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Abstract
Fuzz drivers are essential for fuzzing library APIs. How-
ever, manually composing fuzz drivers is difficult and time-
consuming. Therefore, several works have been proposed to
generate fuzz drivers automatically. Although these works can
learn correct API usage from the consumer programs of the
target library, three challenges still hinder the quality of the
generated fuzz drivers: 1) How to learn and utilize the control
dependencies in API usage; 2) How to handle the noises of
the learned API usage, especially for complex real-world con-
sumer programs; 3) How to organize independent sets of API
usage inside the fuzz driver to better coordinate with fuzzers.

To solve these challenges, we propose RUBICK, an automata-
guided control-flow-sensitive fuzz driver generation technique.
RUBICK has three key features: 1) it models the API usage (in-
cluding API data and control dependencies) as a deterministic
finite automaton; 2) it leverages active automata learning algo-
rithm to distill the learned API usage; 3) it synthesizes a single
automata-guided fuzz driver, which provides scheduling inter-
face for the fuzzer to test independent sets of API usage during
fuzzing. During the experiments, the fuzz drivers generated by
RUBICK showed a significant performance advantage over the
baselines by covering an average of 50.42% more edges than
fuzz drivers generated by FUZZGEN and 44.58% more edges
than manually written fuzz drivers from OSS-Fuzz or human
experts. By learning from large-scale open source projects,
RUBICK has generated fuzz drivers for 11 popular Java projects
and two of them have been merged into OSS-Fuzz. So far,
199 bugs, including four CVEs, are found using these fuzz
drivers, which can affect popular PC and Android software
with dozens of millions of downloads.

1 Introduction

Fuzzing is a practical dynamic analysis technique for vulnera-
bility detection. Compared with static analysis techniques,

∗Corresponding Author.

fuzzing can produce more precise results with few false-
positives and provide security analysts with Proof-of-Concept
inputs to replay the bugs. However, as a dynamic technique,
fuzzing requires an executable of the target software as the
testing subject. To fuzz libraries, executable programs using
the library functions must be generated. Conventionally, these
programs are called fuzz harnesses or fuzz drivers.

Fuzz drivers can be composed manually by human experts
or generated automatically by tools. To compose fuzz drivers,
experts have to learn the usage of library APIs from docu-
mentations or example programs. Not only is this learning
process tedious and time-consuming, but also the quality of
the composed fuzz drivers heavily depends on the experience
of the human experts. Therefore, techniques for automatically
generating fuzz drivers are needed.

Several existing works [1–3] focus on automatic fuzz driver
generation. Similar to manually writing the fuzz drivers, these
techniques also need to learn the correct usage of library APIs
to ensure testing effectiveness. Additionally, most existing
works learn such knowledge by analyzing how the consumer
programs (aka example programs) of the libraries utilize the
API functions. After generating the fuzz drivers, these tech-
niques also need to rank [2] or ensemble [1] the generated
fuzz drivers so that the fuzzer can test them substantially.

Despite the previous efforts, three challenges still exist for
both learning the correct usage of library APIs and utilizing
the generated fuzz drivers: C1. Some library APIs should
reside in branches and loops where the conditions are guarded
by the results of other APIs, but the API usage learned by
existing works emphasizes on data dependencies among the
APIs while ignoring most control dependencies among them.
Not including the control dependencies can end up in failing
to invoke certain APIs properly. C2. The learned API usage of
existing works suffers from noises such as redundant API us-
ages or wrong API dependencies. Failing to remove the noises
can limit the usability of a fuzz driver generation technique
especially when it needs to learn from complex real-world
consumer programs. C3. Multiple fuzz drivers can be gener-
ated for a single target library with existing works, but how
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to organize and utilize these fuzz drivers to guarantee that
they can be substantially tested by the fuzzer is understud-
ied. Poorly organized fuzz drivers can distract the fuzzer and
hinder the fuzzing performance.

To address the three challenges, we propose RUBICK 1 — an
automata-guided control-flow-sensitive fuzz driver generation
technique. C1. The rationale of RUBICK is that API control
dependencies such as branches and loops can be represented as
automatons. By properly defining the events (i.e., the alphabet
of an automaton), API control dependencies are interpreted
as event sequences (i.e., accepted strings of an automaton).
Based on this modeling, extraction algorithms are designed
to extract usage automatons from API consumers. C2. Since
an automaton intrinsically represents a set of accepting event
sequences, denoising extracted usages means generating a
minimized automaton which only accepts valid sequences.
RUBICK adapts L*, an active automata learning algorithm, to
accomplish this goal. By defining what is a valid sequence
(membership queries, abbr as MQ) and what is an acceptable
automaton (equivalence query, abbr as EQ), the algorithm
starts from an empty automaton and iteratively improves that
automaton using feedbacks from MQ and EQ until EQ is
satisfied. RUBICK combines static and dynamic information
to answer the validity of sequences. And the automaton is
acceptable when it does not falsely accept or reject sequences.
Each extracted automaton is denoised separately and later
merged together with others as one usage automaton. C3. Note
that the usage automaton may contain multiple independent
sets of API usages. Instead of generating multiple fuzz drivers,
RUBICK generates a single automata-guided fuzz driver. It
provides a scheduling interface that fuzzers can pick the testing
usage set by mutating specific bytes of input. By doing so,
the utilization of independent API usage sets are benefited by
existing seed schedulers inside fuzzers.

In evaluation, the fuzz drivers of RUBICK are compared
with drivers from FUZZGEN 2 and from OSS-Fuzz [4] or
other human experts on six popular Java projects. The results
show that RUBICK outperforms its competitors in both code
coverage (on avg. 50.42%, 44.58% more edge coverage than
FUZZGEN, manually written fuzz drivers) and unique bugs
(on avg. 45.92%, 98.59% more unique bugs than FUZZGEN,
manually written fuzz drivers). RUBICK has generated fuzz
drivers for 11 open source projects and two of them have
been merged into OSS-Fuzz. So far, 199 bugs (four CVEs)
have been found using these fuzz drivers. These bugs are of
popular Java projects such as Apache Software Foundation,
which affects the PC and Android software with dozens of
millions of downloads.

In summary, our contributions are:
• We identified three key challenges for generating fuzz

drivers from consumer programs. Besides, we proposed
1RUBICK is a Dota 2 hero who can learn spells from enemies and cast

them more powerfully.
2FUZZGEN is the most related work and we implemented its Java version.

an automata-based solution to solve these challenges;
• We implemented RUBICK as the first tool which can learn

API usage from large-scale open source projects and
generate control-flow-sensitive fuzz drivers;

• We applied RUBICK to 11 popular Java projects and dis-
covered 199 bugs (four CVEs). We responsibly disclosed
them and helped the vendors to fix them.

RUBICK is open-source for facilitating future research [5].

2 Preliminaries

2.1 Backgrounds
Deterministic Finite Automaton We use Deterministic Fi-
nite Automaton (DFA) to model the API usage. DFA contains
five elements: a finite set of states 𝑄, a set of input symbols
(aka letters) called the alphabet Σ, a transition function 𝛿:
𝑄×Σ → 𝑄, an initial state 𝑞0 ∈ 𝑄, and a set of final states
𝐹 ⊆ 𝑄. Intrinsically, a DFA is an acceptor of strings, i.e., se-
quences of letters. Any sequence corresponding to a path from
the initial state to a final state is accepted by that DFA.
Automata Learning Algorithm Generally, the algorithm
learns an automaton from a set of positive examples (repre-
sents for valid strings, abbr as PE) and negative examples
(represents for invalid strings, abbr as NE). There are two
types of the algorithms: passive learning and active learning.
The former requires a finite set of PEs and NEs of the system
under learning (SUL) before learning, whereas the latter finds
PEs and NEs by asking teacher questions about the SUL dur-
ing the learning. Passive learning builds output automaton
based on the given learning input. It usually has adequate
time complexity but its performance heavily depends on the
representativeness of the learning input. For active learning, it
requires a teacher to answer two kinds of queries of the SUL:
the membership query (MQ) and the equivalence query (EQ).
The membership query asks about the validity of a string, i.e.,
a given string is of PE or NE. And the equivalence query asks
whether the learned automaton is equivalent to the final answer.
If the answer is no, the teacher also needs to return a counterex-
ample (a falsely accepted/rejected string) as feedback. The
whole process of active learning is that: the algorithm starts
from an empty automaton, then it iteratively improves that
automaton using feedback from MQ and EQ until the EQ is
satisfied. Active learning algorithms, e.g., L* [6], have a good
learning performance (the learned automaton is minimized
and accurate) but suffer from its exponential learning costs.

2.2 Challenges of Existing Works
Fig. 1 illustrates the three challenges of building a desired fuzz
driver using an example simplified from real-world cases.
C1: Modeling of API Control Dependencies The first
challenge is how to model and learn the control dependen-
cies among the library APIs. APIs can have different types
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#1:        A() 
#2:        B()   
             H() 
#3:        C() 
             I() 
#4:        D() 
             E() 
#5:        F() 
#6:        G()

void main() { 
    reader = new PdfReader("input.pdf"); 
    /* extractText will call  
       reader.read() until EOF */ 
    PdfTextStripper.extractText(reader); 
    reader.close(); 
} 

void showPages(pdf) { 
    while (pdf.hasNextPage()) { 
        page = pdf.getNextPage(); 
        page.render(); 
    } 
} 
void showPdf(..., file) { 
    reader = new PdfReader(file); 
    /* PdfDocument will call 
       reader.read() until EOF */ 
    pdf = new PdfDocument(reader); 
    if (pdf.parse() == SUCC) 
        showPages(pdf); 
    else 
        reader.getPdfMetaInfo(); 
} 
void main() { 
    while (...) 
        if (...) showPdf(...); 
        else showPdf(...); 
} 
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Figure 1: Motivation Example. The letters A - I are used to represent the call of the API function which appears at the same line with the letter in subfigure
a), b). The symbols *, †, and ‡ represent the example cases that existing works haven’t solved in C1, C2, C3 respectively. In subfigure d), #1 - #6 represent group
1 - 6, and ⤮ represents the execution order of a group’s functions depends on the input (i.e., fuzzer scheduling interface).

