
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

DDRace: Finding Concurrency UAF Vulnerabilities
in Linux Drivers with Directed Fuzzing

Ming Yuan and Bodong Zhao, Tsinghua University; Penghui Li, The Chinese
University of Hong Kong; Jiashuo Liang and Xinhui Han, Peking University;

Xiapu Luo, The Hong Kong Polytechnic University; Chao Zhang,
Tsinghua University and Zhongguancun Lab

https://www.usenix.org/conference/usenixsecurity23/presentation/yuan-ming

DDRace: Finding Concurrency UAF Vulnerabilities in Linux Drivers
with Directed Fuzzing

Ming Yuan1, Bodong Zhao1, Penghui Li3, Jiashuo Liang4, Xinhui Han4, Xiapu Luo5, Chao Zhang1,2∗

1Tsinghua University 2Zhongguancun Lab
3The Chinese University of Hong Kong 4Peking University 5The Hong Kong Polytechnic University

Abstract
Concurrency use-after-free (UAF) vulnerabilities account for
a large portion of UAF vulnerabilities in Linux drivers. Many
solutions have been proposed to find either concurrency bugs
or UAF vulnerabilities, but few of them can be directly ap-
plied to efficiently find concurrency UAF vulnerabilities. In
this paper, we propose the first concurrency directed greybox
fuzzing solution DDRace to discover concurrency UAF vul-
nerabilities efficiently in Linux drivers. First, we identify can-
didate use-after-free locations as target sites and extract the
relevant concurrency elements to reduce the exploration space
of directed fuzzing. Second, we design a novel vulnerability-
related distance metric and an interleaving priority scheme
to guide the fuzzer to better explore UAF vulnerabilities and
thread interleavings. Lastly, to make test cases reproducible,
we design an adaptive kernel state migration scheme to as-
sist continuous fuzzing. We have implemented a prototype of
DDRace, and evaluated it on upstream Linux drivers. Results
show that DDRace is effective at discovering concurrency
use-after-free vulnerabilities. It finds 4 unknown vulnerabil-
ities and 8 known ones, which is more effective than other
state-of-the-art solutions.

1 Introduction

The widely deployed multi-core processors and multi-thread
programming have brought many concurrency bugs, such as
data race, atomic violation, deadlocks, etc. Some concurrency
bugs can further lead to vulnerabilities, such as memory cor-
ruptions, information leaks, or privilege escalation (e.g., the
DirtyCow vulnerability with ID CVE-2016-5195). In par-
ticular, concurrency bugs will change the temporal order of
events, and are prone to causing temporal memory safety vio-
lations, such as use-after-free (UAF) vulnerabilities. On the
other hand, a large portion of UAF vulnerabilities in Linux
drivers involve concurrency [4]. Thus, it is crucial to discover
concurrency UAF vulnerabilities in Linux drivers.

∗Corresponding author: chaoz@tsinghua.edu.cn

Static analysis is the most common way of discovering
concurrency bugs. Specifically, they either conduct happen-
before [9,12] or lockset analysis [18,45] to identify candidate
race pairs, i.e., memory access pairs without happen-before
relationships or lock synchronizations. Such race pairs could
have different orders at runtime, leading to potential concur-
rency bugs. However, such solutions often consider only one
race pair, but concurrency UAF vulnerabilities generally in-
volve two or more pairs, not to mention that most bugs found
by them are not vulnerabilities. Further, a small number of
solutions (e.g., DCUAF [4], UFO [27], and ConVul [12])
have extended lockset analysis and happen-before analysis to
find concurrency UAF vulnerabilities. However, these static
analysis-based solutions all require lots of manual efforts to
verify results and remove false positives.

Another type of concurrency bug discovery solution is
fuzzing [13, 30, 31, 55]. Such solutions explore not only the
input space but also thread-interleaving space during testing,
by introducing proactive thread scheduling mechanisms or
passive thread-interleaving feedback to the fuzzer, to find data
race bugs. However, they only focus on data race bugs rather
than concurrency UAF vulnerabilities, and they can hardly
distinguish harmful races from benign ones. In addition, the
thread-interleaving space is too huge to explore for fuzzers.

To address these limitations, in this paper, we present the
first concurrency directed grey-box fuzzing solution DDRace
for discovering concurrency UAF vulnerabilities in Linux
device drivers. Note that, several directed grey-box fuzzing
(DGF) solutions have been proposed in the past, which can
greatly narrow down the search space of fuzzing and quickly
reach target sites. However, they generally only consider
the control flow distance [7, 14, 60] or data constraints dis-
tance [22] to the target sites during testing, insensitive to the
thread interleavings. Test cases with the same data but dif-
ferent thread interleavings will be ignored by such fuzzers.
DDRace extends DGF to take thread interleavings into con-
sideration, and solves the three challenges as follows, to effi-
ciently discover concurrency UAF vulnerabilities. DDRace
entails overcoming several challenges with new observations

USENIX Association 32nd USENIX Security Symposium 2849

and techniques:
C1: Infinite Exploration Space. Although DGF solutions

have smaller search space than general fuzzing solutions, they
have not explored the thread-interleaving space, which is nec-
essary for discovering concurrency UAF vulnerabilities. How-
ever, it will enlarge the search space of DGF again and reduce
its efficiency in finding vulnerabilities. Then, how to further
reduce the search space of concurrency DGF? Our solution:
we narrow down the target sites of directed fuzzing and the
number of candidate thread interleavings. Specifically, we an-
alyze execution traces to locate memory free and use sites that
access the same object at runtime but may have vulnerable
order, and mark them as candidate target sites for directed
fuzzing. Further, we extract all driver interfaces (i.e., syscalls)
that can reach the target free and use sites, and extract data
race pairs (i.e., memory operations accessing a same object)
from each pair of these related driver interfaces. Only inter-
leavings of these data race pairs will be explored by DDRace.

C2: Convergence Speed of Concurrency DGF. Existing
DGF solutions often use the control flow distance to guide
the fuzzer to explore target sites, but are blind to thread inter-
leavings and objects accessed by target sites. Some general
data race fuzzing solutions, e.g., KRACE [55], take the or-
der of one race pair as a new metric, but ignore the order
of multiple race pairs. To trigger concurrency UAF vulnera-
bilities, we have to not only trigger target free and use sites,
but also make them access the same object with the correct
interleaving. Moreover, these race fuzzing solutions perform
random thread-interleaving exploration and fall into the trap
of ineffective repeated thread interleavings. Our solution: we
introduce a new vulnerability-related distance metric and a
new interleaving priority mechanism. Specifically, in addition
to refining traditional control flow distance, we track the order
changes of multiple race pairs and values used in target sites
to calculate a new distance, which reflects how well the test
case satisfies the UAF vulnerability’s constraints. Further-
more, we prioritize seed test cases whose thread interleavings
are less commonly explored when the fuzzer picks seeds for
further mutation.

C3: Reproducibility of Test Cases. Most kernel fuzzers
utilize persistent fuzzing, i.e., running test cases one by one
without restarting the target kernel under test, to get a high test-
ing throughput. For instance, Syzkaller [53] will only restart
virtual machine (VM) instances after a crash is reported or
time out. However, persistent fuzzing will continuously affect
the internal states of the kernel. So, if a test case that sets
the kernel to a desirable state is selected again, it may not
set the kernel to the same state. It makes a proof-of-concept
(PoC) unable to reproduce. Furthermore, it may have different
distances to target sites in different kernel states, making the
distance-guided fuzzing strategy unstable. Our solution: we
adopt an adaptive kernel state migration scheme. Specifically,
we utilize the QEMU snapshot feature to take snapshots of the
kernel state at the proper time, and replay the seed test case on

the recovered snapshot, to ensure test cases are reproducible.
After addressing these challenges, we implement a proto-

type of DDRace and evaluate it on six widely-used Linux
device drivers. The evaluation results show that DDRace is
highly effective in discovering concurrency UAF vulnerabili-
ties. DDRace found 12 concurrency UAF vulnerabilities, in-
cluding 4 previously unknown ones, and 3 have been assigned
with CVE IDs for their high security impacts. DDRace also
significantly outperformed the state-of-the-art approaches by
finding more vulnerabilities at a much faster speed. Our char-
acterization further confirmed the benefits of the key compo-
nents in DDRace for finding concurrency UAF vulnerabilities.
We will release the source code of DDRace after publication1.

In summary, we make the following contributions:

• We present the first concurrency directed grey-box fuzzing
solution to discover concurrency UAF vulnerabilities in
Linux drivers, which augments the conventional DGF with
sensitivity to thread interleavings and UAF vulnerabilities.
• We design a new vulnerability-related distance metric and

a novel interleaving priority mechanism to assist directed
fuzzers in finding concurrency UAF vulnerabilities.
• We present an adaptive kernel state migration mechanism

to guarantee the reproducibility of test cases in continuous
kernel fuzzing.
• We implemented a prototype of DDRace, and found 12

concurrency UAF vulnerabilities in Linux device drivers,
outperforming baseline approaches.

2 Background and Motivation

2.1 Linux Drivers

The Linux kernel interacts with hardware devices through
drivers. A Linux device driver needs to implement some spe-
cific driver interfaces such as kernel-driver interfaces [4]. The
functions implementing the kernel-driver interfaces are re-
ferred to as interface functions, and they form the entry points
of the drivers. All the functionalities in the driver are initial-
ized from the driver interface functions.

