta information. The

given thataHIis valid, obviouslyAHis valid too.P3: Any event

API| meta information refers to the basic information of API

sequence containing a non-empty invalid pre x is invalid. For functions, e.g., the function signature, the type of arguments
instance, sincalH s invalid, any event sequence starting with and return value, etc. Its collection is straightforward and is
AlH s also invalid. This means that all invalid strings lead the done once per library. In the following, we only detail the
state machine into a trap staf.[P2 andP3 are useful in  collection of the learning input§ and- .

inferring the validity of event sequences which can boost the

distillation process in Section 3.3.2. )
P 3.2.1 Event Sequence Extraction

RuBICK extracts event sequences from the consumer pro-
grams by converting its control ow graph (CFG) into a non-
Rusick collects learning inputs from consumer programs deterministic nite automata (NFA). Generally this is done by
via static analysis. Note th&UBICK requires no a priori  translating some instructions into events and removing the ir-

3.2 Learning Inputs Preparation
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relevantinstructions. We rstdiscuss how events are identi ed returned byiCFG.getCallegICFG stands for Interprocedu-
from instructions, then explain the extraction algorithm. ral Control Flow Graph) in line 9 wheaurl is an indirect

Events Identi cation  The identi cation of API function ~ call. Ruick empirically picks the rst callee. If the callee
related events is straightforward: an instruction calling any iS picked wrongly, the extracted wrong usage is expected to
API function is a function event, and any branch instruction be Itered by usage distillation. The extracted automaton is
whose condition expression is tainted by output of API func- N@amed as Raw NFA since it containand can have multiple
tions is a pair of condition events (true and false branches) transitions given one speci c state and event, e.g., same events
For the identi cation of mock API related evenRUBICK can be identi ed in both paths of a branch.

needs to rstlocate the mock APIs and then apply the above

identi cation. RuBIck identi es the mock APIs of thetwo  3.2.2 Data Dependency Collection

types of loop cases discussed in Section 3.1 separately. For ) i ,
case |RUBICK additionally models the iterator interface. The € extracted Raw NFA contains control ow information of

instructions which call iterator functions with a tainted class tEe fuzzd_d_rlver, Su?lh as thefcorrgct order of AP furjctllons, or
object will be identi ed as mock API functions. For case Il the the condition to call an API function, etc. Comparatively, API

identi cation is based on the results of the extraction. Hence, 98t& dependencies indicate the possible values for arguments
RUBICK may run the extraction twice. After rst rulRUBICK of API functions, or the data linkages between API functions.

checks whether the expressions of any extracted loop condiBOth aré necessary information for generating a valid fuzz
tion contain non-output variables. If no one contains such driver. Speci cally, one set of control ow usage can have
variables, the extraction process is complete and all loops areMultiple sets of data dependencies. For example, given three
fully represented by the events. Otherwise, the data ows of AP! functionsFa, Fg, F¢, and assuming the return values
control variables for loop conditions with non-output variables of bothF, andFg can be used as the rst argumentre,

are not fully recorded. ThereforBusick conducts data de- € control ow usagemy  Fg  Fc has two sets of data
pendency analysis to locate the instructions which initialize or d6Pendenciesz¢ can use the return value of eitreg or Fg.

update that variable. After setting these instructions as mock Currently,RUBICk collects data dependencies between two
API functions,RUBICK reruns the extraction for nal results. P! functions and between an API function and a constant.

. . . Speci cally, RuBick abstracts them as the tugi®rovider,
Rawl NFA Extr?ctlgn For clarg\y, Arllgorlthn} L ngwgza. ConsumeP where provider can be any output of an API func-
SINgie-pass extraction process. AS Shown i fin€ st * M tion or a constant and the consumer can be any input needed
stead of requiring a perfect entry function for extractiBo;

by an API function. They are collected together with Raw
BICK extragts arawusage automaton (namely R?VY NFA) _for NFAs by statically analyzing the consumer programs.
each function inside the consumer program. This is feasible
since the subsequent learning process will remove the invalid ]
or the redundant usages. The basic idea is to build the Raw3-3 Usage Automaton Learning
NFA along the trayerse of the ICFG._The trave_rse starts from 3.3.1 Alphabet Uni cation
the entry instruction of target functidfyger- Line 7 27
shows the analysis of each traversed instructaml points The collected Raw NFAs have their own alphabBissick
to the instruction under analysisurS points to the state in ~ uni es them as one alphabet by identifying the equivalent
Raw NFA which new states should be linked withxt holds letters and assigning them the same lefieEor API func-
the taint information for analyzingurl . If curl is a non-API tion eventsRUBICK assigns same letter for events have same
function call instructionRuBIck extracts the Raw NFA ofthe  function signature2. For condition eventdfRuBICK needs
callee 6ubA) and merges it into current NFAA). The merge to align their condition expressions and solve the potential
is accomplished by adding transition frararS to the start con icts before assigning letters. For example, assuming Raw
state étartS) of subAwith epsilon event () and adjusting NFA A hasCpq: ret_C == SUCECCp,: ret_C = SUCG and
thecurS to point to the end statedS) of subA If curl is Raw NFAB containsCg;: ret C == SUCCCg,: ret C ==
not of the above case, the event identi cation strategies areSTOPIdeally RuBick can use the following letters to replace
applied. New transition will be added foonce a new eventis  all above lettersCy;: ret_C == SUCCC,,,: ret_C == STOP
identi ed, andcurS also will be updated. Last, the successors Cy3: (ret_C != SUCC) && (ret_C != STOP). For instance,
of curl are added t® for analysis. Ifcurl is an exit point alledges representing evely, inside NFAA can be replaced
of the function , e.geturn , the edge fronturS to endSis with two edges representirtg);, andC 3. RuBICK models
added. If a successor instruction is already analyzed, a transithis con ict solving problem as a solution set division prob-
tion from curS to the instruction’s corresponding state under lem. Generally, each condition expression is equivalent to its
event is added. For simplicity, the algorithm only shows solution set satisfying the condition. The goal isto nd a set of
the key ow. In implementation, the algorithm also maintains solution sets where each solution set is non-intersect with each
a stack to prevent the in nite loop caused by the recursive other and any original solution set can be the union of them.
call of the target function. Besides, multiple callees can be Using that set, any original condition event can be replaced by
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several new events (see Appendix A for the algorithm detail). Algorithm 2 Membership Query Pseudo Code