of dependencies. For example, in Fig. 1.a) and Fig. 1.b), ②
and ④ are the explicit data dependency between A and B and
the implicit data dependency between H and I, respectively.
① and ③ are two types of control dependencies (representing
loop and branch). Unfortunately, limited by how they model
the API usage, existing works do not consider most control
dependencies. FUZZGEN [1] uses flattened 𝐴2𝐷𝐺 (groups of
API call sequences) to describe the usage and APICRAFT [2]
uses a data dependency tree. Both models are not aware of
the control dependencies ① and ③. As a compensation, they
proposed heuristics to locate the error branches (by recog-
nizing the call of signature functions such as exit), which
covers a special case of the control dependency. Though not
emphasized in previous works, control dependencies can sig-
nificantly affect the quality of the generated fuzz drivers. For
example, in Fig. 1.a), missing the control dependencies can
cause not only the improper API invocation (showPages can
get invoked even when the program failed to parse the input if
missing ③), but also the insufficient exploitation of the input
(the program will not parse the second page onwards if missing
①). Consequently, to learn and utilize control dependencies,
a more descriptive model is needed.
C2: Noises in Learned Usage The second challenge is the
learned API usage can be full of noises while learning from
real world consumer programs (e.g., open-source projects in
GitHub). The noises are introduced from the following sce-
narios: ❶ The learned usage can be incomplete or redundant

when the learning starts from imperfect entry points of the
program. For instance, Fig. 1.c) shows the cases of applying
FUZZGEN to the consumer programs in Fig. 1.a) and Fig. 1.b).
The extracted usage of showPages and main (line 17) is incor-
rect. For showPages, the usage is incomplete since the source
of the pdf is missing. For main (line 17), the usage has unnec-
essary complexity. In practice, starting the extraction from
main (the default strategy of FUZZGEN) usually incurs ineffi-
cient or even incorrect results since the extracted usages can
be too complex to be used; ❷ Extracted usage can be erro-
neous due to the coupling of the usage code and the consumer
program code. For example, an usage irrelevant loop wrapping
around an API in the consumer program may add a dead loop
to the extracted usage. ❸ The usage can be incorrect due to
the imprecise analysis. Failing to remove the noises not only
wastes fuzzing resources but also introduces false positives
during fuzzing. Unfortunately, existing works do not handle
the noises. Considering the ubiquity of the noises and the
vague boundaries between the noise and the usage, denoise
techniques should be introduced.
C3: Utilization of Independent Usage Scenarios The
third challenge is how to effectively organize independent
API usage scenarios during fuzzing so that the fuzzer can sub-
stantially test the APIs. Here we call a set of self-sustaining
API functions an usage scenario. For example, in Fig. 1.c),
the APIs extracted from showPdf forms one usage scenario
while the APIs extracted from main (ln.22) forms another.
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Figure 2: General Workflow of RUBICK.

Usually, more than one usage scenario can be learned from
the consumer programs and each one can be converted as one
standalone fuzz driver. The reason why there exist multiple
independent usage scenarios is two-fold. On the one hand,
for better usability or compatibility, developers may provide
multiple sets of APIs for one functionality to users. On the
other hand, the learned usages are influenced by consumer
program specifics, which cannot be thoroughly merged as
one usage scenario without additional domain knowledge. In
fact, even human experts who wrote fuzz drivers for OSS-
Fuzz get confused about what is the proper way to handle
this problem [7]. Besides, existing works have not thoroughly
tackled this problem. FUZZGEN partially solves this problem
by proposing algorithms to coalescence distinct usage sce-
narios (merging the common nodes between two scenarios)
and providing scheduling interface to fuzzer. However, as
shown in Fig. 1.d), the coalesce of two distinct control flows is
error-prone due to the inconsistency of their data flows (Both
B and H depend/modify reader’s status.) Besides, scheduling
function orders inside one group (FUZZGEN divides them
into groups using relaxed top sort) tends to be unnecessary
(Reordering D and E does not help fuzzing, so does C and
I.) Other works, such as [2], rely on users to select the fuzz
drivers. The fuzzing performance can be hindered without
proper utilization strategy since some usage scenarios may get
starved during fuzzing. Therefore, a better utilization strategy
of usage scenarios should be proposed.

2.3 Our Approach
The key observation is that, by properly defining events, com-
mon API dependencies affecting the control flow can be mod-
eled as an automaton accepting certain event sequences. For
example, to describe API usages of Fig. 1.a) and Fig. 1.b), we
define function events (marked by A - I) and condition events
(marked by y, n, t, f). The full definition is shown in the Alpha-
bet part of Fig. 1.e), and the right side of Fig. 1.a) and Fig. 1.b).
A function event represents the call of an API function, e.g.,
event C means the call of PdfDocument.parse. A condition
event means that a constraint regarding the return values of
API functions has been satisfied, e.g., event y represents the
last return value of PdfDocument.parse equals to SUCC. For

simplicity, the automata representing the usage are written in
Python regex syntax [8]. Using the above definition, the loop
in Fig. 1.a) line 2 - 5 can be written as (EtFG)*Ef, and the
branch in line 12 - 15 can be represented as yD|n(EtFG)*Ef.
Similarly, the API usages of Consumer Program I and II are
ABC(yD|n(EtFG)*Ef) and AHI.

Based on this observation, RUBICK proposes an automata-
based solution to solve the previously discussed challenges.
Firstly, RUBICK extracts automatons from consumer programs.
The extracted automatons contain control-flow-sensitive API
usage but are raw. Secondly, it adapts an active learning algo-
rithm to find a minimized automaton which removes both the
duplicate and invalid event sequences inside each automaton.
After denoising, RUBICK merges them together as one single
usage automaton. Lastly, to better utilize this usage automaton,
it synthesizes an automata-guided fuzz driver. The driver pro-
vides a scheduling interface which fuzzers can pick the testing
usage scenario by mutating specific bytes of input. Therefore,
the usage scenarios inside the fuzz driver can be scheduled
by existing seed schedulers inside fuzzers. Fig. 1.e) shows the
usage automaton RUBICK learned from Consumer Program I
and II. Fuzzers can choose to fuzz either usage scenario.

Accordingly, as shown in Fig. 2, RUBICK has three com-
ponents: ❶ Learning Materials Preparation. The materials
include the event sequences in Raw non-deterministic finite
automaton (NFA) format, the API data dependencies, and the
API meta information; ❷ Usage Automaton Learning. RU-
BICK first unifies the alphabet for all Raw NFAs. Then it uses
a L* [6] based algorithm to generate a distilled (aka denoised)
DFA for each Raw NFA. After distillation, RUBICK merges
these DFAs as one usage automaton; ❸ Fuzz Driver Synthesis.
RUBICK synthesizes an automata-guided fuzz driver.

3 Methodology

3.1 API Usage Modeling
API Usage Representation RUBICK uses usage automa-
ton to represent API usage. Usage automaton contains two
kinds of events: the function events and the condition events.
In the context of the automaton, a function can bind with
zero or more output variables. And a condition expression

2870    32nd USENIX Security Symposium USENIX Association



A:ret_A = pdf.pageIterator(); 
I:ret_I = mock_I(ret_A); 
J:ret_J = mock_J(ret_A); 
t:ret_I == true; 
f:ret_I == false;

it = pdf.pageIterator(); 
while (it.hasNext())
    it.getNext();

n = pdf.getPageNum(); 
for (i = 0; i < n; i = i + 1) 
    pdf.getPage(i);

A:ret_A = pdf.getPageNum(); 
B:ret_B = pdf.getPage(ret_I); 
I:ret_I = mock_I(); 
J:ret_I = mock_J(ret_I); 
t:ret_I < ret_A; 
f:ret_I >= ret_A;

bool mock_I(Iterator it)  
{ return it.hasNext(); } 
PdfPage mock_J(Iterator it) 
{ return it.getNext(); }

int mock_I()  
{ return 0; } 
int mock_J(int i) 
{ return i + 1; }M
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Figure 3: Loop Cases Requiring Extra Events. The usage of I and II are
A(ItJ)*If and AI(tBJ)*f respectively (represented in regexes).

consists of constants and output variables. A function event
represents an action calling an API function and updating the
value of its bound output variables. A condition event rep-
resents an action that a condition expression is evaluated as
true. Naively, using API functions to define function events
and condition events, all sequential and branch usage can be
described. However, the above events can only describe the
loop whose control variables’ data flow (initialization, incre-
ment, and condition) can be fully recorded by these events.
For example, the loop in Fig. 1.a) is fully recorded using E, G,
t, f. Fig. 3 shows two types of partially recorded loops. For
case I, the condition and increment of it are missed since
it.hasNext() and it.getNext() are not API functions. For
case II, the initialization and increment of loop’s control vari-
able i are missed since i = 0, i = i + 1 are not recorded.
Mock APIs are introduced to describe the missing data flow of
control variables. Section 3.2.1 discusses how to locate them.
Specifically, in case I, by introducing mock APIs mock_I and
mock_J, new function events I, J and condition events t, f
(tainted by ret_I) are identified. Therefore, the loop usage
in case I can be fully described as A(ItJ)*If. Similarly, the
usage in case II can be written as AI(tBJ)*f.
Properties of Usage Automaton P1: No initial state can
be a final state. This is because RUBICK treats empty usage
as invalid usage. P2: Any non-empty prefix of a valid event
sequence is a valid event sequence. For example, in Fig. 1.b),
given that AHI is valid, obviously AH is valid too. P3: Any event
sequence containing a non-empty invalid prefix is invalid. For
instance, since AIH is invalid, any event sequence starting with
AIH is also invalid. This means that all invalid strings lead the
state machine into a trap state [9]. P2 and P3 are useful in
inferring the validity of event sequences which can boost the
distillation process in Section 3.3.2.