As discussed in [4], driver concurrency is often determined
by the concurrent execution of driver interfaces. Therefore, it
is crucial to identify which driver interfaces can be concur-
rently executed when trying to discover concurrency issues.

2.2 Concurrency UAF Vulnerabilities

Use-after-free (UAF) vulnerabilities refer to vulnerabilities
that illegally access dangling pointers. Concurrency UAF vul-
nerabilities are a special kind of UAF, where unintended mem-
ory release and access are introduced by multi-threading [13].
Such vulnerabilities are particularly prevalent and severe in

1https://github.com/vul337/DDRace

2850 32nd USENIX Security Symposium USENIX Association

 // ioctl$KDGKBSENT
 int vt_do_kdgkb_ioctl(...) {

 1991. char *p;
 ...
 2019. case KDGKBSENT:
 // global array
 2023. p = func_table[i];

 ...

 // pointer dereference
 2025. for (;*p && sz;p++, sz--)
 ...
 }

 // ioctl$KDSKBSENT
 int vt_do_kdgkb_ioctl(...) {
 ...
 2036. case KDSKBSENT:
 2046. spin_lock_irqsave(…);
 2047. q = func_table[i]; // global array
 2058. delta = (q ? -strlen(q) : 1) +
 strlen(kbs->kb_string);
 // a check determined by the state
 2060. if (delta <= funcbufleft) {
 ...
 2071. } else {
 2078. fnw = kmalloc(sz, GFP_KERNEL);
 // funcbufptr holds the old func_table[i]
 2094. func_table[i] = fnw + ...
 ...
 2104. kfree(funcbufptr);
 }
 2110. strcpy(func_table[i],kbs->kb_string);
 2111. spin_unlock_irqrestore(…);
 }

I1

I2

I3

I4

T1 T2

Figure 1: CVE-2020-25656 in Linux 4.19.100.

the Linux kernel. Past studies have shown successful end-to-
end exploitation of UAF vulnerabilities [13, 56].

2.3 Grey-box Fuzzing
Directed Grey-box Fuzzing The essence of directed fuzzing
is to intensively fuzz towards a set of designated program
locations (namely target sites). Existing directed fuzzing tech-
niques design distance metrics that measure how close an
input is to target sites [7, 14, 36, 60] and prioritize inputs that
are more likely to reach the target sites. Although CAFL [36]
points out that the target sites should be reached in order and
proposes a constraint-based distance metric, it can be applied
to only sequential UAF vulnerabilities rather than concur-
rency ones. To the best of our knowledge, none of the existing
DGF work considers the dimension of thread interleavings in
multi-threaded programs, nor does it measure the impact of
thread interleavings on reachability.
Thread Scheduling. Thread scheduling is essential in concur-
rency UAF fuzzing. Based on traditional sequential code cov-
erage feedback, some studies propose to arrange the threads
to execute in a specific order [30, 38]. Recent works intro-
duce new concurrency-coverage metrics as feedback and favor
inputs that trigger new concurrency coverage, aiming to ex-
tensively explore the thread-interleaving exploration space
in multi-threaded programs. Notable concurrency-coverage
metrics include alias instruction pairs [55], thread-context
(e.g., lock, unlock, and join callsites) [13], etc.

Unfortunately, they have several fundamental limitations.
They fail to handle scheduling among multiple interesting
pairs, making it difficult to get accurate thread-interleaving
feedback. They also ignore the memory value changes made
by read/write instructions during runtime.

2.4 Motivation Example
A Real-World UAF Vulnerability. Figure 1 shows a
concurrency UAF vulnerability (CVE-2020-25656) in tty

driver of Linux 4.19.100, which is a stream driver manag-
ing the connection to the hardware terminal [28]. The ex-
ample shows two threads (Thread1 and Thread2) that ex-
ecute system call (i.e., driver interface) ioctl$KDGKBSENT
and ioctl$KDSKBSENT, respectively, and they can be exe-
cuted concurrently. Specifically, Thread1 fetches a pointer
from the global array func_table at line 2023 and derefer-
ences it at line 2025. The other thread Thread2 first allocates
a new heap memory at line 2078 and stores the correspond-
ing pointer fnw to func_table[i] at line 2094. Line 2104
then tries to deallocate the obsolete heap memory through
the pointer funcbufptr. A concurrency UAF vulnerability
can happen because Thread1 can potentially use the obsolete
memory via func_table[i] after Thread2 has freed it.
Challenges to Find the UAF. To trigger this UAF, we first
need to enter the else branch of the conditional check that
guards the vulnerable code in Thread2 at line 2060. Then, only
appropriate execution order (thread interleaving) of I1/I2 and
I3/I4 (i.e., executing I1 before I2 (I1→ I2) and I4 before I3
(I4→ I3)) can trigger the vulnerability, which means that we
need to execute I2 and I4 within a tiny time window between
I1 and I3.

However, discovering such a concurrency UAF vulnerabil-
ity with fuzzing is extremely difficult. We summarize three
inherent challenges. First, since fuzzing is supposed to be
automatic and exclude human efforts during fuzzing, a fuzzer
needs to re-execute a code snippet thousands of times to
explore thread-interleavings and find a proper one that can
trigger the vulnerability, as mentioned earlier. However, given
the huge code base and high complexity of the Linux kernel,
the exploration space is infinite if the fuzzer tries to explore
thread interleavings of all code.

Second, even if the fuzzer focuses on only one potential
vulnerability and its relevant code snippet, it is challenging
for the fuzzer to satisfy all constraints for triggering the vul-
nerability, including control flow constraints (e.g., conditional
statements before the vulnerable code), data flow constraints
(e.g., the "FREE" and "USE" operations should operate on
the same memory location), and the thread interleavings. The
fuzzer needs to acquire guidance from the execution informa-
tion, instead of fuzzing blindly. For example, to find the UAF
in Figure 1, a naive fuzzer without guidance may get stuck
with repeated useless thread interleavings and fails to find the
useful one. Existing works use basic-block level code cover-
age and input distance as the guidance, aiming to either in-
crease the code coverage or shorten the input distance during
fuzzing. However, they are mostly unaware of the dimension
of thread interleavings, and thus not able to comprehensively
schedule the treads.

Third, due to the huge overhead of rebooting the kernel fre-
quently, most kernel fuzzers continuously execute test cases
in the target kernel. As a result, a general challenge in kernel
fuzzing lies in state aging, i.e., the internal state of the kernel
accumulates and changes over time. The state aging problem

USENIX Association 32nd USENIX Security Symposium 2851

causes poor reproducibility of seeds, thus hurting the perfor-
mance of the fuzzer. For example, in Figure 1, reaching the tar-
get of deallocation (line 2104) requires the fuzzer to enter the
else branch with the condition of delta > funcbufleft.
However, the global variables such as func_table change
over fuzzing trials. For example, the code at line 2110 can
modify the string func_table[i], and as a result, change the
value of delta in next fuzzing trial. Consequently, a previ-
ously successful input that has reached line 2104 would likely
fail later due to the state changing in persistent kernel fuzzing.

3 DDRace

3.1 Overview
We propose a new directed fuzzing approach, DDRace, to
effectively find concurrency UAF vulnerabilities in Linux
drivers. Figure 2 illustrates the overview workflow, consisting
of two stages. It first utilizes a lightweight trace analysis to rec-
ognize the target sites (i.e., memory access instructions (USE)
and deallocation instructions (FREE) related to potential con-
currency UAF vulnerabilities). Next, DDRace identifies driver
interfaces relevant to the target sites, and further identifies race
pairs. In the second stage, DDRace performs novel concur-
rency directed grey-box fuzzing that explores thread interleav-
ings using new guidance from the instrumented race pairs, to
discover concurrency UAF vulnerabilities around the target
sites. During the fuzzing process, DDRace ensures that the
preserved seeds are consistent with the expected kernel states
by a state migration scheme. DDRace entails overcoming the
technical challenges with several new techniques. Below we
introduce the main components of DDRace.
Fuzzing Scope Identification (§3.2). Given the huge code
base and high complexity of the Linux kernel, it is infeasible
to thoroughly fuzz the whole kernel, especially exploring the
complex thread-interleavings of all code. Moreover, only a
small portion of driver interfaces can potentially trigger vul-
nerabilities. Therefore, DDRace narrows down the fuzzing
scope and focuses on the code with a high probability of
triggering a UAF. DDRace first obtains the fuzzing target
sites (i.e., the UAF pairs) and identifies the relevant driver
interfaces that can reach the target sites from the call graph.
To further narrow down the exploration space, DDRace per-
forms points-to analysis on identified driver interfaces and
extracts target-related race pairs (i.e., pairs of memory opera-
tions that access the same object). DDRace explores only the
interleavings about the data race pairs in its fuzzing stage.
Directed Scheduling Fuzzing (§3.3) A directed fuzzer for
concurrency UAF vulnerabilities needs not only to reach the
target sites, but also to meet specific thread scheduling require-
ments, e.g., the execution order of threads. A naive fuzzer with
only basic block feedback is unaware of the thread interleav-
ings. Thus it cannot sufficiently explore the dimension of
thread interleaving, making it difficult to find concurrency

UAF vulnerabilities. To make a fuzzer aware of thread inter-
leavings, we design new concurrency feedbacks in the process
of seed preservation, seed selection, and seed mutation, to
guide the DDRace to explore thread interleavings on both
control flow and data flow. Furthermore, to make DDRace di-
rected to fuzzing target sites, DDRace dynamically monitors
the value of key variables and chooses proper values to meet
specific data constraints and trigger vulnerabilities.
Adaptive State Migration (§3.4). Most kernel fuzzers uti-
lize a persistent mode that continuously executes test cases
in the kernel to avoid the overhead of frequent kernel restarts.
The internal state of the kernel accumulates and changes dur-
ing fuzzing, i.e., state aging. As a result, even the same test
case may behave differently (e.g., achieve different coverage,
distance, etc.) as the state changes. However, the state ag-
ing problem makes concurrency directed fuzzing ineffective.
For example, a previously successful test case might fail to
reach the target sites when executed in a different state or
time. DDRace overcomes the problem with a state snapshot
solution. DDRace saves snapshots for kernel states during
fuzzing. When a test case needs to be executed in a specific
state, DDRace restores the corresponding snapshot and ex-
ecutes the test case. Ensuring the consistency of the kernel
state and a test case is helpful for improving the efficiency of
directed kernel fuzzing.