From our experience, con ict case rarely happens Bod Input: eventsedA string represents an event sequencayNFA
BICK only met con ict of simple conditions containing single (an extracted Raw NFA)

variable expressions. For the mock API function related  Output: boolean(boolean value foeventseds accepted or not)
eventsRUBICK compares their identity by group. Speci cally,  1: procedure MEMBERSHIP-QUERY(eventseq, rawNFA

a group of events contain all related events a ecting the loop 2 if eventseq neCache

condition. Two groups are identical if their loop condition 3 return false
expressions, the value update expression of the mocked API 4: if eventseq peCache
functions, and the execution order of these events are equal.>: return true
Otherwise, RIBICK assigns di erent sets of letters to them. 6 if eventseq rawNFA _ _
7: if Fit-Properties-Of-Desired-Fuzz-Drivers(eventseq)
8: if No-Unsatis ed-Data-Dependency(eventseq)
3.3.2 Usage Distillation 9: if Pass-Dynamic-Validation(eventseq)
10: peCache+ eventseq

The extracted Raw NFAs can contain invalid event sequences, ;. return true
The goal of usage distillation is to nd a minimized automa- ,,,. neCachq+ eventseq
ton which only accepts the correct event sequences inside &3.  (eturn false

NFA. Automata learning algorithms t this task. Note thatthe 14: end procedure

Raw NFA only provides the scope of PEs but not the exact
sets. Besides, the NFA can contain in nite amounts of PEs

and NEs. In this case, active Iearning is more suitable Siﬂceand 0n|y once. For the equiva]ence qudRYBICK Uses wp-

sampling a representative set of learning input for passive method [L0] to sample a test set of the automat®usICK

learning is challengeable. If we gather the knowledge related selects wp-method since it generates a slightly smaller test

with Validating event sequences to build a teacher, it can Iearnset than w-method while keeping similar representati\/eness_

a minimized DFA to represent the SUL (the correct parts of The Jookahead value is the only adjustable parameter in wp-

the Raw NFA). The knowledge includes the Raw NFA, the method. During the EQ, the L* algorithm tries to search for test

static checker and the dynamic validator for event sequenceseases which are counterexamples. The test cases are generated

For the active learning algorithm,uBick uses L*[6]. by adding post xes to the accepted strings. The lookahead
To build ateacher required by LRUBICK hasto answertwo  value determines the maximum length of the added post xes.

types of queries: membership query and equivalence queryTherefore, a higher lookahead value means a more complete

For membership queruBick needs to answer the validity  checkin EQ but brings more performance penalty. Empirically,

of any queried event sequen@BICK validates a sequence RuUBICK sets it as 2 (see evaluation in Section 4.2).

both statically and dynamically (see Algorithm f]).In line After learning,RuBICK removes dead loops and trap states

8, RuBick checks whether the used variables of any event of the output automaton. A dead loop is a loop which does

have been initialized in its pre x events. If the check fails, not contain any condition event. Removing the trap states and

the sequence is invalid since the fuzz driver based on it will the related transitions simpli es the automaton while keeping

have uninitialized variables. In line 9,RuBICK converts the its accepted event sequencB8 (n Section 3.1).

event sequence to a fuzz driver and executes it. The sequence is

|n\_/aI|d_|fthe execution fails (crash or stuck). Note thgttmsfuzz 3.3.3 Automata Merge

driver is only a sequence of API calls and condition checks

without branches or loops. Sometimes, the sequence can onlfRUBICK uses DFA combination and minimization algorithms

be partially executed since the execution may not satisfy ato generate the nal usage automaton from the distilled ones.

condition when the sequence contains condition events. In thisThese algorithms, such as Hopcroft's DFA minimization al-

case, the validity is roughly measured by the executed partsgorithm [11], have reasonable time complexity. The merge

This is an optimistic strategy and can cause the nal automaton process cannot be done before distillation. The reason is that

containing invalid sequences. Obviously, the e ectiveness of the merge will exponentially increase the performance costs

dynamic validation is in uenced by the diversity of the input (the distillation will face a giant Raw NFA) while gaining little

les. Practically we suggest using one to three valid inputs as bene ts on distillation outcomes.

seeds. In evaluatiofRUBICK uses one valid seed (< 100K)

downloaded from the Internet for each targetin line 7,

RuBIck checks two properties: First, the condition event can

only appear after its expression’s value has been updated byAs the last stepRuBICK synthesizes a fuzz driver based on

other events. This helps to Iter out the dead loop caused by the learned usage automaton. However, the synthesis is non-

condition events whose value will never be updated. Secondfrivial since the learned usage can inevitably contain multi-

the API function accepting the input le should appear once ple independent usage scenarios (Section 2.2 C3). For better

3.4 Automata-Guided Fuzz Driver Synthesis
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Table 1: The Attack Surfaces Used for Evaluatid@mpache Software RQ4: How are the false positives produced by the fuzz
Foundation, C: Commercial Company, G: Github Individual. drivers of RUBICK and other existing methods?

Format _Project Version Vendor 7 of APIs RQ5: Can the fuzz drivers generated ByBIcK help to
apachetar TAR  Apache Commons Compress[1 121 A 195 nd vulnerabilities in real world fuzzing scenarios?
hepoi XLS  Apache POI [13] 521 A 1,320 . .
toxpdt  PDF  fText7 [14] 722 C 810 Evaluation Targets We applyRuBick on library targets
o j\;g;é,:gfgpaox - Lo which are top usage (used by other apps/programs) third-party
Zipdi 2P Zip4i[a7] 291 6 521 libraries supporting both PC and Android platforms. The usage

data is crawled from maven reposito80] and appbrainZ1].

The evaluated targets are the top six ranked by the number of
APIs (Appendix D). Thl. 1 details the attack surfaces identi-
ed from the six popular Java libraries. Note that the libraries
and attack surfaces have a many-to-many relationship. Mul-
tiple attack surfaces inside one library are separated by the
Sihput formats they accept. For example, &pachepoi and
apachetar , their libraries provide APIs to parse 12 and 22

scheduling of fuzzing multiple scenarid®,BICK synthesizes
an automata-guided fuzz driver. It provides a scheduling inter-
face where the fuzzer can pick the testing scenario by mutating
the speci ¢ bytes of the input. Therefore, the scenario schedul-
ing can be done by the existing seed schedulers inside fuzzer
For example, in Fig. 1.e), fuzzers can pick to fuzz 1) or 2)

gytm:“?;'”g thle rst btyt,? of t?e m;?ut. F(;g_. 91in Appendix C di erent types of input formats, which means that they have
eéu s e”|mR|3 emen atlon 0 Ouer uztzh Fr_lvetr.s h (DFS 12 and 22 attack surfaces respectively. For these libraries, we
enerallyRUBICK TSt uses a bepth-First-searc ( : )_ pick the attack surface which accepts a popular input format.
based algorithm to count all independent usage scenarios INEymeriment Setu To fuzz Java brodrams. we use
side the automaton (see detail in Appendix B). Second, thejazfer [27] whicrr: is a Iibfuzzer-bas?ad ?‘uzzer, used by

fuzz driver is designed as event-driven. It loads the usage AU9ss-FUZZ and ClusterFuzy. Following the suggestions

tomatqn a’?d maintains Its _st_a}tes during ex_ecut|on. For eaChl‘rom [23], all the evaluated fuzz drivers share the same input
execution, it starts from the initial state and tries to traverse the . . . .
seeds, machine, and fuzzer optiofpa{_args="-Xmx2048m

automaton until there are no successor state. After each step o _ = _
. . “close_fd_mask=3 -timeout=60 -rss_limit_mb=10240 ).
of the traverse, the driver executes the corresponding code . I .
. . For fairness, the coverage of the fuzz driver itself is excluded,
and updates the status accordingly. During the traverse, when

there are multiple choices for picking the next states, the pick . the comparison only covers the edge coverage of the
. . plect P gt ' P target attack surfaces. All data used in evaluation are collected
is determined by either the mutated input or the execution