3.2 Learning Inputs Preparation
RUBICK collects learning inputs from consumer programs
via static analysis. Note that RUBICK requires no a priori

Algorithm 1 Raw Usage Automatons Extraction
Input: C (Consumer Program)
Output: As (Raw Usage Automatons)

1: procedure EXTRACT-USAGE(iCFG, F, ctxt)
2: A, Q, insn2State ← empty nfa, [], {}
3: startS, endS ← new State(), new AcceptState()
4: for 𝐼𝑛𝑠𝑛𝑒𝑛𝑡𝑟𝑦 ∈ Get-Entries(F)

5: Q
+
← [ ⟨ startS, 𝐼𝑛𝑠𝑛𝑒𝑛𝑡𝑟𝑦, ctxt.clone() ⟩ ]

6: while Q is not empty
7: curS, curI, ctxt ← Q.pop()
8: if curI is a non-API func call instruction

⊳ Extract and merge subA
9: 𝐹𝑐𝑎𝑙𝑙𝑒𝑒 ← iCFG.getCallee(curI)

10: subA ← EXTRACT-USAGE(ICFG, 𝐹𝑐𝑎𝑙𝑙𝑒𝑒, ctxt)
11: curS, A ← Merge-SubNFA(curS, A, subA)
12: else

⊳ Add transitions to identified new events to A
13: ctxt, event ← Event-Identification(ctxt, curI)
14: if event ≠ null
15: nextS ← new AcceptState()
16: A

+
← new Transition(curS, nextS, event)

17: curS ← nextS
18: insn2State

+
← { curI : curS }

19: if curI has no succs
20: A

+
← new Transition(curS, endS, 𝜖)

21: else
22: for nextI ∈ iCFG.getSuccs(curI)
23: if nextI ∈ insn2State
24: nextS ← insn2State.get(nextI)
25: A

+
← new Transition(curS, nextS, 𝜖)

26: else
27: Q

+
← ⟨ curS, nextI, ctxt.clone() ⟩

28: return A
29: end procedure
30: As, ICFG ← [], Get-ICFG(C)
31: for 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 ∈ Get-Functions(C)

32: As
+
← EXTRACT-USAGE(ICFG, 𝐹𝑡𝑎𝑟𝑔𝑒𝑡, empty context)

knowledge about the target library. Given a library, RUBICK
collects: ❶ the candidate events and event sequences; ❷ the
API data dependencies; ❸ the API meta information. The
API meta information refers to the basic information of API
functions, e.g., the function signature, the type of arguments
and return value, etc. Its collection is straightforward and is
done once per library. In the following, we only detail the
collection of the learning inputs ❶ and ❷.

3.2.1 Event Sequence Extraction

RUBICK extracts event sequences from the consumer pro-
grams by converting its control flow graph (CFG) into a non-
deterministic finite automata (NFA). Generally this is done by
translating some instructions into events and removing the ir-
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relevant instructions. We first discuss how events are identified
from instructions, then explain the extraction algorithm.
Events Identification The identification of API function
related events is straightforward: an instruction calling any
API function is a function event, and any branch instruction
whose condition expression is tainted by output of API func-
tions is a pair of condition events (true and false branches).
For the identification of mock API related events, RUBICK
needs to first locate the mock APIs and then apply the above
identification. RUBICK identifies the mock APIs of the two
types of loop cases discussed in Section 3.1 separately. For
case I, RUBICK additionally models the iterator interface. The
instructions which call iterator functions with a tainted class
object will be identified as mock API functions. For case II, the
identification is based on the results of the extraction. Hence,
RUBICK may run the extraction twice. After first run, RUBICK
checks whether the expressions of any extracted loop condi-
tion contain non-output variables. If no one contains such
variables, the extraction process is complete and all loops are
fully represented by the events. Otherwise, the data flows of
control variables for loop conditions with non-output variables
are not fully recorded. Therefore, RUBICK conducts data de-
pendency analysis to locate the instructions which initialize or
update that variable. After setting these instructions as mock
API functions, RUBICK reruns the extraction for final results.
Raw NFA Extraction For clarity, Algorithm 1 shows a
single-pass extraction process. As shown in line 31 – 32, in-
stead of requiring a perfect entry function for extraction, RU-
BICK extracts a raw usage automaton (namely Raw NFA) for
each function inside the consumer program. This is feasible
since the subsequent learning process will remove the invalid
or the redundant usages. The basic idea is to build the Raw
NFA along the traverse of the ICFG. The traverse starts from
the entry instruction of target function 𝐹𝑡𝑎𝑟𝑔𝑒𝑡. Line 7 – 27
shows the analysis of each traversed instruction. 𝑐𝑢𝑟𝐼 points
to the instruction under analysis. 𝑐𝑢𝑟𝑆 points to the state in
Raw NFA which new states should be linked with. 𝑐𝑡𝑥𝑡 holds
the taint information for analyzing 𝑐𝑢𝑟𝐼 . If 𝑐𝑢𝑟𝐼 is a non-API
function call instruction, RUBICK extracts the Raw NFA of the
callee (𝑠𝑢𝑏𝐴) and merges it into current NFA (𝐴). The merge
is accomplished by adding transition from 𝑐𝑢𝑟𝑆 to the start
state (𝑠𝑡𝑎𝑟𝑡𝑆) of 𝑠𝑢𝑏𝐴 with epsilon event (𝜖) and adjusting
the 𝑐𝑢𝑟𝑆 to point to the end state (𝑒𝑛𝑑𝑆) of 𝑠𝑢𝑏𝐴. If 𝑐𝑢𝑟𝐼 is
not of the above case, the event identification strategies are
applied. New transition will be added to 𝐴 once a new event is
identified, and 𝑐𝑢𝑟𝑆 also will be updated. Last, the successors
of 𝑐𝑢𝑟𝐼 are added to 𝑄 for analysis. If 𝑐𝑢𝑟𝐼 is an exit point
of the function , e.g., return, the edge from 𝑐𝑢𝑟𝑆 to 𝑒𝑛𝑑𝑆 is
added. If a successor instruction is already analyzed, a transi-
tion from 𝑐𝑢𝑟𝑆 to the instruction’s corresponding state under
event 𝜖 is added. For simplicity, the algorithm only shows
the key flow. In implementation, the algorithm also maintains
a stack to prevent the infinite loop caused by the recursive
call of the target function. Besides, multiple callees can be

returned by iCFG.getCallee (ICFG stands for Interprocedu-
ral Control Flow Graph) in line 9 when 𝑐𝑢𝑟𝐼 is an indirect
call. RUBICK empirically picks the first callee. If the callee
is picked wrongly, the extracted wrong usage is expected to
be filtered by usage distillation. The extracted automaton is
named as Raw NFA since it contains 𝜖 and can have multiple
transitions given one specific state and event, e.g., same events
can be identified in both paths of a branch.

3.2.2 Data Dependency Collection

The extracted Raw NFA contains control flow information of
the fuzz driver, such as the correct order of API functions, or
the condition to call an API function, etc. Comparatively, API
data dependencies indicate the possible values for arguments
of API functions, or the data linkages between API functions.
Both are necessary information for generating a valid fuzz
driver. Specifically, one set of control flow usage can have
multiple sets of data dependencies. For example, given three
API functions 𝐹𝐴, 𝐹𝐵 , 𝐹𝐶 , and assuming the return values
of both 𝐹𝐴 and 𝐹𝐵 can be used as the first argument of 𝐹𝐶 ,
the control flow usage 𝐹𝐴 → 𝐹𝐵 → 𝐹𝐶 has two sets of data
dependencies: 𝐹𝐶 can use the return value of either 𝐹𝐴 or 𝐹𝐵 .
Currently, RUBICK collects data dependencies between two
API functions and between an API function and a constant.
Specifically, RUBICK abstracts them as the tuple ⟨ Provider,
Consumer ⟩ where provider can be any output of an API func-
tion or a constant and the consumer can be any input needed
by an API function. They are collected together with Raw
NFAs by statically analyzing the consumer programs.

3.3 Usage Automaton Learning
3.3.1 Alphabet Unification

The collected Raw NFAs have their own alphabets. RUBICK
unifies them as one alphabet by identifying the equivalent
letters and assigning them the same letter. ❶ For API func-
tion events, RUBICK assigns same letter for events have same
function signatures. ❷ For condition events, RUBICK needs
to align their condition expressions and solve the potential
conflicts before assigning letters. For example, assuming Raw
NFA 𝐴 has 𝐶𝐴1: ret_C == SUCC, 𝐶𝐴2: ret_C != SUCC, and
Raw NFA 𝐵 contains 𝐶𝐵1: ret_C == SUCC, 𝐶𝐵2: ret_C ==
STOP. Ideally RUBICK can use the following letters to replace
all above letters: 𝐶𝑈1: ret_C == SUCC, 𝐶𝑈2: ret_C == STOP,
𝐶𝑈3: (ret_C != SUCC) && (ret_C != STOP). For instance,
all edges representing event𝐶𝐴2 inside NFA𝐴 can be replaced
with two edges representing 𝐶𝑈2 and 𝐶𝑈3. RUBICK models
this conflict solving problem as a solution set division prob-
lem. Generally, each condition expression is equivalent to its
solution set satisfying the condition. The goal is to find a set of
solution sets where each solution set is non-intersect with each
other and any original solution set can be the union of them.
Using that set, any original condition event can be replaced by
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several new events (see Appendix A for the algorithm detail).
From our experience, conflict case rarely happens and RU-
BICK only met conflict of simple conditions containing single
variable expressions. ❸ For the mock API function related
events, RUBICK compares their identity by group. Specifically,
a group of events contain all related events affecting the loop
condition. Two groups are identical if their loop condition
expressions, the value update expression of the mocked API
functions, and the execution order of these events are equal.
Otherwise, RUBICK assigns different sets of letters to them.

3.3.2 Usage Distillation

The extracted Raw NFAs can contain invalid event sequences.
The goal of usage distillation is to find a minimized automa-
ton which only accepts the correct event sequences inside a
NFA. Automata learning algorithms fit this task. Note that the
Raw NFA only provides the scope of PEs but not the exact
sets. Besides, the NFA can contain infinite amounts of PEs
and NEs. In this case, active learning is more suitable since
sampling a representative set of learning input for passive
learning is challengeable. If we gather the knowledge related
with validating event sequences to build a teacher, it can learn
a minimized DFA to represent the SUL (the correct parts of
the Raw NFA). The knowledge includes the Raw NFA, the
static checker and the dynamic validator for event sequences.
For the active learning algorithm, RUBICK uses L*[6].