3.2 Fuzzing Scope Identification

3.2.1 Target Site Recognition

DDRace focuses fuzzing on a set of UAF vulnerability targets.
The fuzzing target sites can be obtained through static analy-
sis [4] or dynamic analysis [11]. Specifically, in our prototype,
we identify the targets with a lightweight dynamic trace analy-
sis as follows. For each driver, we first instrument the memory
access instruction and instructions that invoke deallocation
functions (e.g., *free function such as kfree), to monitor
potential USE operations and FREE operations respectively.
Next, we run a standard kernel fuzzer (e.g., Syzkaller) as a
profiler for a period of time. For each test case, we dump
the operand values of instrumented instructions and retrieve
an execution trace. Finally, we analyze the trace and recog-
nize pairs of USE and FREE operations that have the same
memory object as operands, and mark them as potential UAF
targets. Besides, we do the following filtering to further nar-
row down the target scope: (1) exclude the operation of the
stack variable, and (2) exclude the explicit dependency of the
driver interface on which it resides, such as the argument of
one driver interface depending on the return value of another
(which means that they usually do not execute concurrently).

Note that this target site recognition step is not the main
contribution of this work. We can leverage other orthogonal
techniques like DCUAF [4] to help recognize target sites.

2852 32nd USENIX Security Symposium USENIX Association

Kernel Source
 Code

Tracking Instruction

Instrumented Kernel

Crash

Kernel State Migration

Fuzzing Instance Snapshot Instance

Fuzzing Instance Snapshot Instance

...

 Corpus
(seed with state) Seed Selection Seed (with state)

Execution

Distance Feedback

RPIP Feedback

Constraint Feedback

Seed Preservation

Directed Scheduling Fuzzing Loop

Target Driver
 Interfaces

Target Race Pairs

... ...

Companion Driver
 Interfaces
Companion Race
 Pairs

... ...

Fuzzing Scope Identification

 Target Site
Recognition

... ...

UAF Pairs

Figure 2: Workflow of DDRace.

3.2.2 Target Race Pair Extraction

After target site recognition, DDRace performs static analysis
to identify target driver interfaces and extract target race pairs.
DDRace analyzes the source code of Linux kernel to construct
control-flow graph and call graph. In order to narrow the scope
of scheduling in directed fuzzing, DDRace focuses on the
interleavings of shared memory read and write instructions,
which are most widely used in scheduling [21, 23, 30, 55].
DDRace first identifies the interfaces of the driver that can
reach the target sites from the call graph. We refer to these
identified driver interfaces as target driver interfaces. The
target race pairs are the race pairs located in the control flow
paths from target driver interfaces to target sites and DDRace
also recognizes them. For example, in Figure 1, we recognize
ioctl$KDGKBSENT and ioctl$KDSKBSENT as target driver
interfaces, and I1/I2 as target race pairs.

3.2.3 Companion Race Pair Extraction

In addition to the memory access contained in the target driver
interfaces, other driver interfaces may influence the thread
interleavings of the target driver interfaces. However, due to
the huge size of the Linux driver subsystem, it is not feasible
to explore all of the code adequately. We narrow down the
scope based on two key observations: (1) concurrent thread
execution usually occurs in the driver interfaces of the same
driver, (2) other driver interfaces usually have read and write
operations on the same shared memory of the target ones. In
particular, we further reduce the analysis scope to memory
access that can affect the control/data flow of the target driver
interfaces through concurrency execution. Specifically, we
find shared variables that are involved in read operations in

the target driver interfaces, and then find write operations
on the same shared variables in other driver interfaces by
points-to analysis. We refer to these driver interfaces that have
concurrency associations with the target driver interfaces as
concurrency companion driver interfaces, and refer to the
race pairs located in the control flow paths starting from the
concurrency companion driver interfaces as companion race
pairs.

3.3 Directed Scheduling Fuzzing
After identifying the fuzzing scope (driver interfaces and
race pairs), DDRace performs concurrency directed grey-box
fuzzing to find concurrency UAF vulnerabilities. We design
multiple concurrency vulnerability tailored mechanisms that
enable DDRace to explore the concurrency thread interleav-
ings in a directed manner towards the targets (§3.3.1). Based
on the feedback, we develop new seed preservation and selec-
tion policies (§3.3.2) and seed mutation techniques (§3.3.3).

3.3.1 Distance Metrics and Feedback Mechanisms

We propose several new vulnerability-related distance met-
rics to guide DDRace to approach the target sites. In par-
ticular, DDRace models the conditions of control-flow, data
constraints, and thread interleaving using dominator depth
distance, vulnerability model constraint distance, and race
pair interleaving path feedback, respectively.
Dominator Depth Distance. Prior work [7, 60] define a
distance metric that measures how close a test case is to the
target sites at the basic block level. However, they greedily
prioritize the test cases with the shortest distance from the call
graph but do not consider the control or data flow conditions.

USENIX Association 32nd USENIX Security Symposium 2853

Test cases that exhibit shorter distances might be useless, e.g.,
they can not satisfy the control-flow precondition to reach the
target site.

To better measure the current execution distance to the tar-
get site, DDRace uses the depth of the dominator tree instead
of the basic block distance. DDRace only cares about whether
the current execution can reach the target sites instead of
which path it should take. The formula of distance calculation
is based on AFLGo’s harmonic mean. Similarly, a smaller
value of the sum means a closer distance to target sites.
Vulnerability Model Constraint Distance. We introduce a
vulnerability model feedback mechanism to DDRace for bet-
ter discovering concurrency UAF vulnerabilities. In addition
to the control flow distance to the target sites, DDRace also
computes the data flow distance that measures the probability
of satisfying the vulnerability constraints.

The UAF model is summarized as the following three con-
straints: (1) there is a deallocation operation and a use opera-
tion, (2) the targets of these two operations are about the same
pointer or memory, and (3) the use operation is executed after
the free operation. When one constraint is satisfied, the dis-
tance will be decreased accordingly, denoting the decrease of
difficulty in triggering the vulnerability. If all constraints are
satisfied, the constraint distance is reduced to 0. The constraint
feedback can be utilized as guidance for thread scheduling
(i.e., the vulnerability constraints can only be satisfied with
the correct scheduling).
Race Pair Interleaving Path Feedback. Traditional fuzzers
use coverage feedback and favor test cases that trigger new
coverage (e.g., hitting new edges or increasing edge-hit count).
With only such coverage feedback, the fuzzers are unaware
of the interleavings among threads. Therefore, they cannot
sufficiently prioritize test cases to explore the dimension of
thread interleavings.

To efficiently expose concurrency UAF vulnerabilities, a
desired fuzzer is expected to thoroughly explore the thread
interleavings. Since concurrency UAF vulnerabilities occur
when multiple threads illegally access certain memory, we
propose a new feedback metric, Race Pair Interleaving Path
coverage (RPIP in short), to help with thread-interleaving
exploration during fuzzing. Our solution is based on the in-
tuition that the memory access patterns of shared variables
can indicate thread interleaving situations among threads. A
different memory access pattern of shared variables suggests
a different thread interleaving. §3.2 identifies a set of race
pairs, and we use the access order of the race pair among
threads as the thread-interleaving edge. We refer to the set
of thread-interleaving edges in a fuzzing trial as the thread-
interleaving path. DDRace then favors test cases triggering
new thread-interleaving paths during the exploration (see
§3.3.2 for more details). Different from "alias coverage" in
KRACE [55], RPIP tracks the value and interaction order of
shared variables to infer thread-interleaving edge.

Algorithm 1 shows the details of RPIP in DDRace. In

a fuzzing trial, for each shared variable in the race pairs
obtained in §3.2, DDRace maintains a read tuple RT and
a write tuple WT (line 1-2), which store the information
about the last read or write access. A tuple is in the form
of < IDinstruction, IDthread , Valueshared variable >. During the
fuzzing, DDRace accordingly updates the RT and WT based
on the following criteria for every instruction (line 4):

i. Whenever executing a memory read instruction, DDRace
first updates RT (line 6). If the WT has a record (line 7)
and its thread is different from the one of read instruction
(line 9) , there is a write-to-read thread-interleaving edge
and DDRace inserts the edge < iw, i > to InterEdge
(line 10).

ii. If it is a memory write instruction that updates the value
of the corresponding shared variable, DDRace will up-
date WT (line 14-16). If the thread and value of the read
operation in RT are all different from the ones of the last
write instruction (line 17-19), there is a read-to-write
thread-interleaving edge and DDRace inserts the edge
< ir, i > to InterEdge (line 20).