) . _from 24 hours, 10 times repeated fuzzing results. In the plots,
context. If the next events belong to multiple usage scenarios,. :
o : ; A lines are average values and the shadows around the lines
the pick is determined by input, e.g., for state 1 in Fig. 1.e),

0 . . .
chocsingso depends o the . therise i shoud [SPES€01 956 condence e A e e e
be determined by the execution context, e.g., for state 3 in 9 g P y P '

) . First we group bugs based on their full stacks, then manually
Fig. 1.e), choosing or n depends on the value ait_E . merge the groups whose root cause stacks have the same code

location (function & line). The experiments are conducted on
4 Implementation & Evaluation a Linux server with two Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz processors and 188GB RAM.
Implementation The main components &uBICK contain
6,979 lines of Java code, 1,656 lines of Python code, and 654 . .
lines of Bash scripts. Speci cally, Java code includes most 4.1 Fuzz Driver Generation

functionalities such as the learning inputs collection, usage 1 applyRUBICK on these attack surfaces, we built a crawler
distillation, fuzz driver synthesis, etc. The python code is o collect the consumer programs. The crawler rst locates the
mainly used for alphabet uni cation. The bash scripts are used open-source consumer programs, then retrieves their jars as
for gluing the work ow. The automata related algorithms Rygick’s input. Speci cally, a project is a consumer program

are developed updearnlib  [18], and the rst-order logical it its code contains the package path of the attack surface,
formulas related algorithms are developed upapy [19]. e.g.,com.github.junrar . We usesrc, a CLI tool of Source-
Currently,Rusick can generate fuzz drivers for Java libraries. graph p4], to launch the match query among all open-source
Evaluation Questions  The evaluation aims to answer: projects of Github, Gitlab, Bitbucket, etc. Our websiil[sts
RQ1: How is the performance when applyiRWBICK on  the used search patterns. For the matched consumer programs,
real world fuzzing projects? we use heuristics to automatically retrieve their jfrsnd

RQ2: How is the quality of the fuzz drivers generated by latest released jars from their webpagesdry to build jars
RuBick compared with fuzz drivers generated by state-of- using common building commands, e.gun package As

the-art techniques and manually written ones? shown in Thl. 2, we collect dozens to hundreds consumer pro-
RQ3: Are the fuzz drivers improved by addressing the three grams for each attack surface. The second column shows the
key challenges? number of usable/matched consumers. A consumer is usable
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Table 2: Statistics of Intermediate Results afdRcK.

Attack Crawling Learning Inputs Preparation Usage Automaton Learning Fuzz Driver Synthesis
Surface #of #of #of #of #of #of CPU Sec #of #of #of #of #of #of #of #of CPUSec #of #of CPU
Projs  Jars Entries Raw NFAs APIs DataDeps (Pct.) Cc Cuc Eapr Emock Econd Etotal State Tran  (Pct) Ctrl Flow Data Flow Sec
apachetar  36/911 39/92 34,905 91 33 2,089 1,647 6699 O 0 22/33  0/1 16/54  38/88 165 223 832(34%) 319 319 <1
apachepoi 40/984 74/1,197 26,534 247 243 6,619 656 (34%) 1 3 69/243  8/15 12/109 89/367 89 94 66%B9 0O 20 <1
itextpdf 25/89  33/44 14,632 2,236 311 8,560 194 (3%) 1 3 75/311 59/88 78/365 212/764 308 348 7,22307% 16 131,088 <1
junrar 16/72  24/441 9,737 143 147 1,023 114 (16%) 0 0 49/147 0/0 14/52  63/199 120 150 846947 ( 12 13 <1
pdfbox 34/326 138/4,835 83,481 455 339 13,680 1,260 (29%) 0 2 54/339 9/14 36/184 99/537 127 148 3,127(71% 21 21 <1

zip4j 62/514 28/262 9,175 41 49 1,635 28Dy 0 1

34/49

12 14/22 4973 65 75 132 (31%) 5 5 <1

if its jars are retrieved. The third column shows the number
of usable/retrieved jars. A jar is usable if it contains the usage
code and can be analyzed ot [25].

First,RuBicK prepares the learning inputs from usable jars.
For every function inside the consumeRsiBICK applies Raw
NFA extraction. In 4th column of Tbl. ZRuBick analyzed
more than 9,000 functions for every attack surface. The fth

column shows the amount of extracted non-empty Raw NFAs.
The amounts of the contained API functions and the data

Lower Whisker ~ 1st Quartile Median 3rd Quartile  Upper Whisker

2.74 6.11 6.66 9.02 13.38
B | [T

I T T T T T 1

2 5 10 20 50 200 500

Figure 4: Boxplot and Statistics of Distillation Time Per Raw NFA.
X-axis is the time in seconds. The axis is in log scale.

dependencies are listed in the next two columns. The reason

RuBick can practically analyze large amount of real world
projectsis two-fold: § The time complexity of its extraction
algorithm isO.E/ whereE is the amount of edges of the
traversed ICFG¢ RuBICK con guressoot to build a partial
ICFG. Before ICFG construction, the classes of third party
libraries were excluded usirgpotClass.setPhantomClass .
Next, RuBicK learns one usage automaton from the inputs.
It rstuni es the alphabet for all extracted Raw NFAs, then it
distills all the Raw NFAs and merges them as the nal usage

results can vary under di erent settings. However, mostly the
Automata Learning component will have highest costs.
Performance of Usage Distillation To understand the per-
formance of distillation, we did statistics for the distillation
time of each automaton. Fig. 4 shows the box plot and the
statistics. According to the 3rd Quartile (9.02) and Upper
Whisker value (13.38), we conclude thmaobstly distilling an
automaton costs less than 14 CPU seconds

automaton. The ninth and tenth columns show the numberparameter Selection in Distillation  The only adjustable

of the con icts in unifying condition event€. and mock
API related event groupSy, . The eleventh to fourteenth
columns list the number of API everts,p | , mock API events
Emock. condition event& 4 and total eventg ;, used

in all automatons after/before distillation. The distillation de-

parameter in L* is the lookahead value (abbr as L) of the wp-
method. We study the e ects of L by comparing the learning
cost and the learned automaton under di erent L. Thl. 4 shows
the total time/number of MQ when using four di erent L. Note
that EQ is also counted since EQ intrinsically is using a set of

creases the number of the events since it removes invalid eveniiQ to nd the counterexample. The results show that the cost

sequences. LastliRuBick synthesizes the fuzz driver. The
last three columns show its detailed statistics.