To build a teacher required by L*, RUBICK has to answer two
types of queries: membership query and equivalence query.
For membership query, RUBICK needs to answer the validity
of any queried event sequence. RUBICK validates a sequence
both statically and dynamically (see Algorithm 2). ❶ In line
8, RUBICK checks whether the used variables of any event
have been initialized in its prefix events. If the check fails,
the sequence is invalid since the fuzz driver based on it will
have uninitialized variables. ❷ In line 9, RUBICK converts the
event sequence to a fuzz driver and executes it. The sequence is
invalid if the execution fails (crash or stuck). Note that this fuzz
driver is only a sequence of API calls and condition checks
without branches or loops. Sometimes, the sequence can only
be partially executed since the execution may not satisfy a
condition when the sequence contains condition events. In this
case, the validity is roughly measured by the executed parts.
This is an optimistic strategy and can cause the final automaton
containing invalid sequences. Obviously, the effectiveness of
dynamic validation is influenced by the diversity of the input
files. Practically we suggest using one to three valid inputs as
seeds. In evaluation, RUBICK uses one valid seed (< 100K)
downloaded from the Internet for each target. ❸ In line 7,
RUBICK checks two properties: First, the condition event can
only appear after its expression’s value has been updated by
other events. This helps to filter out the dead loop caused by
condition events whose value will never be updated. Second,
the API function accepting the input file should appear once

Algorithm 2 Membership Query Pseudo Code
Input: eventseq (A string represents an event sequence), rawNFA

(an extracted Raw NFA)
Output: boolean (boolean value for eventseq is accepted or not)

1: procedure MEMBERSHIP-QUERY(eventseq, rawNFA)
2: if eventseq ∈ neCache
3: return false
4: if eventseq ∈ peCache
5: return true
6: if eventseq ∈ rawNFA
7: if Fit-Properties-Of-Desired-Fuzz-Drivers(eventseq)
8: if No-Unsatisfied-Data-Dependency(eventseq)
9: if Pass-Dynamic-Validation(eventseq)

10: peCache
+
← eventseq

11: return true
12: neCache

+
← eventseq

13: return false
14: end procedure

and only once. For the equivalence query, RUBICK uses wp-
method [10] to sample a test set of the automaton. RUBICK
selects wp-method since it generates a slightly smaller test
set than w-method while keeping similar representativeness.
The lookahead value is the only adjustable parameter in wp-
method. During the EQ, the L* algorithm tries to search for test
cases which are counterexamples. The test cases are generated
by adding postfixes to the accepted strings. The lookahead
value determines the maximum length of the added postfixes.
Therefore, a higher lookahead value means a more complete
check in EQ but brings more performance penalty. Empirically,
RUBICK sets it as 2 (see evaluation in Section 4.2).

After learning, RUBICK removes dead loops and trap states
of the output automaton. A dead loop is a loop which does
not contain any condition event. Removing the trap states and
the related transitions simplifies the automaton while keeping
its accepted event sequences (P3 in Section 3.1).

3.3.3 Automata Merge

RUBICK uses DFA combination and minimization algorithms
to generate the final usage automaton from the distilled ones.
These algorithms, such as Hopcroft’s DFA minimization al-
gorithm [11], have reasonable time complexity. The merge
process cannot be done before distillation. The reason is that
the merge will exponentially increase the performance costs
(the distillation will face a giant Raw NFA) while gaining little
benefits on distillation outcomes.

3.4 Automata-Guided Fuzz Driver Synthesis
As the last step, RUBICK synthesizes a fuzz driver based on
the learned usage automaton. However, the synthesis is non-
trivial since the learned usage can inevitably contain multi-
ple independent usage scenarios (Section 2.2 C3). For better
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Table 1: The Attack Surfaces Used for Evaluation. A: Apache Software
Foundation, C: Commercial Company, G: Github Individual.

Format Project Version Vendor # of APIs
apachetar TAR Apache Commons Compress [12] 1.21 A 195
apachepoi XLS Apache POI [13] 5.2.1 A 1,320
itextpdf PDF iText 7 [14] 7.2.2 C 810
junrar RAR Junrar [15] 7.4.1 G 619
pdfbox PDF Apache PDFBox [16] 2.0.26 A 2,779
zip4j ZIP Zip4j [17] 2.9.1 G 521

scheduling of fuzzing multiple scenarios, RUBICK synthesizes
an automata-guided fuzz driver. It provides a scheduling inter-
face where the fuzzer can pick the testing scenario by mutating
the specific bytes of the input. Therefore, the scenario schedul-
ing can be done by the existing seed schedulers inside fuzzers.
For example, in Fig. 1.e), fuzzers can pick to fuzz 1) or 2)
by mutating the first byte of the input. Fig. 9 in Appendix C
details the implementation of our fuzz driver.

Generally, RUBICK first uses a Depth-First-Search (DFS)
based algorithm to count all independent usage scenarios in-
side the automaton (see detail in Appendix B). Second, the
fuzz driver is designed as event-driven. It loads the usage au-
tomaton and maintains its states during execution. For each
execution, it starts from the initial state and tries to traverse the
automaton until there are no successor state. After each step
of the traverse, the driver executes the corresponding code,
and updates the status accordingly. During the traverse, when
there are multiple choices for picking the next states, the pick
is determined by either the mutated input or the execution
context. If the next events belong to multiple usage scenarios,
the pick is determined by input, e.g., for state 1 in Fig. 1.e),
choosing B or H depends on the input. Otherwise, it should
be determined by the execution context, e.g., for state 3 in
Fig. 1.e), choosing y or n depends on the value of ret_E.

4 Implementation & Evaluation

Implementation The main components of RUBICK contain
6,979 lines of Java code, 1,656 lines of Python code, and 654
lines of Bash scripts. Specifically, Java code includes most
functionalities such as the learning inputs collection, usage
distillation, fuzz driver synthesis, etc. The python code is
mainly used for alphabet unification. The bash scripts are used
for gluing the workflow. The automata related algorithms
are developed upon learnlib [18], and the first-order logical
formulas related algorithms are developed upon z3py [19].
Currently, RUBICK can generate fuzz drivers for Java libraries.
Evaluation Questions The evaluation aims to answer:
• RQ1: How is the performance when applying RUBICK on

real world fuzzing projects?
• RQ2: How is the quality of the fuzz drivers generated by

RUBICK compared with fuzz drivers generated by state-of-
the-art techniques and manually written ones?

• RQ3: Are the fuzz drivers improved by addressing the three
key challenges?

• RQ4: How are the false positives produced by the fuzz
drivers of RUBICK and other existing methods?

• RQ5: Can the fuzz drivers generated by RUBICK help to
find vulnerabilities in real world fuzzing scenarios?

Evaluation Targets We apply RUBICK on library targets
which are top usage (used by other apps/programs) third-party
libraries supporting both PC and Android platforms. The usage
data is crawled from maven repository [20] and appbrain [21].
The evaluated targets are the top six ranked by the number of
APIs (Appendix D). Tbl. 1 details the attack surfaces identi-
fied from the six popular Java libraries. Note that the libraries
and attack surfaces have a many-to-many relationship. Mul-
tiple attack surfaces inside one library are separated by the
input formats they accept. For example, for apachepoi and
apachetar, their libraries provide APIs to parse 12 and 22
different types of input formats, which means that they have
12 and 22 attack surfaces respectively. For these libraries, we
pick the attack surface which accepts a popular input format.
Experiment Setup To fuzz Java programs, we use
jazzer [22], which is a libfuzzer-based fuzzer used by
OSS-FUZZ and ClusterFuzz. Following the suggestions
from [23], all the evaluated fuzz drivers share the same input
seeds, machine, and fuzzer options (–jvm_args="-Xmx2048m"
-close_fd_mask=3 -timeout=60 -rss_limit_mb=10240).
For fairness, the coverage of the fuzz driver itself is excluded,
i.e., the comparison only covers the edge coverage of the
target attack surfaces. All data used in evaluation are collected
from 24 hours, 10 times repeated fuzzing results. In the plots,
lines are average values and the shadows around the lines
represent 95% confidence intervals. All the listed unique
bugs including the false positives are manually deduplicated.
First we group bugs based on their full stacks, then manually
merge the groups whose root cause stacks have the same code
location (function & line). The experiments are conducted on
a Linux server with two Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz processors and 188GB RAM.

4.1 Fuzz Driver Generation
To apply RUBICK on these attack surfaces, we built a crawler
to collect the consumer programs. The crawler first locates the
open-source consumer programs, then retrieves their jars as
RUBICK’s input. Specifically, a project is a consumer program
if its code contains the package path of the attack surface,
e.g., com.github.junrar. We use src, a CLI tool of Source-
graph [24], to launch the match query among all open-source
projects of Github, Gitlab, Bitbucket, etc. Our website [5] lists
the used search patterns. For the matched consumer programs,
we use heuristics to automatically retrieve their jars: ❶ find
latest released jars from their webpages; ❷ try to build jars
using common building commands, e.g., mvn package. As
shown in Tbl. 2, we collect dozens to hundreds consumer pro-
grams for each attack surface. The second column shows the
number of usable/matched consumers. A consumer is usable
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Table 2: Statistics of Intermediate Results of RUBICK.

Attack
Surface

Crawling Learning Inputs Preparation Usage Automaton Learning Fuzz Driver Synthesis
# of
Projs

# of
Jars

# of
Entries

# of
Raw NFAs

# of
APIs

# of
Data Deps

CPU Sec
(Pct.)

# of
𝐶𝐶

# of
𝐶𝑀𝐺

# of
𝐸𝐴𝑃𝐼

# of
𝐸𝑀𝑜𝑐𝑘

# of
𝐸𝐶𝑜𝑛𝑑

# of
𝐸𝑇 𝑜𝑡𝑎𝑙

# of
State

# of
Tran

CPU Sec
(Pct.)