After obtaining thread-interleaving edges (InterEdge), we
sequentially integrate them as a thread-interleaving path and
calculate a hash for the path, which we refer to as RPIP.
DDRace uses RPIP for later seed preservation and selection.
Like prior sequential path coverage guided fuzzers [22, 58],
the thread-interleaving path coverage also faces the puzzle
of path explosion. DDRace thus separately calculates a RPIP
for each global variable of the race pairs identified in §3.2.3
and §3.2.2, instead of combining all global variables together.
This allows DDRace to get rid of excessive overhead caused
by exploring all the scheduling space.

3.3.2 Seed Preservation and Selection

We define the final distance of a test case as the sum of dom-
ination depth distance and vulnerability constraint distance.
We regard a test case as interesting and preserve it as a seed in
two dimensions. In the first dimension, a test case is preserved
if it introduces a new distance value that has not been seen
before, even though it is not the shortest distance. Consider-
ing that some target sites are dependent on specific thread
scheduling to reach them, a test case may not get the shortest
distance in a certain execution, but it can reach the targets
with a change in scheduling, so we will keep it.

In the second dimension, DDRace leverages RPIP. As men-
tioned earlier, RPIP suffers from the path explosion issue. We
optimize this type of feedback in the seed preservation stage.
In particular, if a test case hits an undiscovered (i.e., not being
hit by the fuzzer before) thread-interleaving edge, DDRace
saves it into corpus directly. Besides, DDRace adopts a path
prioritization formula similar to CollAFL [22], which calcu-
lates a weight for a path based on the number of undiscov-
ered neighbor branches. Slightly differently, we calculate the

2854 32nd USENIX Security Symposium USENIX Association

Algorithm 1 Thread-interleaving edge calculation.
Input: T - test case, t - thread, v - value
Output: InterEdge - thread-interleaving edge
1: RT ←<>
2: WT ←<>
3: InterEdge←<>
4: for i ∈ instructions(T) do
5: if isReadAccess(i) then
6: RT ←< i, t,v >
7: if isNotEmpty(WT) then
8: iw, tw,vw←WT
9: if t ̸= tw then

10: InterEdge.insert(< iw, i >)
11: end if
12: end if
13: else
14: oldValue := GetOperandValue(i)
15: if oldValue ̸= v then
16: WT ←< i, t,v >
17: if isNotEmpty(RT) then
18: ir, tr,vr← RT
19: if t ̸= tr & v ̸= vr then
20: InterEdge.insert(< ir, i >)
21: end if
22: end if
23: end if
24: end if
25: end for

weight of undiscovered neighbor thread-interleaving edges
for a path p as shown in Formula 1. e denotes the thread-
interleaving edge in path p, and NE denotes the set of all
neighbor edges. Neighbor thread-interleaving edges are ob-
tained during each fuzzing trial. DDRace only preserves a
test case if its weight exceeds the average weight value.

Weight(p) = ∑
e ∈ p

<e,ei> ∈ NE

IsUndiscovered(< e,ei >) (1)

The seed selection in DDRace is two-fold. First, DDRace
prioritizes seeds with shorter distances because a shorter dis-
tance often indicates that the seed is more beneficial for trig-
gering vulnerabilities. Second, DDRace prioritizes seeds that
exhibit rare thread-interleaving paths. Past practices have
shown that exercising rare paths or branches allows testing ex-
treme situations and can better expose vulnerabilities [8, 37],
however, they do not leverage paths about thread interleavings.
To the best of our knowledge, DDRace is the first work that
prioritizes seeds in rare thread-interleaving paths over com-
mon paths to achieve better thread-interleaving exploration.

3.3.3 Seed Mutation

DDRace employs a two-stage mutation mechanism for the
seeds selected from the fuzzing corpus.

We design a scheduling pseudo-syscall setdelay to ar-
range the thread scheduling. In general, setdelay accepts an
array pointer argument that can be used to determine which
race pairs to schedule and delay the given time. In the first
stage of mutation (i.e., the initial stage before reaching the tar-
get sites), DDRace adopts the same strategy as Syzkaller, such
as adding or deleting syscalls, mutating syscall parameters,
etc. In particular, DDRace ensures the existence of setdelay
in the syscall sequences and mutates its parameter. At the sec-
ond stage (i.e., after reaching target sites), DDRace focuses on
thread scheduling mutation, that is, increasing the mutation
probability accompanying driver interface and setdelay.

3.4 Adaptive State Migration

Recent Linux kernel fuzzers execute test cases continuously
without restarting the target kernel or resetting its state. There-
fore, the state of the kernel is constantly changing during
fuzzing, resulting in poor reproducibility of test cases. Be-
cause a preserved seed may behave differently (e.g., achieving
different code coverage or distance) in different states, such
poor reproducibility makes distance-guided fuzzing strategy
unstable, thus seriously hurting the performance.

To avoid this dilemma, we utilize snapshots to store kernel
states. We then restore appropriate states and apply the test
cases to them when needed. However, it is not feasible to
store all states due to huge overhead. We propose a novel
adaptive state migration approach that makes a trade-off be-
tween accuracy and overhead. The core idea is that we create
and restore snapshots on demand. Specifically, we re-execute
the executed test cases sequentially in a clean target kernel
to traverse all past states triggered by the fuzzer, and create
snapshots of the states required for reproducing. Then we can
restore the snapshots to enter the required states.

The detailed steps are as follows:

i. When a fuzzing instance is launched, an identical snap-
shot instance is also launched, running with the same
configuration. The fuzzing instance starts the fuzzing
loop after startup, creates a snapshot S0 in the initial state,
and waits for inputs.

ii. When there is a highly valuable but not reproducible test
case pi in the fuzzing instance, DDRace will add it to the
queue snapWorkQueue. Specifically, a test case is valu-
able if it has reached the target sites or obtained shortest
distance in the fuzzing instance, and is not reproducible
if it cannot get the same effect in a repeated test.

iii. The snapshot instance keeps polling the
snapWorkQueue. Once it receives an item, there
is a new test case that needs to be executed in the
proper state. Snapshot instance does not immediately
synchronize the state with the fuzzing instance due to
the high overhead, but first restores to the initial state
S0, then executes the test case pi. If the feedback of the

USENIX Association 32nd USENIX Security Symposium 2855

execution is as expected (e.g., the target sites can be
reached), the test case will be marked with snapshot id
S0 and saved into the corpus. If not, go to step iv.

iv. If the initial state of the kernel is not sufficient to meet
the conditions required by pi, DDRace will take extra
effort to keep the snapshot instance synchronized with
the fuzzer instance. Specifically, the snapshot instance
will re-execute all the test cases before pi that fuzzer
instance has executed since the fuzzer instance boots
and then creates a snapshot Si. It then runs the test case
pi in this state. If the execution result is as expected, we
will save pi marked with snapshot id Si into the corpus.
If it does not, we think that pi may have been interfered
by other factors, such as interrupts, external input, etc.,
and we will discard the test case.

4 Implementation

We implemented a prototype of DDRace with around 5.6K
LoC. Table 1 summarizes the components of DDRace. We
plan to release our prototype implementation to facilitate
future research upon publication. We describe the implemen-
tation of the main components in detail below.
Race Pair Extraction. To implement the race pair extraction
component, we first construct the control-flow graph and call
graph based on CRIX [40] that builds a precise call graph
with static analysis. We then extract the target driver interfaces
from the generated graphs by LLVM Passes. Next, we utilize
SVF [48] to perform a points-to analysis to collect the instruc-
tions accessing shared variables and identify them as race
pairs. The points-to analysis only focuses on the instructions
located on the paths from the corresponding driver interfaces
to the target sites. Points-to analysis in general cannot scale
to complex programs with large code base. As Linux kernel
is highly modular, we partition kernel objects to sub-module
and perform points-to analysis for each sub-module. This is a
common practice used by prior works [30, 40].
Directed Scheduling Fuzzing Loop. We implement the
fuzzing component of DDRace based on the kernel fuzzing
tool Syzkaller [53]. We modify Syzkaller to receive the
distance and RPIP feedback for prioritizing inputs. Since
Syzkaller randomly selects threads for each syscall in a test
case, which may cause two system calls that should be concur-
rent to execute sequentially. To resolve this problem and better

Table 1: Implementation details of DDRace.

Component Base Tool LoC

Race Pair Extraction SVF, CRIX, LLVM 1,500 (C++)
Fuzzing Loop Syzkaller 2,500 (Go)
Instrumentation LLVM SanitizerCoverage 600 (C++)
Glue scripts - 1,000 (Python)

Total - 5,600

preserve the “concurrency characteristics” of the test cases,
we also save the thread ID information of each syscall as an
appendix to the seed when a seed is preserved in the corpus.
Therefore, our fuzzer can reproduce the thread scheduling for
syscalls when the seeds are selected for future mutation and
re-execution.
Snapshot and Instrumentation. Our state migration scheme
is implemented with the snapshot feature of QEMU. DDRace
utilizes LLVM SanitizerCoverage [39] to instrument the tar-
get Linux kernel for perceiving the feedback information. We
also modify the system call setdelay for the scheduling.
Specifically, we instrument before the race pair instructions
and invoke mdelay for scheduling. The delay time is deter-
mined by the parameters of setdelay. DDRace mutates its
parameters as for other syscalls, i.e., design a specific template
for that setdelay, and then mutate the parameters accord-
ing to the template. DDRace uses the feedback mechanisms
mentioned in §3.3.1 to decide if the mutation of setdelay
is favored, and accordingly preserves it. All these tracking
instructions are instrumented via LLVM 10.0.