4.2 Performance Assessment (RQ1)

Overall Performance In Tbl. 2, the last column in each

increases exponentially when L increases. By comparing the
learned automata, we found th§t:In most cases (99.47%,
3196/3213), all settings can learn the same automatdn;

the rest 17 cases, L =3 and L = 4 learn the same automaton.
Compared with L =4, L = 2 learns 8 automatons di erently
and L =1 learns 17 automatons di erently. By analyzing these

the percentag Otgl";st. The percentages of Fuzz Driver Syn-

thesis are ignored since most values are less thanQverall,
RusBick can generate fuzz drivers for real world projects with
a reasonable time casfor large targets likpdfbox (~2700
APIs, ~100 consumerdRUBICK generates its fuzz driver in 2

ing correct usage and summarizing false usage. Speci cally,
when L = m, the algorithm can falsely summarize the m + 1
repeated call sequences as a loop. Besides, it also misses the
following correct call sequence€onsidering the high cost

and minor learning outcome improvement of using a high L,

CPU Hours. Besides, the Automata Learning component costsWe conclude that both 2 and 3 are suitable values in practice
most cpu resources (63.88% on average). Note that the costnd we use 2 as the default value

of Learning Input Preparation varies according to the amount

and complexity of the entry functions inside the consumers.

And the cost of Automata Learning increases exponentially
when its lookahead value increases (see paradgrapém-
eter Selection in Distillation). Therefore, cost comparison

4.3 State-of-the-Art Comparison (RQ2)

Baselines We evaluated the e ectiveness BUBICK by
comparing the fuzzing performance of its fuzz drivers with
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Figure 5: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ2axis are time (sec) and edge coverage/# of unique bugs.

(a)apachetar (b) apachepoi (c) itextpdf (d)junrar (e) pdfbox (f) zip4j

Figure 6: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ8 (axis are time (sec) and edge coverage/# of unique bugs.

Table 3: Comparison on Metrics of Covered APIs (APIs) and APl ritten fuzz drivers ofpachetar , pdfbox are collected from

Sequence Cyclomatic Complexity (CC). 0SS-Fuzz. For the rest, we invited a human expert who is not
s e 7 the author of this paper to manually write them. The expert is
ek s CC APl CC APls CC APls CC APl CC AP CC familiar with fuzzing and coding in Java but has no a priori
manal 21222 A8 29 28 kn_owledge of these attack surfaces. Writing these four fuzz
rbick 22 60 69 7 54 23 49 32 75 42 34 12 drivers costs the expert around one week.
wo.of 16 1 15 1 47 1 42 1 46 1 12 1 Fig. 5 shows the comparison results in metrics of edge
raw 28 224 217 435 307 939 116 169 210 1313 47 27

coverage and unique bugs. The blue, yellow, and black lines
stand for the coverage afbick , fuzzgen, andmanual, respec-
Table 4: Statistics of Learning Under Di erent Lookahead Values. tively. In both metricsrubick shows apparent performance
advantage over the other two baselines. Speci cally, almost
Metric b=t t=2 =3 L=4 all p-values ofrubick ~ fuzzgen andrubick ~ manual are
e o7 L 35008 2660000 3 1ABs11 smaller than 5.00e-2, which shows the statistical signi cance
(see full guresin Appendix E Thl. 8). Tbl. 3 lists the compar-

ison on three more metrics. Results show fRaBICcK mostly

nds more unique bugs, covers more APIs, and has a higher
API sequence complexitpverall, we conclude thausick

can generate more e ective fuzz drivers than existing methods.

the drivers fronFuzzGEN (abbr afuzzgen) and manually
written fuzz drivers (abbr asanual). Originally, FuzzGEN is
written for C/C++ programs. We developed its Java version.
We strictly followed the algorithms discussed in its paper and .
aligned the implementation detail with its released source code4.4 ~ Ablation Study (RQ3)
Besides, since the fuzz drivers generatedrbyzGEN are too 4.1 API Control Dependencies (C1)
complex to be fuzzed when there are hundreds or thousands of
consumer programs(as discussed in its paper). We manuallyfo study the e ectiveness of the API control dependency, we
Itered out the consumers with invalid usage and select the compare the fuzzing performance of the fuzz drivers with con-
top ve consumers ranked by including the most unique API trol ow sensitivity (abbr asw. cf ) and without control ow
calls. The ltered consumers contain usages which crash evensensitivity (abbr asv.o. cf ). Both fuzz drivers are generated
under a valid input, e.g., the usage which misses necessary datasingRuBICk except that the condition events and mock API
dependencies for calling an API. If these consumers are usedevents are not identi ed fow.o. cf . Fig. 6 shows the compar-
for FuzzGEN, its fuzz driver will always crash since the driver ison on the metrics of edge coverage and unique bugs. Blue
tries to execute all usages in every execution. The manuallysolid line and red dotted line are cf andw.o. cf respec-
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(a)apachetar (b) apachepoi (c) itextpdf (d)junrar (e) pdfbox (f) zip4j

Figure 7: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ8 (2axis are time (sec) and edge coverage/# of unique bugs.

Table 5: No. of Independent Usage Scenarios w. & w.0. Denoise 4.4.3 Automata-Guided Fuzz Driver (C3)

apachetar apachepoi itextpdf junrar pdfbox  zip4j

Baselines In RuBick’s fuzz driver, the fuzzer can change

raw 1,099 22,625 17,713 222 7,861 24 . . . .
denoised 319 20 16 12 21 5 the testing usage scenario by changing the value of leading
RA-SF) 7097%  99.91%  99.91% 9459% 9973% 7917% bytes of the input. To understand the e ectiveness of the

scheduling interface, we compared the fuzz drivers with the

following four settingsy rndiseed, the default strategy used
tively. w. cf shows clear advantage in the plots. Almost all py Rusick. The fuzzing is started with one initial input seed
p-values ofv. cf w.o. cf are smaller than 5.00e-2, which  \whose leading bytes are assigned with random values. In other
shows the statistical signi cance (see Tbl. 8). Besides, by com-words, the fuzzer has a randomly picked testing scenario as
paring therubick (w.cf) andw.o. cf inThl. 3, we foundthat  the startup. For repeated experiments, each fuzzer instance
control ow sensitivity also helps the fuzz driver to carry more  ill have its own starting scenarie. cfseeds , it is same as
diverse usages by covering more APIs. Appendix I further yng1seed except that there are multiple initial seeds where
provides a case study revealing how control- ow-sensitivity egch seed picks a di erent scenario. In other wortisseds
helps for more e cient bug huntingThe evaluation shows  gjves fuzzer full information for its scenario scheduling at
that considering control ow sensitivity can improve both the the beginning of the fuzzing. rndlcf, a setting that the
quality and performance of the fuzz drivers. schedule interface is disabled. Before fuzzing, it will be ran-
domly bound with one usage scenario and the fuzzer can only
fuzz that scenario throughout the 24h experiment. In repeated
experiments, the scenarios among the fuzzing instances are