# of
Ctrl Flow

# of
Data Flow

CPU
Sec

apachetar 36/911 39/92 34,905 91 33 2,089 1,647 (66%) 0 0 22/33 0/1 16/54 38/88 165 223 832 (34%) 319 319 < 1
apachepoi 40/984 74/1,197 26,534 247 243 6,619 656 (34%) 1 3 69/243 8/15 12/109 89/367 89 94 1,289 (66%) 20 20 < 1
itextpdf 25/89 33/44 14,632 2,236 311 8,560 194 (3%) 1 3 75/311 59/88 78/365 212/764 308 348 7,223 (97%) 16 131,088 < 1
junrar 16/72 24/441 9,737 143 147 1,023 114 (16%) 0 0 49/147 0/0 14/52 63/199 120 150 617 (84%) 12 13 < 1
pdfbox 34/326 138/4,835 83,481 455 339 13,680 1,260 (29%) 0 2 54/339 9/14 36/184 99/537 127 148 3,127 (71%) 21 21 < 1
zip4j 62/514 28/262 9,175 41 49 1,635 298 (69%) 0 1 34/49 1/2 14/22 49/73 65 75 132 (31%) 5 5 < 1

if its jars are retrieved. The third column shows the number
of usable/retrieved jars. A jar is usable if it contains the usage
code and can be analyzed by soot [25].

First, RUBICK prepares the learning inputs from usable jars.
For every function inside the consumers, RUBICK applies Raw
NFA extraction. In 4th column of Tbl. 2, RUBICK analyzed
more than 9,000 functions for every attack surface. The fifth
column shows the amount of extracted non-empty Raw NFAs.
The amounts of the contained API functions and the data
dependencies are listed in the next two columns. The reason
RUBICK can practically analyze large amount of real world
projects is two-fold: ❶ The time complexity of its extraction
algorithm is 𝑂(𝐸) where 𝐸 is the amount of edges of the
traversed ICFG; ❷ RUBICK configures soot to build a partial
ICFG. Before ICFG construction, the classes of third party
libraries were excluded using SootClass.setPhantomClass.

Next, RUBICK learns one usage automaton from the inputs.
It first unifies the alphabet for all extracted Raw NFAs, then it
distills all the Raw NFAs and merges them as the final usage
automaton. The ninth and tenth columns show the number
of the conflicts in unifying condition events 𝐶𝐶 and mock
API related event groups 𝐶𝑀𝐺. The eleventh to fourteenth
columns list the number of API events 𝐸𝐴𝑃𝐼 , mock API events
𝐸𝑀𝑜𝑐𝑘, condition events 𝐸𝐶𝑜𝑛𝑑 , and total events 𝐸𝑇 𝑜𝑡𝑎𝑙 used
in all automatons after/before distillation. The distillation de-
creases the number of the events since it removes invalid event
sequences. Lastly, RUBICK synthesizes the fuzz driver. The
last three columns show its detailed statistics.

4.2 Performance Assessment (RQ1)
Overall Performance In Tbl. 2, the last column in each
component lists the cost of that component in CPU second and
the percentage 𝑐𝑜𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 . The percentages of Fuzz Driver Syn-
thesis are ignored since most values are less than 1‰. Overall,
RUBICK can generate fuzz drivers for real world projects with
a reasonable time cost. For large targets like pdfbox (~2700
APIs, ~100 consumers), RUBICK generates its fuzz driver in 2
CPU Hours. Besides, the Automata Learning component costs
most cpu resources (63.88% on average). Note that the cost
of Learning Input Preparation varies according to the amount
and complexity of the entry functions inside the consumers.
And the cost of Automata Learning increases exponentially
when its lookahead value increases (see paragraph Param-
eter Selection in Distillation). Therefore, cost comparison

Lower Whisker 1st Quartile Median 3rd Quartile Upper Whisker
2.74 6.11 6.66 9.02 13.38

Figure 4: Boxplot and Statistics of Distillation Time Per Raw NFA.
X-axis is the time in seconds. The axis is in log scale.

results can vary under different settings. However, mostly the
Automata Learning component will have highest costs.
Performance of Usage Distillation To understand the per-
formance of distillation, we did statistics for the distillation
time of each automaton. Fig. 4 shows the box plot and the
statistics. According to the 3rd Quartile (9.02) and Upper
Whisker value (13.38), we conclude that mostly distilling an
automaton costs less than 14 CPU seconds.
Parameter Selection in Distillation The only adjustable
parameter in L* is the lookahead value (abbr as L) of the wp-
method. We study the effects of L by comparing the learning
cost and the learned automaton under different L. Tbl. 4 shows
the total time/number of MQ when using four different L. Note
that EQ is also counted since EQ intrinsically is using a set of
MQ to find the counterexample. The results show that the cost
increases exponentially when L increases. By comparing the
learned automata, we found that: ❶ In most cases (99.47%,
3196/3213), all settings can learn the same automaton; ❷ In
the rest 17 cases, L = 3 and L = 4 learn the same automaton.
Compared with L = 4, L = 2 learns 8 automatons differently
and L = 1 learns 17 automatons differently. By analyzing these
17 cases, we found that lower L increase the possibility of miss-
ing correct usage and summarizing false usage. Specifically,
when L = m, the algorithm can falsely summarize the m + 1
repeated call sequences as a loop. Besides, it also misses the
following correct call sequences. Considering the high cost
and minor learning outcome improvement of using a high L,
we conclude that both 2 and 3 are suitable values in practice
and we use 2 as the default value.

4.3 State-of-the-Art Comparison (RQ2)
Baselines We evaluated the effectiveness of RUBICK by
comparing the fuzzing performance of its fuzz drivers with
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Figure 5: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ2. X-, Y-axis are time (sec) and edge coverage/# of unique bugs.
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Figure 6: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C1. X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 3: Comparison on Metrics of Covered APIs (APIs) and API
Sequence Cyclomatic Complexity (CC).

Attack
Surface

apachetar apachepoi itextpdf junrar pdfbox zip4j

APIs CC APIs CC APIs CC APIs CC APIs CC APIs CC
manual 2 1 12 2 2 1 3 2 9 2 3 3
fuzzgen 23 1 56 1 55 1 18 1 21 1 24 1
rubick 22 60 69 7 54 23 49 32 75 42 34 12
w.o. cf 16 1 15 1 47 1 42 1 46 1 12 1
raw 28 224 217 435 307 939 116 169 210 1313 47 27

Table 4: Statistics of Learning Under Different Lookahead Values.
Metric L = 1 L = 2 L = 3 L = 4
Time (CPU Sec) 1.21E+04 1.74E+04 7.89E+04 1.65E+06
# of Queries 1.22E+07 1.38E+08 2.86E+09 1.14E+11

the drivers from FUZZGEN (abbr as fuzzgen) and manually
written fuzz drivers (abbr as manual). Originally, FUZZGEN is
written for C/C++ programs. We developed its Java version.
We strictly followed the algorithms discussed in its paper and
aligned the implementation detail with its released source code.
Besides, since the fuzz drivers generated by FUZZGEN are too
complex to be fuzzed when there are hundreds or thousands of
consumer programs(as discussed in its paper). We manually
filtered out the consumers with invalid usage and select the
top five consumers ranked by including the most unique API
calls. The filtered consumers contain usages which crash even
under a valid input, e.g., the usage which misses necessary data
dependencies for calling an API. If these consumers are used
for FUZZGEN, its fuzz driver will always crash since the driver
tries to execute all usages in every execution. The manually

written fuzz drivers of apachetar, pdfbox are collected from
OSS-Fuzz. For the rest, we invited a human expert who is not
the author of this paper to manually write them. The expert is
familiar with fuzzing and coding in Java but has no a priori
knowledge of these attack surfaces. Writing these four fuzz
drivers costs the expert around one week.

Fig. 5 shows the comparison results in metrics of edge
coverage and unique bugs. The blue, yellow, and black lines
stand for the coverage of rubick, fuzzgen, and manual, respec-
tively. In both metrics, rubick shows apparent performance
advantage over the other two baselines. Specifically, almost
all p-values of rubick – fuzzgen and rubick – manual are
smaller than 5.00e-2, which shows the statistical significance
(see full figures in Appendix E Tbl. 8). Tbl. 3 lists the compar-
ison on three more metrics. Results show that RUBICK mostly
finds more unique bugs, covers more APIs, and has a higher
API sequence complexity. Overall, we conclude that RUBICK
can generate more effective fuzz drivers than existing methods.

4.4 Ablation Study (RQ3)
4.4.1 API Control Dependencies (C1)

To study the effectiveness of the API control dependency, we
compare the fuzzing performance of the fuzz drivers with con-
trol flow sensitivity (abbr as w. cf) and without control flow
sensitivity (abbr as w.o. cf). Both fuzz drivers are generated
using RUBICK except that the condition events and mock API
events are not identified for w.o. cf. Fig. 6 shows the compar-
ison on the metrics of edge coverage and unique bugs. Blue
solid line and red dotted line are w. cf and w.o. cf respec-
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Figure 7: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C2. X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 5: No. of Independent Usage Scenarios w. & w.o. Denoise
apachetar apachepoi itextpdf junrar pdfbox zip4j

raw 1,099 22,625 17,713 222 7,861 24
denoised 319 20 16 12 21 5
R (1 - 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

𝑟𝑎𝑤 ) 70.97% 99.91% 99.91% 94.59% 99.73% 79.17%

tively. w. cf shows clear advantage in the plots. Almost all
p-values of w. cf – w.o. cf are smaller than 5.00e-2, which
shows the statistical significance (see Tbl. 8). Besides, by com-
paring the rubick (w.cf) and w.o. cf in Tbl. 3, we found that
control flow sensitivity also helps the fuzz driver to carry more
diverse usages by covering more APIs. Appendix F further
provides a case study revealing how control-flow-sensitivity
helps for more efficient bug hunting. The evaluation shows
that considering control flow sensitivity can improve both the
quality and performance of the fuzz drivers.