5 Evaluation

In this section, we comprehensively evaluate DDRace from
various aspects, to answer the following questions:

• How effective is DDRace at extracting target-related race
pairs?
• What is the capability of DDRace in exposing concurrency

UAF vulnerabilities?
• How is DDRace comparable to existing approaches?
• How do the techniques in DDRace contribute to its perfor-

mance?

5.1 Experimental Setup

Dataset. We evaluate DDRace on upstream Linux device
drivers to understand its efficacy. The fuzzing component
of DDRace is implemented atop Syzkaller, which employs
QEMU and has limited support for Linux drivers. It is non-
trivial and time-consuming for us to configure Linux drivers
for the evaluation. Therefore, we currently limit our dataset to
six drivers: tty, drm, sequencer, midi , vivid and floppy
that are well supported by QEMU. The evaluated Linux
drivers are quite popular and used by a large population of
devices. We evaluate the drivers in the Linux kernel 4.19.100.
Environment and Configuration. In our experiments, we
utilized LLVM-10.0 to compile the Linux kernel with the
configuration of syzbot [2]. Specifically, we enabled KCOV
for code coverage instrumentation and KASAN sanitizer for
use-after-free bugs detection. All experiments were conducted
on a machine running Ubuntu 16.04 LTS with 2 Intel(R)
Xeon(R) CPU cores (E5-2695 v4 2.10GHz) and with 384GB
RAM.

2856 32nd USENIX Security Symposium USENIX Association

Table 2: Vulnerabilities found by DDRace in Linux 4.19.100. The column "File Names of Target Pairs" shows the file names of
the FREE and USE target sites. File names of unfixed vulnerabilities are temporally removed for security concerns. † denotes
0-day vulnerabilities newly discovered by DDRace. Among them, Vul. #1, #2, and #6 have been assigned with CVE-2022-1280,
CVE-2022-1419 and CVE-2022-1652.

Vul. ID Driver File Names of Target Pairs Status

1 drm drivers/gpu/drm↔ drivers/gpu/drm Confirmed†

2 drm drivers/gpu/drm/drm_gem.c↔ drivers/gpu/drm/vgem/vgem_drv.c Confirmed & Fixed†

3 drm drivers/gpu/drm/drm_gem.c↔ drivers/gpu/drm/vkms/vkms_gem.c known

4 drm drivers/gpu/drm/drm_auth.c↔ drivers/gpu/drm/drm_ioctl.c known

5 floppy drivers/block/floppy.c↔ drivers/block/floppy.c Confirmed & Fixed†

6 floppy drivers/block/floppy.c↔ drivers/block/floppy.c Confirmed & Fixed†

7 tty drivers/tty/vt/selection.c↔ drivers/tty/n_tty.c known

8 tty drivers/tty/vt/keyboard.c↔ drivers/tty/vt/keyboard.c known

9 tty drivers/tty/vt/vt_ioctl.c↔ drivers/tty/vt/vt.c known

10 tty drivers/tty/vt/vt_ioctl.c↔ drivers/tty/vt/vt.c known

11 sequencer sound/core/seq/seq_ports.c↔ sound/core/seq/seq_ports.c known

12 midi sound/core/rawmidi.c↔ sound/core/rawmidi.c known

5.2 Race Pair Extraction

We run the original Syzkaller for 24 hours, and obtain 227
UAF pairs after analysis. We further analyze these potential
UAF pairs to extract their related concurrency elements (i.e.,
race pairs). The number of related race pairs (including target
race pairs and companion race pairs) are shown in the Figure 3.
In our evaluation, most UAF pairs have fewer than 20 pairs of
related race pairs. Unlike KRACE or RAZZER, our analysis
is from the driver interface entry to the target sites, which
significantly reduces the number of race pairs. Besides, we
identify race pairs in other driver interfaces that affect target
sites, so that DDRace will not miss the key scheduling and
interleaving feedback to trigger the vulnerability.

90

80

70

60

50

40

30

20

10

0
0 - 10 11 - 20 21 - 30 31 - 40 41 - 50 > 50

N
um

be
r o

f U
A

F
pa

irs

Number of race pairs
Figure 3: Race pairs statistics.

Figure 4 shows the statistics of corresponding driver in-
terfaces (including target driver interfaces and concurrency
companion driver interfaces) to each UAF pair. It shows that
most UAF pairs require no more than 9 driver interfaces. It
means that instead of exploring all driver interfaces for a par-

ticular driver, we can allocate computing resources to a small
number of interfaces and improve the efficiency of DDRace.

90
80
70
60
50
40
30
20
10
0

1 - 3 4 - 6 7 - 9 > 9

N
um

be
r o

f U
A

F
pa

irs

Number of driver interfaces
Figure 4: Driver interfaces statistics.

5.3 Vulnerability Discovery
As shown in §5.2, DDRace obtains 227 UAF pairs and their
related race pairs. We then apply DDRace to perform concur-
rency directed fuzzing on the target drivers. For each UAF
pair, we set a fuzzing time limit of 12 hours.

Table 2 shows the vulnerability-finding results. In general,
DDRace is highly effective in finding concurrency UAF vul-
nerabilities. DDRace discovers 12 concurrency UAF vulnera-
bilities across all 6 evaluated drivers, including 4 previously
unknown ones. We responsibly report all these new vulnera-
bilities to Linux maintainers and all of them are confirmed or
fixed. Due to the Linux security policy, we temporally hide
the file names for vulnerabilities that are not fixed yet.

As can be seen from the results, only 12 vulnerabilities are
confirmed in 227 target UAF pairs, which indicates that just
reaching the target code is not enough to find vulnerabilities
(we will discuss it further in §5.5), and also indicates that the

USENIX Association 32nd USENIX Security Symposium 2857

conditions for triggering concurrency UAF crashes are rela-
tively harsh. In fact, even though DDRace detects the crashes,
it takes lots of manual effort to diagnose and reproduce these
concurrency vulnerabilities.

The vulnerabilities found by DDRace are of high security
consequences. Specifically, 3 of them are newly assigned with
CVE IDs. For example, Vul. #2 is a newly discovered con-
currency UAF vulnerability in drm driver. In this case, since
root privilege is not required to access related devices, Linux
maintainers believe that this vulnerability can be exploited
for privilege escalation or docker escape. They explicitly pri-
oritize this vulnerability in their vulnerability fix pipeline.

5.4 Comparison

To understand how is DDRace comparable to existing ap-
proaches, we further design controlled experiments and com-
pare DDRace to state-of-the-art kernel fuzzing tools:

• Syzkaller. Syzkaller is a classic kernel fuzzer with basic
code-coverage feedback. Though it does not support ex-
ploring the thread-interleaving space, it has been widely
adopted in kernel fuzzing.
• RAZZER. RAZZER is a well-known syzkaller-based ker-

nel race fuzzer, which randomly selects a race pair during
fuzzing and uses hardware breakpoints for scheduling.
• KRACE. KRACE is another state-of-the-art kernel

race fuzzer that uses the alias instruction pairs as the
concurrency-coverage metric. KRACE injects random de-
lays to schedule threads and does not prioritize the seed
selection for concurrency seeds. Although KRACE has
been open-sourced on Github [1], unfortunately, we fail
to directly apply it to fuzz Linux device drivers because
it primarily targets file systems and there lacks necessary
documentation. Therefore, we take considerable engineer-
ing efforts to implement a variant of KRACE on our own.
In particular, we port the alias instruction pair feedback
and random delay scheduling to our variant of KRACE.

We configure Syzkaller, RAZZER and KRACE in their
default options and apply them to the same set of Linux device
drivers under the same kernel compilation options. We run
the experiments for 5 runs, each with 12 hours.
Vulnerability Findings. We study the performance of each
fuzzer by comparing the number of vulnerabilities they dis-
cover within the time limit. Due to the fundamentally random
nature of fuzzing, a fuzzer might report diverse results in
different runs even with the same configurations. We thus
calculate the average number of vulnerabilities found by each
tool in 5 testing runs.

We present the experiment results in the Venn diagram of
Figure 5. The results show that DDRace is effective and signif-
icantly outperforms the compared tools. DDRace detects all
concurrency vulnerabilities identified by other fuzzers. Specif-
ically, DDRace, RAZZER, Syzkaller, and KRACE discover

DDRace
4

KRACE
1

Syzkaller
RAZZER

7

Figure 5: The Venn diagram of vulnerability discovery results
on the Linux kernel 4.19.100.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

DDRace
Syzkaller
KRACE

Time (hour)

RAZZER

14

14

C
um

ul
at

iv
e

su
m

 o
f v

ul
ne

ra
bi

lit
ie

s

Figure 6: Comparison of vulnerability-finding time for 12
concurrency UAF vulnerabilities.

12, 7, 7, and 8 concurrency UAF vulnerabilities, respectively.
DDRace outperforms Syzkaller, RAZZER and KRACE in vul-
nerability detection by 66.7%, 66.7% and 50%, respectively.
The comparison also demonstrates the importance of race
pair extraction and direction guidance for narrowing down
the scope of concurrency UAF fuzzing.
Performance and Speed. Besides the number of vulnera-
bilities a tool could find, we evaluate how much time a tool
needs to trigger the vulnerabilities. Therefore, we measure
the time used for triggering each vulnerability per fuzzer.