To study the e ectiveness of the denoise techniques, we com-Picked and bound independentiydicf stands for the nor-
pare the fuzz drivers generated with the usage distillation Mal fuzzing strategy without scenario schedulipgtercf
techniques (abbr agnoised) and without these techniques @ setting that the schedule interface is also disabled. However,
(abbr agaw)_ Speci Ca"y, the process of generating,v Skips di erent from rndicf s it iterates all usage scenarios in each
the techniques described in Section 3.3.2. Thl. 5 lists the Single fuzzing iterationindlcf represents the strategy that
number of the independent usage scenariosdabised and ~ €very usage scenario is equally scheduled.

raw. Apparentlyraw has a signi cantly more complex usage Fig. 8 shows the comparison results of four settings on
automaton thadenoised . However, most of the complexity = metrics of edge coverage and unique bfigin all attack

is unnecessary since a majority of the usage insideare surfacesgndlseed andcfseeds are higher thaitercf and
noises (redundant or invalid event sequences). As shown in thernd1cf in both two metrics with statistical signi cance (see
Thl. 5, RuBICK Iters out 70.97% to 99.91% usage scenarios. p-value detail in Thl. 8). This shows the scheduling interface
Fig. 7 lists the comparison in metrics of edge coverage andis e ective. « Overall, it is hard to pick the dominant set-
unique bugs. The blue solid line and red dotted line repre-ting betweercfseeds andrndlseed. For coveragesfseeds
sentdenoised andraw respectively. In most caseggnoised has higher initial coverage thamd1seed in apachepoi and
reaches higher coverage and nds more unique bugs with staitextpdf , which is reasonable sinetseeds has more initial
tistical signi cance (see p-values in Thl. 8). Interestingly, as seeds. However, the nal performances of them are similar.
shown in Thl. 3, theaw covers more APIs and has a notably For unique bugs;fseeds performs better thamdlseed in
higher API sequence complexity. This further proves that the apachepoi anditextpdf butworse irpdfbox andjunrar . An
unnecessary complexity inside trev does not bene t but  explanation is that the exploration ability of the fuzzer itself
hurt its fuzzing performanceéJsage distillation is a neces- is good enough, therefore the fuzzer can quickly explore all
sary step, which improves the overall fuzzing performance by usage scenarios. Mostly, the con dence intervals (shadows
signi cantly reducing the complexity of usage automaton.  along the lines) ofnd1cf are observably wider than others.

4.4.2 Denoise (C2)
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(a) apachetar (b) apachepoi (c) itextpdf (d) junrar (e) pdfbox (f) zip4j
Figure 8: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ8 (3axis are time (sec) and edge coverage/# of unique bugs.
Table 6: Unigue False Positives Statisti®ad Data Dep Invaliq . Typ|ca||y, a consumer can contain an unsound usage which
Ca_II Seq andlmproper Cond stgnd for th_e false crashes caused by missing calls page.getxxx() without Checking whether thgage is
or invalid API data dependencies, invalid API call sequences, and missing o ) ; .
API control dependencies, respectively. The number of false dead loops areNull - Or not. The distillation irrubick cannot Iter this un-

counted into a standalone typead Loop sound usage out since this usage works well with a valid pdf
le. Except this, the rest false positives found in other fuzz
fuzzgen rubick w.o. cf raw drivers can be ltered or avoided bybick :  ForBad Data
Bad DataDep 7 0 0 4 Dep, fuzzgen passes xed values which are supposed to be
Invalid Call Seq 2 0 0 0 loop control variables for some APIs. For exampilezgen
'E')“pmper Soligee ! 10 2 usesgetSheet(0) while the correct usage igetSheet(i)
ead Loop 0 0 0 2 - . L.
wherei ranges from0 to the number of sheets in this in-
Total 31 7 10 8

put. When the mutated input contains zero pages, the fuzz
driver will crash.raw has false positives since it calls an
API with missing arguments. Indeed it does not have enough
data dependencies to Il in all arguments of that APIFor
Invalid Call Seq, fuzzgen calls pdf.getNumberOfPages()

after it callspdf.close() . This invalid sequence does not
ome from the consumer but is introducedfimzgen's co-
lescing strategy. Forlmproper Cond, fuzzgen andw.o.

cf call APIs without checking the API usage precondition.
For example, they caileratorX.next() without checking
iteratorX.hasNext() == true , which causes false crashes.

» ForDead Loop raw got stuck since it does not lIter out
dead loops inside its automata. All the cases can be solved
with rubick ’s control ow modeling and distillation features.

This indicates that the performancerndilcf among multiple
rounds of fuzzing is less stable. Interestingly, this reveals that
the potentials of di erent usage scenarios are di erent; there-
fore, a scheduling interface for maximizing the utilization of
multiple usages is necessary. Besides, the execution speed g
itercf  is many times slower than others since it executes all
usage scenarios during one fuzzing iteratiorsummary, the
scheduling interface provided BBUBICK can signi cantly
improve the utilization of the multiple usage scenarios, and
bothrndlseed andcfseeds are suitable setups.

4.5 False Positives (RQ4)

To study the false positives produced by the fuzz drivers, we 4.6 Real-world Application (RQ5)

manually identi ed and deduplicated false positives from all Fuzz Driver Generation RuBIck has been used to generate
evaluated fuzz drivers. Thl. 6 provides the FP statistics (Tbl. 9 fuzz drivers for eleven attack surfaces, including the attack
in Appendix G details the FP rate statistics.) Note that man-surfaces in evaluated projectsgtadata-extractor , Apache

ually written fuzz drivers are not listed since they have not Tika, fastison , andjackson . The selection criteria is that
produced any false positivesubick has the least number they are popular Java projects on both PC and Android systems.
of false positives. The root cause of the false positives from Therefore, nding the bugs of these projects can bene t the
rubick is that it has learned unsound usage from the con-software of both systems. Additionally, we directly generated
sumers. Besides, the rest of the false positives from other fuzzhuman readable fuzz drivers containing one usage scenario.
drivers can either be avoided BuBick’s control ow mod- Two of them have been merged into OSS-FUZZ.