4.4.2 Denoise (C2)

To study the effectiveness of the denoise techniques, we com-
pare the fuzz drivers generated with the usage distillation
techniques (abbr as denoised) and without these techniques
(abbr as raw). Specifically, the process of generating raw skips
the techniques described in Section 3.3.2. Tbl. 5 lists the
number of the independent usage scenarios for denoised and
raw. Apparently, raw has a significantly more complex usage
automaton than denoised. However, most of the complexity
is unnecessary since a majority of the usage inside raw are
noises (redundant or invalid event sequences). As shown in the
Tbl. 5, RUBICK filters out 70.97% to 99.91% usage scenarios.
Fig. 7 lists the comparison in metrics of edge coverage and
unique bugs. The blue solid line and red dotted line repre-
sent denoised and raw respectively. In most cases, denoised
reaches higher coverage and finds more unique bugs with sta-
tistical significance (see p-values in Tbl. 8). Interestingly, as
shown in Tbl. 3, the raw covers more APIs and has a notably
higher API sequence complexity. This further proves that the
unnecessary complexity inside the raw does not benefit but
hurt its fuzzing performance. Usage distillation is a neces-
sary step, which improves the overall fuzzing performance by
significantly reducing the complexity of usage automaton.

4.4.3 Automata-Guided Fuzz Driver (C3)

Baselines In RUBICK’s fuzz driver, the fuzzer can change
the testing usage scenario by changing the value of leading
bytes of the input. To understand the effectiveness of the
scheduling interface, we compared the fuzz drivers with the
following four settings. ❶ rnd1seed, the default strategy used
by RUBICK. The fuzzing is started with one initial input seed
whose leading bytes are assigned with random values. In other
words, the fuzzer has a randomly picked testing scenario as
the startup. For repeated experiments, each fuzzer instance
will have its own starting scenario. ❷ cfseeds, it is same as
rnd1seed except that there are multiple initial seeds where
each seed picks a different scenario. In other words, cfseeds
gives fuzzer full information for its scenario scheduling at
the beginning of the fuzzing. ❸ rnd1cf, a setting that the
schedule interface is disabled. Before fuzzing, it will be ran-
domly bound with one usage scenario and the fuzzer can only
fuzz that scenario throughout the 24h experiment. In repeated
experiments, the scenarios among the fuzzing instances are
picked and bound independently. rnd1cf stands for the nor-
mal fuzzing strategy without scenario scheduling. ❹ itercf,
a setting that the schedule interface is also disabled. However,
different from rnd1cf, it iterates all usage scenarios in each
single fuzzing iteration. rnd1cf represents the strategy that
every usage scenario is equally scheduled.

Fig. 8 shows the comparison results of four settings on
metrics of edge coverage and unique bug: ❶ In all attack
surfaces, rnd1seed and cfseeds are higher than itercf and
rnd1cf in both two metrics with statistical significance (see
p-value detail in Tbl. 8). This shows the scheduling interface
is effective. ❷ Overall, it is hard to pick the dominant set-
ting between cfseeds and rnd1seed. For coverage, cfseeds
has higher initial coverage than rnd1seed in apachepoi and
itextpdf, which is reasonable since cfseeds has more initial
seeds. However, the final performances of them are similar.
For unique bugs, cfseeds performs better than rnd1seed in
apachepoi and itextpdf but worse in pdfbox and junrar. An
explanation is that the exploration ability of the fuzzer itself
is good enough, therefore the fuzzer can quickly explore all
usage scenarios. ❸ Mostly, the confidence intervals (shadows
along the lines) of rnd1cf are observably wider than others.
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Figure 8: Coverage/Unique Bug (1st/2nd row) Per Time Comparisons for RQ3 C3. X-, Y-axis are time (sec) and edge coverage/# of unique bugs.

Table 6: Unique False Positives Statistics. Bad Data Dep, Invalid
Call Seq, and Improper Cond stand for the false crashes caused by missing
or invalid API data dependencies, invalid API call sequences, and missing
API control dependencies, respectively. The number of false dead loops are
counted into a standalone type Dead Loop.

fuzzgen rubick w.o. cf raw

Bad Data Dep 7 0 0 4
Invalid Call Seq 2 0 0 0
Improper Cond 22 7 10 2
Dead Loop 0 0 0 2
Total 31 7 10 8

This indicates that the performance of rnd1cf among multiple
rounds of fuzzing is less stable. Interestingly, this reveals that
the potentials of different usage scenarios are different; there-
fore, a scheduling interface for maximizing the utilization of
multiple usages is necessary. Besides, the execution speed of
itercf is many times slower than others since it executes all
usage scenarios during one fuzzing iteration. In summary, the
scheduling interface provided by RUBICK can significantly
improve the utilization of the multiple usage scenarios, and
both rnd1seed and cfseeds are suitable setups.

4.5 False Positives (RQ4)
To study the false positives produced by the fuzz drivers, we
manually identified and deduplicated false positives from all
evaluated fuzz drivers. Tbl. 6 provides the FP statistics (Tbl. 9
in Appendix G details the FP rate statistics.) Note that man-
ually written fuzz drivers are not listed since they have not
produced any false positives. rubick has the least number
of false positives. The root cause of the false positives from
rubick is that it has learned unsound usage from the con-
sumers. Besides, the rest of the false positives from other fuzz
drivers can either be avoided by RUBICK’s control flow mod-
eling or be filtered out by RUBICK’s distillation. Generally,
RUBICK produces less false positives than FUZZGEN. And the
control flow sensitivity and denoising helps in reducing the
false positives caused by fuzz drivers.

All of rubick’s false positives have the same root cause.
They are of type Improper Cond and appear in itextpdf.

Typically, a consumer can contain an unsound usage which
calls page.getxxx() without checking whether the page is
null or not. The distillation in rubick cannot filter this un-
sound usage out since this usage works well with a valid pdf
file. Except this, the rest false positives found in other fuzz
drivers can be filtered or avoided by rubick: ❶ For Bad Data
Dep, fuzzgen passes fixed values which are supposed to be
loop control variables for some APIs. For example, fuzzgen
uses getSheet(0) while the correct usage is getSheet(i)
where i ranges from 0 to the number of sheets in this in-
put. When the mutated input contains zero pages, the fuzz
driver will crash. raw has false positives since it calls an
API with missing arguments. Indeed it does not have enough
data dependencies to fill in all arguments of that API. ❷ For
Invalid Call Seq, fuzzgen calls pdf.getNumberOfPages()
after it calls pdf.close(). This invalid sequence does not
come from the consumer but is introduced by fuzzgen’s co-
alescing strategy. ❸ For Improper Cond, fuzzgen and w.o.
cf call APIs without checking the API usage precondition.
For example, they call iteratorX.next() without checking
iteratorX.hasNext() == true, which causes false crashes.
❹ For Dead Loop, raw got stuck since it does not filter out
dead loops inside its automata. All the cases can be solved
with rubick’s control flow modeling and distillation features.

4.6 Real-world Application (RQ5)
Fuzz Driver Generation RUBICK has been used to generate
fuzz drivers for eleven attack surfaces, including the attack
surfaces in evaluated projects, metadata-extractor, Apache
Tika, fastjson, and jackson. The selection criteria is that
they are popular Java projects on both PC and Android systems.
Therefore, finding the bugs of these projects can benefit the
software of both systems. Additionally, we directly generated
human readable fuzz drivers containing one usage scenario.
Two of them have been merged into OSS-FUZZ.
Long-term Fuzzing Campaign With the generated fuzz
drivers, we conducted a three-month fuzzing campaign. In
total, 199 bugs have been found and responsibly reported
to the vendors (see full list in Appendix H). The types of
the found bugs cover Uncaught Exception, Stack Overflow,
Out-Of-Memory, and Infinite Loop. Four CVE numbers have
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been assigned. To further evaluate the impact of these bugs,
we built a workflow to semi-automatically identify the APPs
which are truely exploitable by these bugs. We successfully
exploited eleven APPs and four of them have 10,000,000+
download counts in Google Store. Specifically, the APPs can
behave abnormally (crash, stuck, etc) when users try to open
the POCs. One interesting case is that a top APP (10,000,000+
download count) will be stuck and occupy all memory as long
as the POC exists in the file system of the phone and the user
refreshes the file list in UI. Simply restarting the APP cannot
solve this issue since the APP tries to recover the last opened
file list in the background. We’ve responsibly notified all APP
vendors about the security issues and provided fix suggestions.
More details can be found in our website [5].

5 Limitation & Future Work

More Types of API Dependencies Currently, RUBICK only
extracts common API control dependencies (branches and
loops related with outputs of API functions) from the con-
sumers. However, there exists API dependencies that cannot
be precisely described by RUBICK. For example, the input
value of the API functions may also affect its following us-
ages, or some usages can be out of the description ability of
DFA such as time related usage. To fully support these de-
pendencies, extra modeling or even new models need to be
developed. We leave the support as future work.
More Learning Sources The two major learning sources
of RUBICK are the static analysis of the example code and the
execution information of the generated code. On one hand,
these sources provide necessary information for generating
valid fuzz drivers. On the other hand, the learning ability of
RUBICK is limited by them. For instance, due to the lack of
proper semantic guidance, it is hard to reasonably infer usage
of the APIs which are not used in the consumer programs
from the used. Domain knowledge, documentations, code
comments, or even function names are complementary sources
containing high level API semantics which are promising to
improve the learned usage. In the future, we plan to research
learning usage from multiple dimensions of sources.
Other Programming Languages Currently, RUBICK gen-
erates fuzz drivers for Java code. There are no fundamental
differences for applying RUBICK to other languages since its
core methods are based on general concepts of modern lan-
guages. However, besides engineering efforts for adaptation,
extending RUBICK to other languages may require additional
efforts to solve language-specific challenges. For example, for
languages requiring standalone compilation, collecting analyz-
able consumer programs requires language-specific heuristics
for compilation. For generating C/C++ fuzz drivers, the data
dependency extraction in RUBICK may need additional strate-
gies for handling pointers and structs.