We depict the trend of the cumulative number of vulnera-
bilities detected by a fuzzer over time in the persistent kernel
fuzzing of 12 hours. As shown in Figure 6, DDRace detects
all these vulnerabilities much earlier and faster than the other
tools. It uses around 40 minutes to find all the vulnerabilities,
while Syzkaller, KRACE and RAZZER take over 90 minutes,
6 hours, and 11 hours, respectively, yet find much fewer vul-
nerabilities. This demonstrates the better efficacy of DDRace
in exposing concurrency UAF vulnerabilities.

We notice that although KRACE discovers one more vul-
nerability than Syzkaller ultimately, its progress in discover-
ing vulnerabilities is slower in the early fuzzing stage (first
90 minutes). We investigate the case and find this might be
caused by the random delay for scheduling in KRACE, which

2858 32nd USENIX Security Symposium USENIX Association

wastes excessive computing resources on a large number of
repeated useless thread interleavings. This observation can
also be deduced from the evaluation results in the KRACE
paper [55].

5.5 Ablation Study

To further understand how each technique in DDRace con-
tributes to the final results, we present an ablation study. Since
DDRace contains three major components—RPIP feedback,
concurrency seed selection, and adaptive state migration, we
correspondingly design 3 variants of DDRace by disabling a
feature per variant, respectively, and compare the full-fledged
DDRace with them. For the variant DDRaceD, we enable
only the distance feedback. The variant DDRaceR uses the
feedback dimension of distance and RPIP tracking. Atop
DDRaceR, the variant DDRaceP further enables our concur-
rency seed selection strategy. The adaptive state migration
scheme is disabled in all the 3 variants but is activated in
full-fledged DDRace. All of the above variants use the results
of our static analysis in §5.2 and perform scheduling during
fuzzing. Further, in order to better compare with traditional
sequential directed fuzzing and understand the contribution
of static analysis and scheduling, we also add another variant
DDRacePD that does not utilize scheduling (e.g., setdelay)
or static analysis results, and only enables pure distance feed-
back. Similarly, we conduct the ablation experiments for 5
runs, each for 12 hours.

Figure 7 shows the mean results and its 95% confidence
interval error bars. First, the concurrency factors (e.g., schedul-
ing, race pairs or concurrency companion driver interfaces)
are particular helpful to the efficacy of DDRace. DDRacePD
has the worst performance in exposing concurrency UAF
vulnerabilities compared to all other variants, i.e., spending
much longer time in the majority of the cases. In our tests, it
fails to find Vul. #1 and #4 within 12 hours. Second, the ac-
tive scheduling and feedback can further improve the fuzzing
effectiveness. Compared to DDRaceD, DDRaceR could trig-
ger concurrency UAF vulnerabilities more efficiently, e.g.,
it improves the vulnerability exposure time by 68.7% above
DDRaceD. This further demonstrates that directed fuzzers
that only focus on reaching target sites (e.g., SemFuzz [60])
are not enough for finding concurrency UAF vulnerabilities
in Linux. Third, compared to randomly selecting concurrency
seeds, the seed priority strategy of DDRace can increase the
speed of crash triggering by up to 35.3% (7.1% on average),
especially for cases where the root cause of the vulnerability
is the interleaving of multiple race pairs. The variant using
adaptive state migration can reduce the vulnerability exposure
time by up to 46.7% in the cases with frequent seed failures
because of the changing kernel states.

From Figure 7 we also observe that, for concurrency vul-
nerabilities that can be easily triggered in a short time, the
performance gain of full-fledged DDRace is not significant.

It is reasonable, because the interleaving condition and kernel
state needed to trigger these vulnerabilities are not compli-
cated, and random thread interleaving could also easily satisfy
the condition and trigger the vulnerabilities. Nevertheless, for
complex vulnerabilities such as Vul. #1, #8 and #12, DDRace
achieves a significant performance improvement.

6 Discussion

6.1 Code Exploration Stage
Like other DGFs, DDRace provides an exploration stage in
which it uses code coverage feedback to reach different code.
In this stage, DDRace will not greedily select the seeds clos-
est to the target sites. This is reasonable because it allows
DDRace to satisfy other implicit conditions for reaching tar-
get sites such as data constraints. Besides, DDRace adopts
the simulated annealing algorithm for power scheduling like
AFLGo. In particular, the energy of every seed (i.e., the time
spent on the seed during fuzzing) is approximately equal ini-
tially; As the fuzzing goes, the seeds closer to the target sites
are assigned higher priority and energy.

6.2 Syscall Dependency
Recent works [24, 33, 42] shed light on extracting the de-
pendency between syscalls. They focus on composing valid
syscall sequences during fuzzing to achieve higher coverage.
However, they do not consider concurrency associations dur-
ing the process. For example, moonshine [42] infers the order
of syscalls based on their parameters and return values. We
believe these works are orthogonal to DDRace, and can be
applied to DDRace to improve DDRace’s performance. For
instance, based on these works, DDRace can infer whether
two driver interfaces must be executed sequentially and dis-
card race pairs whose memory operations cannot be executed
concurrently (e.g., the race pairs whose memory operations
are in both open and write syscalls), making the fuzzing
more efficient. We leave the integration as future work.

6.3 Limitations and Future Work
6.3.1 Negatives in Static Analysis

DDRace performs points-to analysis to obtain the race pairs
related to the target UAF pairs. Naturally, the static analysis
can have false positives. Since the results of the static anal-
ysis will be used by the dynamic fuzzing, the false positives
can be ultimately filtered out at runtime. Besides, DDRace
performs partial static analysis, e.g., it mainly focuses on the
read and write instructions in the driver sub-module. If there
is a race across different kernel modules, it will cause false
negatives. The false negatives might lead to miss of some
concurrency feedback, and hinder the efficiency of thread in-
terleaving exploration. However, such false negatives are rare

USENIX Association 32nd USENIX Security Symposium 2859

0

20

40

50
150

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(m

in
ut

e)

Vul ID

DDRaceD
DDRaceR DDRaceP

DDRaceDDRacePD

× ×

250

11 12

300

Figure 7: Mean time used for triggering the concurrency UAF vulnerabilities in Linux-4.19.100. DDRacePD only enables the
pure distance feedback. Based on DDRacePD, DDRaceD utilizes scheduling and static analysis results, and DDRaceR enables
the feedback dimension of distance and RPIP feedback, while DDRaceP further enables our concurrency seed selection strategy.
DDRace is the full-fledged system. × denotes a case is not triggered within the time limit.

because different kernel modules generally do not interact
frequently. We can extend the partial static analysis to the
whole kernel to resolve this problem.

6.3.2 Thread Scheduling

In addition to scheduling race pairs that can change thread
interleaving, scheduling synchronization primitives (such as
locks and semaphores) can also affect program behaviors.
Their interleavings can be seen as thread interleaving feedback
as well. Similar to existing works [30, 55], our current imple-
mentation does not support such scheduling synchronization
primitives. In the future, we plan to add such scheduling syn-
chronization primitives to scheduling candidates and perform
more precise thread scheduling. Besides, as mentioned in
§3.3, we currently only focus on the thread-interleaving edge
of the same global variable. To get more fine-grained feed-
back, we can expand it to support more global variables in
the future.

6.3.3 Non-Deterministic Cases in State Migration

For performance reasons, our state migration scheme does
not store the complete state of the kernel faithfully during
fuzzing. As discussed in §3.4, DDRace takes into account
the deterministic behaviors of executed test cases, but it does
not consider the impact of other non-deterministic behaviors,
such as interrupts, non-reproducible thread interleavings, etc.
Nevertheless, our evaluation results have demonstrated the
effectiveness of our current state migration scheme.

6.3.4 Portability

DDRace currently targets concurrency UAF vulnerabilities in
Linux drivers due to their prevalence. However, the techniques

proposed in DDRace can be applied to other programs or other
type of concurrency vulnerabilities.

On the one hand, with additional engineering efforts,
DDRace can be extended to other target programs, including
other kernel modules and user-space libraries. By utilizing the
modular structure of Linux drivers and clear driver interfaces,
DDRace can limit the scope of static analysis to a few inter-
faces of the driver under test, which improves the accuracy.
Except for this, other parts of DDRace is generic for differ-
ent types of targets. For other kernel modules (e.g., the file
system and network modules) and user-space thread-unsafe li-
brary code, we could develop similar static analysis solutions
(maybe with lower accuracy) to identify candidate locations
and apply DDRace to discover concurrency vulnerabilities.
We leave it as a future work to develop proper static analysis
solutions for more types of target programs and then apply
DDRace to find vulnerabilities.

One the other hand, our concurrency distance metrics are
also helpful for directed fuzzing to find other types of con-
currency vulnerabilities, e.g., concurrency double-free, con-
currency null-pointer-dereference, and concurrency out-of-
bound bugs. The major modifications we need to make are
components related to the vulnerability model, i.e., target site
recognition (§3.2.1) and constraint distance (§3.3.1). We also
leave it as future work to extend DDRace to support these
types of vulnerabilities.

7 Related Works

7.1 UAF Detection

Many detectors report UAF bugs by monitoring memory ac-
cesses at runtime [11, 35, 51]. Since they require workloads

2860 32nd USENIX Security Symposium USENIX Association

to trigger the relevant code and thread interleaving, their ef-
fectiveness largely depends on the inputs.