eling or be Itered out byRuBICK'’s distillation. Generally, Long-term Fuzzing Campaign With the generated fuzz
RuBick produces less false positives thanzzGEeN. And the drivers, we conducted a three-month fuzzing campaign. In
control ow sensitivity and denoising helps in reducing the total, 199 bugs have been found and responsibly reported

false positives caused by fuzz drivers. to the vendors (see full list in Appendix H). The types of
All of rubick s false positives have the same root cause. the found bugs cover Uncaught Exception, Stack Over ow,
They are of typdmproper Cond and appear iftextpdf . Out-Of-Memory, and In nite Loop. Four CVE numbers have
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been assigned. To further evaluate the impact of these bugh Related Work
we built a work ow to semi-automatically identify the APPs
which are truely exploitable by these bugs. We successfully Fuzz Driver Generation = Recently, several works have been
exploited eleven APPs and four of them have 10,000,000+ published on this emerging research tojpicDGE [26] syn-
download counts in Google Store. Speci cally, the APPs can thesizes candidate fuzz drivers based on the code snippets
behave abnormally (crash, stuck, etc) when users try to openrsliced from the consumer programs. After that, human experts
the POCs. One interesting case is that a top APP (10,000,000+¢eed to re ne the drivers and determine which driver should
download count) will be stuck and occupy all memory as long be used. ComparativellfuzzGEN [1] is more automatic. It
as the POC exists in the le system of the phone and the userlearns an Abstract APl Dependency GrapR[G) which
refreshes the le list in Ul. Simply restarting the APP cannot contains the call sequences of the APIs leveraging the data
solve this issue since the APP tries to recover the last openedow information. By traversing theA?DG, it synthesizes the
le list in the background. We've responsibly noti ed all APP  fuzz driversINTELLIGEN [3] proposes metrics to rank the API
vendors about the security issues and provided x suggestionsfunctions and synthesizes fuzz drivers for APIs with higher
More details can be found in our website [5]. ranking.GRAPHFUZzzZ [27] is a semi-automatic tool which gen-
erates fuzz drivers from mutated object lifetime-aware data
ow graphs to test the target librarieg/INNIE [28] and AP-
L ICRAFT [2] focus on solving the challenges of generating fuzz
5 Limitation & Future Work drivers for closed-source targeWINNIE synthesizes the
fuzz driver from traces and develops a fast cloning technique
More Types of APl Dependencies Currently,Rusick only to boost the fuzzer in Windows systems. ComparativeR;
extracts common API control dependencies (branches and CRAFT focuses more on nding better combinations of the
loops related with outputs of API functions) from the con- API data dependencies. Among thefuzzGEN is the most
sumers. However, there exists API dependencies that cannotelated work taRUBICK since both of them aim to automati-
be precisely described HguBiCck. For example, the input  cally generate fuzz drivers via static analysis on the consumer
value of the API functions may also a ect its following us- programs. HoweveRuUBICK di ers from FuzzGEN by focus-
ages, or some usages can be out of the description ability ofing on solving the discussed three challenges (Section 2.2).
DFA such as time related usage. To fully support these de-API Usage and Speci cation Mining  One popular way to
pendencies, extra modeling or even new models need to bdearn the API speci cation is through dynamic analysiS,[
developed. We leave the support as future work. 30]. This approach learns nite state machines (FSMs) which
More Learning Sources The two major learning sources ~ describe legal sequences of method calls from large method
of RUBICK are the static analysis of the example code and the fraces. Besides, some works mine the usage or API properties
execution information of the generated code. On one hand {0 check the misuse or unsafe use of the ABIS B4]. These
these sources provide necessary information for generatingVorks do not focus on fuzz driver generation, but they provide
valid fuzz drivers. On the other hand, the learning ability of Inspirations for the current as well as future desigRRoBiCK.
RUBICK is limited by them. For instance, due to the lack of Advanced Fuzzing Techniques Fuzzing is one of the most
proper semantic guidance, it is hard to reasonably infer usagePractical techniques for detecting zero-day software vulner-
of the APIs which are not used in the consumer programs abilities [35]. Many techniques on improving fuzzing have
from the used. Domain knowledge, documentations, codeP€en published in recent yea$[ 52]. These techniques are
comments, or even function names are complementary source§rthogonal toRuBiCk since the fuzz drivers generated by
containing high level APl semantics which are promising to RUBICK can be supplied to any fuzzer.
improve the learned usage. In the future, we plan to research
learning usage from multiple dimensions of sources. 7 Conclusion

Other Programming Languages Currently,RuBIicK gen-

erates fuzz drivers for Java code. There are no fundamentaln this paper, we propodRuBICK, an automata based fuzz
di erences for applyingRuBICK to other languages since its  driver generation technique. Comparing with existing works,
core methods are based on general concepts of modern larRuBicK has three key merit§ it embeds more diverse API
guages. However, besides engineering e orts for adaptation,usages such as branches and loepisjearns APl usages from
extendingRUBICK to other languages may require additional large-scale real world projects; it improves the utilization

e orts to solve language-speci c challenges. For example, for of multiple usage scenarios. In evaluati®ysICK shows
languages requiring standalone compilation, collecting analyz-great advantage over the baselifggsiCcK has been used to
able consumer programs requires language-speci ¢ heuristicsgenerate fuzz drivers for 11 popular Java libraries and two
for compilation. For generating C/C++ fuzz drivers, the data of them have been merged into OSS-Fuzz. In t&RaBIck
dependency extraction iRUBICK may need additional strate- has discovered 199 new bugs, including four CVEs, a ecting
gies for handling pointers and structs. popular PC and Android software (10,000,000+ downloads).
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Algorithm 3 Solution Set Division

Algorithm 4 Independent Usage Scenarios Collection

Input: L, (List of solution set$'R;R, i Ry, )
Output: L (List of solution set$R;R; ::: R")

Input: A (Usage Automaton)
Output: L (Control Flow Usage List)

1: procedure SOLUTION-SET-DIVISION(L ) 1. procedure DFS(A, curS, curPath, curColorBgx

2: Lo} L, 2: colorBoxSe}
3 while ~ Ri;Rj . LosR® RJ. 3: numOfChoices, choicgs Calc-Choicesd, curS)
4 Eliminate insideL g 4: if numOfChoices=0
5: Remove duplicat®” insideL o . reaches the end of automaton
Gf for .ki.n [IuerT.Ll’O/i.I.en;Lol*l .:::uz]a S an® 5: coIorBoxSe}+ curColorBox
7 if Rxl’szu"' R)gk s Lou'Rxl Rx2 ka 6: else
8 RemovR ;R , iR, fromLg 7: dye} (numOfChoices 1)
9 Rpew} Ry2 R, 3R, 8: for choice, choices
. + I s, 4o 9: curPath} curS
1o " 5 *Lgu b Reew-Ria ™ Roed iR 10: if dye
B +
11- new/ xk bregelr/ 11 curColorBox} Gen-Color(choice)
12:  return Lo 12: subColorBoxSetLigt []
13: end procedure 13: for event, next$ choice
14: if nextS curPath
+
15: subColorBoxSetList DFS(A, nextS, cur-