6 Related Work

Fuzz Driver Generation Recently, several works have been
published on this emerging research topic. FUDGE [26] syn-
thesizes candidate fuzz drivers based on the code snippets
sliced from the consumer programs. After that, human experts
need to refine the drivers and determine which driver should
be used. Comparatively, FUZZGEN [1] is more automatic. It
learns an Abstract API Dependency Graph (𝐴2𝐷𝐺) which
contains the call sequences of the APIs leveraging the data
flow information. By traversing the 𝐴2𝐷𝐺, it synthesizes the
fuzz drivers. INTELLIGEN [3] proposes metrics to rank the API
functions and synthesizes fuzz drivers for APIs with higher
ranking. GRAPHFUZZ [27] is a semi-automatic tool which gen-
erates fuzz drivers from mutated object lifetime-aware data
flow graphs to test the target libraries. WINNIE [28] and AP-
ICRAFT [2] focus on solving the challenges of generating fuzz
drivers for closed-source targets. WINNIE synthesizes the
fuzz driver from traces and develops a fast cloning technique
to boost the fuzzer in Windows systems. Comparatively, AP-
ICRAFT focuses more on finding better combinations of the
API data dependencies. Among them, FUZZGEN is the most
related work to RUBICK since both of them aim to automati-
cally generate fuzz drivers via static analysis on the consumer
programs. However, RUBICK differs from FUZZGEN by focus-
ing on solving the discussed three challenges (Section 2.2).
API Usage and Specification Mining One popular way to
learn the API specification is through dynamic analysis [29,
30]. This approach learns finite state machines (FSMs) which
describe legal sequences of method calls from large method
traces. Besides, some works mine the usage or API properties
to check the misuse or unsafe use of the APIs [31–34]. These
works do not focus on fuzz driver generation, but they provide
inspirations for the current as well as future design of RUBICK.
Advanced Fuzzing Techniques Fuzzing is one of the most
practical techniques for detecting zero-day software vulner-
abilities [35]. Many techniques on improving fuzzing have
been published in recent years [36–52]. These techniques are
orthogonal to RUBICK since the fuzz drivers generated by
RUBICK can be supplied to any fuzzer.

7 Conclusion

In this paper, we propose RUBICK, an automata based fuzz
driver generation technique. Comparing with existing works,
RUBICK has three key merits: ❶ it embeds more diverse API
usages such as branches and loops; ❷ it learns API usages from
large-scale real world projects; ❸ it improves the utilization
of multiple usage scenarios. In evaluation, RUBICK shows
great advantage over the baselines. RUBICK has been used to
generate fuzz drivers for 11 popular Java libraries and two
of them have been merged into OSS-Fuzz. In total, RUBICK
has discovered 199 new bugs, including four CVEs, affecting
popular PC and Android software (10,000,000+ downloads).
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Algorithm 3 Solution Set Division
Input: 𝐿𝐼 (List of solution sets {𝑅1,𝑅2 ... 𝑅𝑚})
Output: 𝐿𝑂 (List of solution sets {𝑅′

1,𝑅
′

2 ... 𝑅
′

𝑛})
1: procedure SOLUTION-SET-DIVISION(𝐿𝐼 )
2: 𝐿𝑂 ← 𝐿𝐼
3: while ∃ 𝑅′

𝑖,𝑅
′

𝑗 ∈ 𝐿𝑂,𝑅
′

𝑖 ∩𝑅′

𝑗 ≠ ∅
4: Eliminate ∅ inside 𝐿𝑂
5: Remove duplicate 𝑅′ inside 𝐿𝑂
6: for 𝑘 in [𝑙𝑒𝑛(𝐿𝑂), 𝑙𝑒𝑛(𝐿𝑂)−1 ... 2]
7: if ∃ 𝑅′

𝑥1,𝑅
′

𝑥2 ... 𝑅
′

𝑥𝑘 ∈𝐿𝑂,𝑅
′

𝑥1∩𝑅
′

𝑥2 ... ∩𝑅
′

𝑥𝑘 ≠ ∅
8: Remove 𝑅′

𝑥1,𝑅
′

𝑥2 ... 𝑅
′

𝑥𝑘 from 𝐿𝑂
9: 𝑅′

𝑛𝑒𝑤 ← 𝑅′

𝑥1 ∩𝑅′

𝑥2 ... ∩𝑅′

𝑥𝑘

10: 𝐿𝑂
+
← 𝑅′

𝑛𝑒𝑤, (𝑅
′

𝑥1 − 𝑅′

𝑛𝑒𝑤), (𝑅
′

𝑥2 −
𝑅′

𝑛𝑒𝑤) ... (𝑅
′

𝑥𝑘−𝑅′

𝑛𝑒𝑤)11: break
12: return 𝐿𝑂
13: end procedure
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whether two independent samples come from the same
distribution.

A Algorithm for Unifying Condition Letters

To solve the conflict of two sets of condition letters, RUBICK
needs to find a set of new condition letters which can represent
both two sets. For example, given two sets of conflicting condi-
tion letters 𝐴1 ∶ 𝑣 < 1,𝐴2 ∶ 𝑣 ≥ 1 and 𝐵1 ∶ 𝑣 < 2,𝐵2 ∶ 𝑣 ≥ 2,
the new set can be 𝐶1 ∶ 𝑣 < 1,𝐶2 ∶ 1 ≤ 𝑣 < 2,𝐶3 ∶ 𝑣 ≥ 2
where 𝐴1 ↔ 𝐶1, 𝐴2 ↔ 𝐶2||𝐶3, 𝐵1 ↔ 𝐶1||𝐶2, 𝐵2 ↔ 𝐶3.

Note that each condition letter intrinsically represents a so-
lution set which satisfies the condition. And the operations of
the conditions can be mapped to the operations of the solu-
tion sets. For example, given two conditions 𝐶𝑖, 𝐶𝑗 and their
solution sets 𝑅𝑖, 𝑅𝑗 , 𝐶𝑖 && 𝐶𝑗 == 𝑡𝑟𝑢𝑒 ↔ 𝑅𝑖 ∩𝑅𝑗 , 𝐶𝑖 ==
𝑡𝑟𝑢𝑒&&𝐶𝑗 == 𝑓𝑎𝑙𝑠𝑒↔𝑅𝑖−𝑅𝑗 ,𝐶𝑖 ||𝐶𝑗 == 𝑡𝑟𝑢𝑒↔𝑅𝑖∪𝑅𝑗 .The conflict of two sets of condition letters is caused by the
intersection among two or more solution sets. Intuitively, by
defining all intersected and disjoint parts among the solution
sets as standalone condition letters, each original condition
letter can be represented as their combinations. Algorithm 3
shows how RUBICK divides the solution set to a new set sepa-
rating the intersected and disjointed parts. It accepts a list of
all related solution sets as input 𝐿𝐼 and outputs the divided

Algorithm 4 Independent Usage Scenarios Collection
Input: A (Usage Automaton)
Output: 𝐿𝑐𝑓 (Control Flow Usage List)

1: procedure DFS(𝐴, curS, curPath, curColorBox)
2: colorBoxSet ← ∅
3: numOfChoices, choices ← Calc-Choices(𝐴, curS)
4: if numOfChoices == 0

⊳ reaches the end of automaton
5: colorBoxSet

+
← curColorBox

6: else
7: dye ← (numOfChoices > 1)
8: for choice ∈ choices
9: curPath

+
← curS

10: if dye
11: curColorBox

+
← Gen-Color(choice)

12: subColorBoxSetList ← []
13: for event, nextS ∈ choice
14: if nextS ∉ curPath
15: subColorBoxSetList

+
← DFS(𝐴, nextS, cur-

Path, curColorBox)
16: else

⊳ meets the loop
17: colorBoxSet

+
← curColorBox

18: colorBoxSet
+
← Crossover( subColorBoxSetList)

19: if dye
20: curColorBox ← curColorBox − color
21: curPath ← curPath − curS
22: return colorBoxSet
23: end procedure
24: 𝐿𝑐𝑓 ← []
25: for initialS ∈ Get-Initial-States(𝐴)
26: colorBoxSet ← DFS(𝐴, initialS, [], ∅)
27: 𝐿𝑐𝑓

+
← Convert-ColorBox-To-CF(colorBoxSet)

solution sets. In each iteration (line 4 to line 11), it picks one
intersection which has highest k (k is the number of the in-
tersected solution sets). The rationale is that starting from
picking an intersection with highest k can avoid missing the
intersected solution sets. The algorithm can finally stop since
it removes one intersection of the solution sets per iteration
(line 4 to line 11) and the number of intersections is finite.
Besides, any original solution set 𝑅𝑥 where 𝑅𝑥 ∈ 𝐿𝐼 can be
represented as the union of solution sets from 𝐿𝑂. To repre-
sent 𝑅𝑥, we only need to find all subsets of 𝑅𝑥 from 𝐿𝑂. Our
website [5] posts a running example of this algorithm.

In implementation, the SAT solver is used to answer whether
the condition represented by a solution set has an answer or
not. For example, 𝑅𝑖 ∩𝑅𝑗 ≠ ∅ means SAT solver can find a
solution satisfies 𝐶𝑖 && 𝐶𝑗 == 𝑡𝑟𝑢𝑒. The SAT solver provides
base functionality for this algorithm, it is used in line 3, 4, 5,
7, used for simplifying the conditions represented by 𝐿𝑂, and
for finding the subsets to represent the original solution set.
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Table 7: Statistics of All Applied Projects of RUBICK.
Attack Surface pdfbox apachepoi itextpdf junrar zip4j apachetar jackson tika-jpeg fastjson java-json metadata-jpeg

# of APIs 2779 1320 810 619 521 195 175 162 159 137 58

Table 8: P-values (Mann Whitney u test) for Evaluation. The p-value which means statistical significance (≤ 5e-2) is highlighted as bold.

apachetar apachepoi itextpdf junrar pdfbox zip4j

cov bug cov bug cov bug cov bug cov bug cov bug
RQ1

rubick – fuzzgen 8.73e-05 - 1.06e-01 3.34e-03 8.93e-05 3.00e-04 9.13e-05 1.61e-02 9.13e-05 7.83e-05 2.95e-05 7.97e-06
rubick – manual 8.01e-05 7.97e-06 9.13e-05 8.54e-05 9.13e-05 3.23e-01 9.13e-05 1.64e-05 9.13e-05 7.69e-05 5.16e-05 7.97e-06

RQ2 C1 w.o. cf – w. cf 6.59e-02 7.97e-06 9.13e-05 8.63e-05 1.81e-03 4.53e-01 3.19e-05 1.64e-05 1.10e-03 6.02e-03 7.21e-05 7.97e-06
RQ2 C2 denoised – raw 5.20e-02 7.97e-06 7.43e-05 3.12e-05 9.08e-05 1.15e-04 3.39e-01 4.81e-01 1.41e-03 3.29e-03 1.11e-02 7.97e-06