Some works use static analysis [57, 59] or dynamic
fuzzing [41, 54] to discover UAF bugs, However, they mainly
focus on sequential UAF bugs. DDRace instead investigates
concurrency UAF vulnerabilities in Linux device drivers.
DCUAF [4] extends static lockset analysis to identify con-
currency UAF, and suffers from false positives. UFO [27]
analyzes execution traces and utilizes model checking to infer
the thread causality. However, such SMT-based solutions are
usually applicable to a bounded window of events in practice,
as larger windows will cause constraint-solving infeasible.
ConVul [12] can identify exchangeable events and is able to
detect concurrency memory corruption vulnerabilities, but it
relies on execution traces instead of actively generating input.

7.2 Concurrency Bug Discovery

7.2.1 Data Race Detection

In the past decades, there has been lots of work on finding
concurrency bugs, especially data race bugs. They can be
generally classified into static and dynamic approaches. Static
race detectors [5, 6, 19, 34, 52] analyze the source code to
find instructions that access the same memory locations and
instructions that can be concurrently executed without proper
protections, and report potential data races in the program.
Dynamic approaches apply these analyses at runtime. Race-
Track [62], FastTrack [20], PACER [9], and CONVUL [12]
perform happen-before analysis to determine the intrinsic or-
der of shared memory accesses and whether they can execute
concurrently. Eraser [45] and Goldilocks [18] use lockset anal-
ysis to identify shared memory accesses that are not guarded
by the same lock. Some works combine both of them, such
as Helgrind [29] or ThreadSanitizer [3].

In general, these detectors usually suffer from a high false-
positive rate, and can hardly distinguish between benign and
harmful data races. Rather than detecting data race, DDRace
focuses on concurrency vulnerabilities that can cause memory
corruption (i.e., UAF).

7.2.2 Thread-Interleaving Exploration

SKI [21] applies the randomized PCT [10] algorithm for
thread scheduling, which can increase the probability of ex-
posing concurrency bugs. SnowBoard [23] further optimizes
SKI by recognizing and clustering potential memory commu-
nication and assigning them different priorities for scheduling.
RAProducer [63] reproduces concurrency vulnerabilities by
scheduling with hardware breakpoints, and exploring thread
interleavings in both data flow and control flow dimensions.
Maple [61] schedules by assigning threads priorities, and
explores thread interleaving with a heuristic approach.

7.3 Fuzzing

7.3.1 Directed Fuzzing

Many researchers have paid great attention to directed fuzzing
for crash reproduction, vulnerability verification, patch test-
ing, etc. Besides the code coverage feedback, directed fuzzers
design distance metrics to prioritize inputs that are more likely
to reach the targets [7,14,17,36,60]. For example, AFLGo [7]
computes the average distance of the basic blocks in the exe-
cution traces of an input to the fuzzing targets. Another line of
research advances directed fuzzing by filtering out inputs that
cannot reach the fuzzing targets. FuzzGuard [65] proposes a
deep learning approach to predict the reachability of inputs
and filters out those deemed unreachable ones. Beacon [26]
employs a static analysis to infer the necessary conditions for
reaching targets and avoids exploring infeasible paths. How-
ever, all these works are based on AFL and cannot be applied
to complex software like Linux device drivers. They do not
particularly investigate the dimension of thread interleaving
in multi-threaded programs.

In terms of directed fuzzing for UAF , CAFL [36] points
out that the orders and data conditions need to be considered.
It thus designs a constraint-distance metric that precisely mea-
sures the distance and accurately prioritizes inputs. Unfor-
tunately, CAFL studies sequential UAF vulnerabilities and
cannot be used for fuzzing concurrency UAF vulnerabilities
in Linux drivers. DDRace, on the other hand, targets concur-
rency UAF vulnerabilities as the first work.

7.3.2 Kernel Fuzzing

Linux kernels are an important target in fuzzing. Since sys-
tem calls are the main interface for a program to interact with
Linux kernels, the mainstream kernel fuzzers focus on gener-
ating system calls to test kernels [32, 53]. Besides employing
code coverage as the feedback, many studies additionally uti-
lize static analysis to better generate system calls to improve
code coverage and testing efficiency [33,42,49]. For example,
MoonShine [42], HEALER [49], and HFL [33] statically infer
the dependencies between system calls to better generate syn-
tactically valid inputs. DDRace also generates system calls to
test Linux drivers. However, DDRace differentiates itself from
existing works by targeting concurrency UAF vulnerabilities
and the new directed scheduling fuzzing approach.

There are other channels such as memory mapped I/O
(MMIO), direct memory access (DMA), and interruptions
for Linux devices to interact with the kernel from the hard-
ware side. Correspondingly, fuzzing techniques have been pro-
posed to investigate erroneous operations in these channels.
In particularly, Periscope [47] simulates the corresponding
processing functions of peripherals input to the driver through
hook-driven DMA/MMIO operations. USBFuzz [44] designs
an emulated USB device and mutates device and configura-
tion descriptors. VIA [25] extends the fuzzing scope to the

USENIX Association 32nd USENIX Security Symposium 2861

device driver interrupts and (un-)initialization. These works
are orthogonal to DDRace as DDRace focuses on the input
source of system calls rather than hardware devices. We will
leave it as future work to investigate how to integrate such
works with DDRace.

In addition to the Linux kernel, there are other fuzzers
for commodity OS kernels including macOS, Windows, etc.
Charm [50] designs a virtual machine that enables executing
mobile device drivers without any hardware and performs
fuzzing atop the virtual machine. IMF [24] retrieves the ma-
cOS system call dependencies by analyzing the dynamically
collected traces, while SyzGen [15] performs symbolic execu-
tion for more explicit dependencies and system call specifica-
tions in closed-source macOS drivers. Digtool [43] proposes
a virtualization monitor to capture kernel behaviors during
fuzzing, as the Windows kernel does not have an available
KASAN-like detector. NTFUZZ [16] presents a binary static
analysis to infer the types of Windows system calls and per-
forms a type-aware fuzzing on the Windows kernel. These
works are orthogonal to DDRace. The techniques in DDRace
are generic and can be naturally ported to these approaches
to detect concurrency UAF vulnerabilities.

7.3.3 Race Fuzzing

Fuzzing has also been applied to find data race bugs. Race-
Fuzzer [46], ConAFL [38] and RAZZER [30] use static race
detection tools to identify the potential race pairs, control
the scheduling of these locations via instrumentation or VM
hypervisor, and keep testing the program with various in-
puts and executive orders. Although they mark race pairs be-
fore fuzzing, they are still general fuzzers instead of directed
fuzzers. In other words, they try to evenly explore paths or
interleavings to reach the target sites. It is quite inefficient
because they may put too much effort into some irrelevant
branches or thread orders. DDRace resolves this problem by
adopting directed fuzzing. DDRace computes both the dis-
tance to the target sites via domination depth feedback and the
distance to satisfy the vulnerability model constraints, which
can largely reduce the search space.

Muzz [13], Conzzer [31] and KRace [55] notice that tra-
ditional control flow coverage is not reliable feedback for
concurrent programs, so they design new coverage metrics
that are aware of thread interleavings (e.g., cross-thread execu-
tion path and memory access order) and thread context (e.g.,
pthread API calling sequence and stack frame). However,
none of these metrics take the actual value of each read/write
access into consideration. DDRace uses the Race Pair Inter-
leaving Path feedback to grasp the data flow interference of
threads, which we think can better balance the effectiveness
and runtime overhead.

We characterize existing tools and DDRace in terms of the
target programs, code availability, and target bug types. As
shown in Table 3, most state-of-the-art race fuzzers cannot

be directly applied to find concurrency UAF in Linux drivers.
Specifically, most of the work target data race bugs, rather
than concurrency vulnerabilities. However, it is ineffective
to directly apply the approach of data race detection to find
concurrency vulnerabilities. As discussed in [64], detecting
a data race bug usually only considers a pair of concurrent
accesses to the same memory locations, while detecting a con-
currency vulnerability need to consider one or more memory
operation pairs on a set of closely related memory locations.
Besides, most of them are not designed for kernel drivers.

Table 3: Summary of concurrency fuzzers. Con. Vul. de-
notes concurrency vulnerability.

Tool Target Program Code Availability Target Bug Type

RaceFuzzer [46] (Java) Userspace × Data Race

ConAFL [38] Userspace ✓ Con. Vul.

RAZZER [30] Linux Kernel ✓ Con. Vul.

KRACE [55] Linux File System ✓ Data Race

Muzz [13] Userspace × Data Race

Conzzer [31] Userspace & File System × Data Race

DDRace Linux Drivers ✓ Con. Vul.

8 Conclusion

In this paper, we have presented a directed fuzzer, DDRace,
for concurrency UAF vulnerability detection in Linux device
drivers. DDRace entails overcoming several inherent chal-
lenges. It equips a new vulnerability-related distance metric
and a novel concurrency feedback mechanism to assist di-
rected fuzzing. DDRace resolves the test case reproducibility
problem with a new adaptive kernel state migration scheme.
Our extensive evaluation on upstream Linux drivers shows
that DDRace is highly effective in discovering concurrency
UAF vulnerabilities and it successfully detected 12 vulnera-
bilities, including 4 previously unknown ones with 3 CVEs as-
signed. DDRace significantly outperformed the related works
by identifying more vulnerabilities more efficiently.

Acknowledgements

We would like to sincerely thank all the anonymous review-
ers and our shepherd for their valuable feedback that greatly
helped us to improve this paper. This work was supported
in part by the National Key Research and Development Pro-
gram of China (2021YFB2701000), National Natural Science
Foundation of China (61972224), Beijing National Research
Center for Information Science and Technology (BNRist) un-
der Grant BNR2022RC01006, and HKPolyU Grant (ZVG0).