[52] Q. Liu, C. Zhang, L. Ma, M. Jiang, Y. Zhou, L. Wu, Path, curColorBox)
W. Shen, X. Luo, Y. Liu, and K. Ren. Firmguide: Boost- 16 else
ing the capability of rehosting embedded linux kernels . meets the loop
through model-guided kernel execution.20621 36th 17:
IEEE/ACM International Conference on Automated Soft- 1s: colorBoxSet Crossover( subColorBoxSetList)
ware Engineering (ASE) 19: if dye
] 20: curColorBox} curColorBox* color
ly[3MjY6WT. 21: curPath} curPath* curS

. . Lo22 return colorBoxSet
[54] N.Nachar etal. The mann-whitney u: A test for assessing 23: end procedure

whether two independent samples come from the same,,,. | 1
. C

distribution. 25: for initialS . Get-Initial-Statesk)
26: colorBoxSet DFSEA, initialS,[], )
+

27: L. } Convert-ColorBox-To-CF(colorBoxSet)

+
colorBoxSet curColorBox
+

[53] Multiplication principle. https://bit

A Algorithm for Unifying Condition Letters

To solve the con ict of two sets of condition lettefRuUBICK
needs to nd a set of new condition letters which can represent
both two sets. For example, given two sets of con icting condi-
tion lettersA;: v<1;A,: vg landB,: v<2;B,: vg 2,

the new set can b&€;: v<1,C:1f v<2,C3:vg 2
whereA; C;,A, C, Cg,B; C; C,,B, Cas.

solution sets. In each iteration (line 4 to line 11), it picks one
intersection which has highest k (k is the number of the in-
tersected solution sets). The rationale is that starting from
picking an intersection with highest k can avoid missing the
intersected solution sets. The algorithm can nally stop since

Note that each condition letter intrinsically represents a so-. . : : : .
. ; ; " . it removes one intersection of the solution sets per iteration
lution set which satis es the condition. And the operations of . . : : L
(line 4 to line 11) and the number of intersections is nite.

the conditions can be mapped to the operations of the solu-

tion sets. For example, given two conditicBs C; and their Saeifsesﬁtz ijaosntﬂgEﬂ;g*g?gi%g]hifs;mL+chen ?:_
solution setR;, R;, C; G ==true R{®R;, G == P b

tue G ==false R*R.C C==tue R, R. sentR,, we only need to nd all subsets &, fromL 5. Our

The con ict of two sets of condition letters is caused by the website [5] posts a running example of this algorithm.
intersection among two or more solution sets. Intuitively, by  Inimplementation, the SAT solver is used to answer whether
de ning all intersected and disjoint parts among the solution the condition represented by a solution set has an answer or
sets as standalone condition letters, each original conditionnot. For exampleR; 2 R; means SAT solver can nd a
letter can be represented as their combinations. Algorithm 3 solution satis esC; Cj == true. The SAT solver provides
shows howRuBICK divides the solution set to a new set sepa- base functionality for this algorithm, itis used in line 3, 4, 5,
rating the intersected and disjointed parts. It accepts a list of 7, used for simplifying the conditions represented _ky, and
all related solution sets as input and outputs the divided  for nding the subsets to represent the original solution set.
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Table 7: Statistics of All Applied Projects ofuRICK.

Attack Surface pdfbox apachepoi itextpdf junrar zip4j apachetar jackson tika-jpeg fastjson java-json metadata-jpeg
# of APIs 2779 1320 810 619 521 195 175 162 159 137 58

Table 8: P-values (Mann Whitney u test) for Evaluatidihe p-value which means statistical signi canéeJe-2) is highlighted as bold.

apachetar apachepoi itextpdf junrar pdfbox zip4j
cov bug cov bug cov bug cov bug cov bug cov bug
ROL rubick  fuzzgen 8.73e-05 - 1.06e-01 3.34e-03 8.93e-05 3.00e-04 9.13e-05 1.61e-02 9.13e-05 7.83e-05 2.95e-05 7.97e-06
rubick  manual 8.0le-05 7.97e-06 9.13e-05 8.54e-05 9.13e-@H23e-01 9.13e-05 1.64e-05 9.13e-05 7.69e-05 5.16e-05 7.97e-06
RQ2 C1 w.o. cf w. cf 6.59e-02 7.97e-06 9.13e-05 8.63e-05 1.81e-03 4.53e-01 3.19e-05 1.64e-05 1.10e-03 6.02e-03 7.21e-05 7.97e-06
RQ2 C2 denoised raw 5.20e-02 7.97e-06 7.43e-05 3.12e-05 9.08e-05 1.15e-(439%e-01 4.81e-01 1.41e-03 3.29e-03 1.11e-02 7.97e-06
rndlseed cfseeds 4.70e-01 - 1.36e-01 8.50e-03 2.85e-01 1.25e-01 1.29e-02 6.12e-02 1.37e-01 8.77e-02 3.23e-02 -
rndlseed itercf 9.08e-05 3.84e-02 9.13e-05 7.83e-05 9.08e-@63e-02 9.13e-05 4.08e-03 9.13e-05 7.81e-04 8.49e-05 2.71e-03
rndlseed rndicf 1.63e-01 7.97e-06 9.13e-05 8.83e-05 9.13e-05 4.40e-04 2.09e-04 3.68e-05 1.64e-04 7.65e-05 8.54e-05 1.64e-05
RQ2 C3 cfseeds itercf 8.98e-05 3.84e-02 9.08e-05 4.74e-05 9.08e-05 8.83e-03 1.06et(e-01 9.13e-05 3.21e-03 2.82e-04 2.71e-03
cfseeds rndilcf 3.11e-01 7.97e-06 9.08e-05 5.43e-05 9.13e-05 7.97e-05 1.36e-03 5.02e-05 6.55e-04 7.60e-05 3.58e-03 1.64e-05
itercf rndlcf 9.13e-05 8.08e-04 1.41e-03 7.83e-05 9.08e-05 3.61e-04 1.03e-02 4.992@Ze-02 6.39e-05 8.06e-02 4.52e-05

B Algorithm for Independent Usage Scenario
Collection

Algorithm 4 lists the details of collecting independent usage
scenarios from a given usage automaton. Before discussing
the algorithm, we explain some properties for counting the
independent usage scenarios. Take the automaton in Fig. 1.e)
as an example, only the branch in state 1 increases the number
of independent usage scenarios. This is because evants

Hare independent of each other. When the fuzz driver reaches
state 1, it can decide to follow any branch by triggering either

or H i.e., calling any of the two API functions. Comparatively,
the branches of state 3 and 5 do not a ect the number of
independent usage scenarios since the events on all branches
are related with each other, e.g., in state 3, fuzz driver can
only trigger eithely or n depending on the value ot _C.