RQ2 C3

rnd1seed – cfseeds 4.70e-01 - 1.36e-01 8.50e-03 2.85e-01 1.25e-01 1.29e-02 6.12e-02 1.37e-01 8.77e-02 3.23e-02 -
rnd1seed – itercf 9.08e-05 3.84e-02 9.13e-05 7.83e-05 9.08e-05 6.63e-02 9.13e-05 4.08e-03 9.13e-05 7.81e-04 8.49e-05 2.71e-03
rnd1seed – rnd1cf 1.63e-01 7.97e-06 9.13e-05 8.83e-05 9.13e-05 4.40e-04 2.09e-04 3.68e-05 1.64e-04 7.65e-05 8.54e-05 1.64e-05
cfseeds – itercf 8.98e-05 3.84e-02 9.08e-05 4.74e-05 9.08e-05 8.83e-03 1.06e-02 1.51e-01 9.13e-05 3.21e-03 2.82e-04 2.71e-03
cfseeds – rnd1cf 3.11e-01 7.97e-06 9.08e-05 5.43e-05 9.13e-05 7.97e-05 1.36e-03 5.02e-05 6.55e-04 7.60e-05 3.58e-03 1.64e-05
itercf – rnd1cf 9.13e-05 8.08e-04 1.41e-03 7.83e-05 9.08e-05 3.61e-04 1.03e-02 4.99e-05 7.02e-02 6.39e-05 8.06e-02 4.52e-05

B Algorithm for Independent Usage Scenario
Collection

Algorithm 4 lists the details of collecting independent usage
scenarios from a given usage automaton. Before discussing
the algorithm, we explain some properties for counting the
independent usage scenarios. Take the automaton in Fig. 1.e)
as an example, only the branch in state 1 increases the number
of independent usage scenarios. This is because events B and
H are independent of each other. When the fuzz driver reaches
state 1, it can decide to follow any branch by triggering either B
or H, i.e., calling any of the two API functions. Comparatively,
the branches of state 3 and 5 do not affect the number of
independent usage scenarios since the events on all branches
are related with each other, e.g., in state 3, fuzz driver can
only trigger either y or n depending on the value of ret_C.
Note that the case can be more complicated when both the
function events and condition events appear in the branches of
a given state. To correctly collect the usage scenarios, a base
observation is that every independent usage scenario can be
identified by the choices it made in these branches. Therefore,
using the choice set as the signature, we can group all paths
of the automaton. Each group is identified as an independent
usage scenario. Algorithm 4 presents a DFS-based approach
to this idea. Each choice is assigned with a unique color and
every path has its own color box containing the colors it has
been dyed (the choices it made along this path). The algorithm
traverses the automaton starting from every initial state (line
25 – 27). For each state, it first calculates its independent
choices. Zero choice means the end of the path (line 4). The
colorbox will only be dyed when there are multiple choices
(line 10 – 11). The algorithm iterates each transition of each
choice to continue the DFS traverse. For the choice which has
more than one transition (such as the y and n for state 3 in
above example), the 𝑐𝑜𝑙𝑜𝑟𝐵𝑜𝑥𝑆𝑒𝑡 of each transition should
be crossovered according to the Multiplication Principle [53]

3. fed in
Mutated Input

select usage scenario
Automata Interpreter

5. feedback
Event - Action

Mapping

DFA4. execute
2. generate

1. loaded 
by

Fuzz Driver

Fuzzer

Figure 9: Workflow of Automata-Guided Fuzz Driver

Learning
Algorithm

DFA
Automata Interpreter

4. feedback Event - Action
Mapping

3. execute

1. generate

Fuzz Driver
compile once

2. in-memory  
loaded by

Figure 10: Workflow of Membership Query (MQ)

(line 18). Finally, it converts each color box into an usage
scenario (line 27).

C Detail of Automata-Guided Fuzz Driver

General Workflow Fig. 9 illustrates the workflow of our
fuzz driver. Step 1 is a one-time effort which is done at the
beginning of the fuzzing. Step 2-5 represent one fuzzing it-
eration. Specifically, the italic sentence indicates that some
bytes of the mutated input are used for specifying the testing
target scenario, which is the designed scheduling interface.
Boosting Active Learning The automata-guided fuzz
driver technique not only helps the scenario scheduling but
also significantly boosts the usage distillation process. In dis-
tillation, RUBICK needs to dynamically validate the event se-
quences for answering MQ. Initially, RUBICK did this in three
steps: ❶ conversion from usage to code; ❷ code compila-
tion; ❸ code execution. RUBICK met performance issues since
millions of compilations are unaffordable. RUBICK uses the
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Table 9: Statistics of False Positive Rate. FP, Ttl stand for the amount of deduplicated false positives, total bugs respectively. FP-raw, Ttl-raw stand for the
amount of their non-deduplication versions. Pct. stands for false positive rate whose value is either 𝐹𝑃

𝑇 𝑡𝑙 or 𝐹𝑃−𝑟𝑎𝑤
𝑇 𝑡𝑙−𝑟𝑎𝑤 according to its column. The field which has

the smallest Pct. in that column is highlighted in bold.

Attack
Surface

apachetar apachepoi itextpdf junrar pdfbox zip4j

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

FP/Ttl
(Pct.)

FP-raw/Ttl-raw
(Pct.)

fuzzgen 16/18(88.89%) 160/77655(0.21%) 4/42(9.52%) 40/8458(0.47%) 3/12(25.00%) 30/3430(0.87%) 1/4(25.00%) 10/8446(0.12%) 1/9(11.11%) 10/37107(0.03%) 6/15(40.00%) 60/398(15.08%)
rubick 0/2(0.00%) 0/2660(0.00%) 0/46(0.00%) 0/5124(0.00%) 7/28(25.00%) 48/2123(2.26%) 0/4(0.00%) 0/691(0.00%) 0/16(0.00%) 0/43039(0.00%) 0/10(0.00%) 0/338(0.00%)
wocf 2/3(66.67%) 20/9960(0.20%) 0/24(0.00%) 0/5916(0.00%) 3/20(15.00%) 43/4600(0.93%) 3/5(60.00%) 30/40(75.00%) 0/10(0.00%) 0/55105(0.00%) 2/11(18.18%) 20/310(6.45%)
raw 3/4(75.00%) 8732/9137(95.57%) 2/2(100.00%) 1946/1946(100.00%) 3/15(20.00%) 14/897(1.56%) 1/5(20.00%) 10/653(1.53%) 0/11(0.00%) 0/21270(0.00%) 1/8(12.50%) 10/280(3.57%)

1 Archive archive = new Archive(inputStream);

2 while (true) {

3 FileHeader fileHeader = archive.nextFileHeader();

4 if (fileHeader == null)

5 break;

6 /* infinite loop in extractFile */

7 archive.extractFile(fileHeader,

OutputStream.nullOutputStream());↪→
8 }

Figure 11: Case Study of CVE-2022-23596

automata-guided fuzz driver to solve this performance bot-
tleneck. As shown in Fig. 10, the amount of compilation is
reduced to one. By building a general model interpreter, the
validating event sequence can be fed in as data. Note that the
sequence can be represented as a naive DFA without branches
and loops. Then the interpreter translates the sequence into
real actions, e.g., calls an API, updates a variable, etc. For a
given alphabet, only one fuzz driver needs to be generated and
compiled. In practice, RUBICK can test thousands to tens of
thousands event sequences per second, which is thousands of
times faster than the initial implementation.

D Statistics of All Projects

Tbl. 7 lists the number of APIs of these tested attack surfaces.
RUBICK evaluates the top six. tika-jpeg and metadata-jpeg
represent the attack surface accepting JPEG input format in
Apache Tika and metadata-extractor.

E List of the P-values in Evaluation

Tbl. 8 lists all p-values used in evaluation. The p-values are
acquired from Mann-Whitney U-test [54]. The p-values which
are smaller than 5e-2 are highlighted in bold. "-" represents
that the p-values cannot be calculated since the data in both
sides are equal, which also means one side is not statistically
significant than the other side.

F Case Study of Control-Flow-Sensitivity

Fig. 11 shows a case which demonstrates how control flow
sensitivity improves fuzzing performance. The case comes
from one of our found bugs. It shows a fuzz driver accepting

Table 10: Statistics of Reported Bugs. Bugs are deduplicated manually.

CVE Uncaught
Exception

Stack
Overflow

Out of
Memory

Infinite
Loop

Apache PdfBox Under Review 59 8 - -
Apache POI - 6 - - -
fastjson - 15 7 - -
iText 7 CVE-2022-24196/7 27 27 2 -
jackson - 2 - - -
json-java - 1 - - -
junrar CVE-2022-23596 - - - 1
metadata-extractor CVE-2022-24613 30 - 3 -
zip4j - 11 - - -
SUM 4 151 42 5 1

an input file which is of a certain archive format. Since the
input file can archive multiple files, it iterates the file head-
ers (FileHeader) to extract all contained files. The function
extractFile (line 7) contains an infinite loop bug which can
be triggered by malformed file headers. The loop iteration
of fileHeader (line 2 – 7) increases the possibility to find
this bug since the iteration can force the fuzz driver to apply
extractFile on every file header. In other words, by adding
execution states to differentiate the API invoking contexts, the
iteration loop maximizes the exploitation of mutated input. If
the fuzz driver is not aware of the states for loop, the muta-
tions of the content which belong to non-first file headers will
be wasted. Conclusively, control flow sensitivity improves the
performance of the fuzz drivers by providing additional states
to distinguish different API invoking contexts.

G Statistics of False Positive Rate

Tbl. 9 lists the statistics of false positive rate. The results
support the conclusion discussed in Section 4.5. In most cases
(5/6), RUBICK has the lowest false positive rate (0.00 %).

H List of Found Bugs

Tbl. 10 lists the bugs we found and reported for the fuzzed
attack surfaces using the fuzz drivers generated by RUBICK.
The listed bugs are already deduplicated. Till now, most bugs
are fixed or under the fix plan of the vendors.
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