Note that the case can be more complicated when both thEgine 18). Finally, it converts each color box into an usage
funptlon events and condition events appear in the branches Olscenario (line 27).

a given state. To correctly collect the usage scenarios, a base

observation is that every independent usage scenario can be

identi ed by the choices it made in these branches. Therefore, C  Detail of Automata-Guided Fuzz Driver

using the choice set as the signature, we can group all paths

of the automaton. Each group is identi ed as an independent General Work ow  Fig. 9 illustrates the work ow of our
usage scenario. Algorithm 4 presents a DFS-based approacifuzz driver. Step 1 is a one-time e ort which is done at the
to this idea. Each choice is assigned with a unique color andbeginning of the fuzzing. Step 2-5 represent one fuzzing it-
every path has its own color box containing the colors it has eration. Speci cally, the italic sentence indicates that some
been dyed (the choices it made along this path). The algorithmbytes of the mutated input are used for specifying the testing
traverses the automaton starting from every initial state (line target scenario, which is the designed scheduling interface.
25 27). For each state, it rst calculates its independent Boosting Active Learning The automata-guided fuzz
choices. Zero choice means the end of the path (line 4). Thedriver technique not only helps the scenario scheduling but
colorbox will only be dyed when there are multiple choices also signi cantly boosts the usage distillation process. In dis-
(line 10 11). The algorithm iterates each transition of each tillation, Rusick needs to dynamically validate the event se-
choice to continue the DFS traverse. For the choice which hasquences for answering MQ. InitialliRusick did this in three
more than one transition (such as thandn for state 3 in steps:{ conversion from usage to code; code compila-
above example), theolorBoxSetof each transition should  tion;, code executiorRUBICK met performance issues since
be crossovered according to the Multiplication Princifd] [ millions of compilations are una ordabl€&ruBick uses the

Figure 9: Work ow of Automata-Guided Fuzz Driver

Figure 10: Work ow of Membership Query (MQ)
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Table 9: Statistics of False Positive Rate, Ttl stand for the amount of deduplicated false positives, total bugs respectively. FP-raw, Ttl-raw stand for the

amount of their non-deduplication versions. Pct. stands for false positive rate whose value i%—ﬁeiﬂ% according to its column. The eld which has
the smallest Pct. in that column is highlighted in bold.

Attack apachetar apachepoi itextpdf junrar pdfbox zip4j

Surface FP/Ttl FP-raw/Ttl-raw FP/T FP-raw/Ttl-raw FP/T FP-raw/Ttl-raw  FP/Ttl FP-raw/Ttl-raw  FP/Ttl FP-raw/Ttl-raw  FP/Ttl FP-raw/Ttl-raw
(Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.) (Pct.)

fuzzgen  16/18(88.89%) 160/77655(0.21%) 4/42(9.52%) 40/8458(0.47%) 3/12(25.00%) 30/3430(0.87%) 1/4(25.00%) 10/8446(0.12%) 1/9(11.11%) 10/37107(0.03%) 6/15(40.00%) 60/398(15.08%)

rubick  0/2(0.00%) 0/2660(0.00%) 0/46(0.00%)  0/5124(0.00%) 7/28(25.00%) 48/2123(2.26%)0/4(0.00%)  0/691(0.00%)  0/16(0.00%) 0/43039(0.00%)  0/10(0.00%)  0/338(0.00%)

wocf 2/3(66.67%)  20/9960(0.20%) 0/24(0.00%) 0/5916(0.00%) 3/20(15.00%) 43/4600(0.93%) 3/5(60.00%) 30/40(75.00%) 0/10(0.00%) 0/55105(0.00%) 2/11(18.18%) 20/310(6.45%)

raw 3/4(75.00%)  8732/9137(95.57%) 2/2(100.00%) 1946/1946(100.00%) 3/15(20.00%) 14/897(1.56%)  1/5(20.00%) 10/653QUERTPO%) 0/21270(0.00%) 1/8(12.50%)  10/280(3.57%)

Table 10: Statistics of Reported BugBugs are deduplicated manually.

Uncaught  Stack Outof Innite

CVE Exception Overow Memory Loop

Apache PdfBox Under Review 59 8

Apache POI - 6 -

fastjson - 15 7 -

iText 7 CVE-2022-24196/7 27 27 2

jackson - 2 - -

json-java - 1 - - -

junrar CVE-2022-23596 - - - 1

metadata-extractor CVE-2022-24613 30 - 3
Figure 11: Case Study of CVE-2022-23596 zip4j - £ - -

SUM 4 151 42 5 1

automata-guided fuzz driver to solve this performance bot-

tleneck. As shown in Fig. 10, the amount of compilation is . . ; o

reduced to one. By building a general model interpreter, the mput_ le can archive multiple les, '.t iterates the le hegd—

validating event sequence can be fed in as data. Note that the'™s FlIeHeader_ )to extract_ all contal_ned les. The fgnctlon
EXtraCtF”e (line 7) contains an in nite loop bug which can

an input le which is of a certain archive format. Since the

seqguence can be represented as a naive DFA without branche : . -
d P e triggered by malformed le headers. The loop iteration

and loops. Then the interpreter translates the sequence into’, . i -
real actions, e.g., calls an API, updates a variable, etc. For amc fileHeader ~(line 2 7) increases the possibility to nd

given alphabet, only one fuzz driver needs to be generated anc}hiS b“9 since the iteration can force the fuzz driver to apply
compiled. In practiceRuBIck can test thousands to tens of extractFile on every le header. In other words, by adding

thousands event sequences per second, which is thousands 8f(ecution states to di erentiate the API invoking contexts, the
times faster than the initial implementati,on iteration loop maximizes the exploitation of mutated input. If

the fuzz driver is not aware of the states for loop, the muta-
o ) tions of the content which belong to non- rst le headers will
D Statistics of All Projects be wastedConclusively, control ow sensitivity improves the

performance of the fuzz drivers by providing additional states
Thl. 7 lists the number of APIs of these tested attack surfacesyg distinguish di erent AP invoking contexts.

RuBICK evaluates the top sixka-jpeg andmetadata-jpeg

represent the attack surface accepting JPEG input format in . .
Appache Tika and metadata—extractFZJr. g P G Statistics of False Positive Rate

. ) . Thbl. 9 lists the statistics of false positive rate. The results
E List of the P-values in Evaluation support the conclusion discussed in Section 4.5. In most cases

(5/6), RuBIcK has the lowest false positive rate (0.00 %).
Thl. 8 lists all p-values used in evaluation. The p-values are

acquired from Mann-Whitney U-teshfl]. The p-values which
are smaller than 5e-2 are highlighted in bold. "-" represents
that the p-values cannot be calculated since the data in bot
sides are equal, which also means one side is not statisticall
signi cant than the other side.

H List of Found Bugs

hI'bl. 10 lists the bugs we found and reported for the fuzzed
Yattack surfaces using the fuzz drivers generateRUms1CK.

The listed bugs are already deduplicated. Till now, most bugs
are xed or under the x plan of the vendors.

F Case Study of Control-Flow-Sensitivity

Fig. 11 shows a case which demonstrates how control ow
sensitivity improves fuzzing performance. The case comes
from one of our found bugs. It shows a fuzz driver accepting
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