2862 32nd USENIX Security Symposium USENIX Association

References

[1] Krace repository. https://github.com/
sslab-gatech/krace.

[2] syzbot. https://syzkaller.appspot.com.

[3] Threadsanitizer. https://github.com/google/
sanitizers/wiki/ThreadSanitizerCppManual.

[4] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency Use-After-
Free bugs in linux device drivers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
255–268, Renton, WA, July 2019. USENIX Association.

[5] Jia-Ju Bai, Yu-Ping Wang, Julia Lawall, and Shi-Min
Hu. DSAC: Effective static analysis of Sleep-in-Atomic-
Context bugs in kernel modules. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
587–600, 2018.

[6] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn,
and Ilya Sergey. Racerd: compositional static race detec-
tion. Proc. ACM Program. Lang., pages 144:1–144:28,
2018.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, page
2329–2344, New York, NY, USA, 2017. Association for
Computing Machinery.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, pages 489–
506, 2017.

[9] Michael D. Bond, Katherine E. Coons, and Kathryn S.
McKinley. Pacer: Proportional detection of data races.
In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
page 255–268, New York, NY, USA, 2010. Association
for Computing Machinery.

[10] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musu-
vathi, and Santosh Nagarakatte. A randomized sched-
uler with probabilistic guarantees of finding bugs. In
Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 167–178, New York, NY,
USA, 2010. Association for Computing Machinery.

[11] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: early detection of dangling

pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 133–143, 2012.

[12] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He,
Purui Su, and Bin Liang. Detecting concurrency mem-
ory corruption vulnerabilities. In Proceedings of the
2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Founda-
tions of Software Engineering, page 706–717, New York,
NY, USA, 2019. Association for Computing Machinery.

[13] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: Thread-aware grey-box fuzzing for effective
bug hunting in multithreaded programs. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2325–
2342. USENIX Association, August 2020.

[14] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. page
2095–2108, New York, NY, USA, 2018. Association
for Computing Machinery.

[15] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun
Qian. Syzgen: Automated generation of syscall specifi-
cation of closed-source macos drivers. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, page 749–763, New York,
NY, USA, 2021. Association for Computing Machinery.

[16] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil
Cha. Ntfuzz: Enabling type-aware kernel fuzzing on
windows with static binary analysis. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 677–
693, 2021.

[17] Zhengjie Du, Yang Liu, Yuekang Li, and Bing Mao.
Windranger: A directed greybox fuzzer driven by de-
viationbasic blocks. In IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022.

[18] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran.
Goldilocks: A race and transaction-aware java runtime.
SIGPLAN Not., page 245–255, jun 2007.

[19] Dawson Engler and Ken Ashcraft. Racerx: Effective,
static detection of race conditions and deadlocks. In
Proceedings of the Nineteenth ACM Symposium on Op-
erating Systems Principles, page 237–252, 2003.

[20] Cormac Flanagan and Stephen N. Freund. Fasttrack:
Efficient and precise dynamic race detection. SIGPLAN
Not., page 121–133, jun 2009.

USENIX Association 32nd USENIX Security Symposium 2863

https://github.com/sslab-gatech/krace
https://github.com/sslab-gatech/krace
https://syzkaller.appspot.com
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

[21] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Bran-
denburg. Ski: Exposing kernel concurrency bugs
through systematic schedule exploration. In Proceed-
ings of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation, page 415–431, USA,
2014. USENIX Association.

[22] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl: Path
sensitive fuzzing. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 679–696, 2018.

[23] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and
Petros Maniatis. Snowboard: Finding kernel concur-
rency bugs through systematic inter-thread communi-
cation analysis. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, page
66–83, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[24] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-
based fuzzer. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
page 2345–2358, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[25] Felicitas Hetzelt, Martin Radev, Robert Buhren, Math-
ias Morbitzer, and Jean-Pierre Seifert. Via: Analyzing
device interfaces of protected virtual machines. In An-
nual Computer Security Applications Conference, page
273–284, New York, NY, USA, 2021. Association for
Computing Machinery.

[26] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed
grey-box fuzzing with provable path pruning. In 2022
IEEE Symposium on Security and Privacy (SP), pages
104–118, Los Alamitos, CA, USA, may 2022. IEEE
Computer Society.

[27] Jeff Huang. Ufo: Predictive concurrency use-after-free
detection. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE), pages 609–
619, 2018.

[28] IBM. Tty drivers. https://www.ibm.com/docs/en/
aix/7.2?topic=subsystem-tty-drivers.

[29] Ali Jannesari, Kaibin Bao, Victor Pankratius, and Wal-
ter F. Tichy. Helgrind+: An efficient dynamic race detec-
tor. In 2009 IEEE International Symposium on Parallel
Distributed Processing, pages 1–13, 2009.

[30] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding

kernel race bugs through fuzzing. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 754–768,
2019.

[31] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In NDSS, 01 2022.

[32] D. Jones. Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity, 2011.

[33] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. Hfl:
Hybrid fuzzing on the linux kernel. In NDSS, 2020.

[34] Taegyu Kim, Vireshwar Kumar, Junghwan Rhee, Jizhou
Chen, Kyungtae Kim, Chung Hwan Kim, Dongyan Xu,
and Dave Jing Tian. PASAN detecting peripheral access
concurrency bugs within {Bare-Metal} embedded appli-
cations. In 30th USENIX Security Symposium (USENIX
Security 21), pages 249–266, 2021.

[35] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

[36] Gwangmu Lee, Woo-Jae Shim, and Byoungyoung Lee.
Constraint-guided directed greybox fuzzing. In USENIX
Security Symposium, 2021.

[37] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475–485, 2018.

[38] Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu,
and Hai Jin. A heuristic framework to detect concur-
rency vulnerabilities. Proceedings of the 34th Annual
Computer Security Applications Conference, 2018.

[39] LLVM. Clang 10 documentation, sanitizercover-
age. https://releases.llvm.org/10.0.0/tools/
clang/docs/SanitizerCoverage.html.

[40] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
Missing-Check bugs via semantic- and Context-Aware
criticalness and constraints inferences. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1769–
1786, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[41] Manh-Dung Nguyen, Sébastien Bardin, Richard Boni-
chon, Roland Groz, and Matthieu Lemerre. Binary-level
directed fuzzing for use-after-free vulnerabilities. In
RAID, 2020.

2864 32nd USENIX Security Symposium USENIX Association

https://www.ibm.com/docs/en/aix/7.2?topic=subsystem-tty-drivers
https://www.ibm.com/docs/en/aix/7.2?topic=subsystem-tty-drivers
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://releases.llvm.org/10.0.0/tools/clang/docs/SanitizerCoverage.html
https://releases.llvm.org/10.0.0/tools/clang/docs/SanitizerCoverage.html

[42] Shankara Pailoor, Andrew Aday, and Suman Jana.
MoonShine: Optimizing OS fuzzer seed selection with
trace distillation. In 27th USENIX Security Symposium
(USENIX Security 18), pages 729–743, Baltimore, MD,
August 2018. USENIX Association.

[43] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. Digtool:
A Virtualization-Based framework for detecting kernel
vulnerabilities. In 26th USENIX Security Symposium
(USENIX Security 17), pages 149–165, Vancouver, BC,
August 2017. USENIX Association.

[44] Hui Peng and Mathias Payer. USBFuzz: A framework
for fuzzing USB drivers by device emulation. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 2559–2575. USENIX Association, August 2020.

[45] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM
Trans. Comput. Syst., page 391–411, nov 1997.

[46] Koushik Sen. Race directed random testing of concur-
rent programs. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 11–21, 2008.

[47] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Krügel, Jean-Pierre Seifert, and Michael
Franz. Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. Proceedings
2019 Network and Distributed System Security Sympo-
sium, 2019.

[48] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[49] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu,
Yu Jiang, Ting Chen, and Aiguo Cui. Healer: Relation
learning guided kernel fuzzing. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, page 344–358, New York, NY, USA, 2021.
Association for Computing Machinery.

[50] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis
of device drivers of mobile systems. In 27th USENIX
Security Symposium (USENIX Security 18), pages 291–
307, 2018.

[51] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Proceedings of the Twelfth European Conference on
Computer Systems, pages 405–419, 2017.

[52] Vesal Vojdani and Varmo Vene. Goblint: Path-sensitive
data race analysis. In Annales Univ. Sci. Budapest., Sect.
Comp, pages 141–155. Citeseer, 2009.

[53] Dmitry Vyukov. Syzkaller. https://github.com/
google/syzkaller, 2015.

[54] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang
Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei
Sui. Typestate-guided fuzzer for discovering use-after-
free vulnerabilities. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
page 999–1010, New York, NY, USA, 2020. Association
for Computing Machinery.

[55] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data race fuzzing for kernel file sys-
tems. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1643–1660, 2020.

[56] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities in
linux kernel. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 414–425, 2015.

[57] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Spatio-temporal context reduction: A pointer-analysis-
based static approach for detecting use-after-free vulner-
abilities. In 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE), pages 327–337.
IEEE, 2018.

[58] Shengbo Yan, Chenlu Wu, Hang Li, Wei Shao, and
Chunfu Jia. Pathafl: Path-coverage assisted fuzzing.
In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, page 598–609,
New York, NY, USA, 2020. Association for Computing
Machinery.

[59] Jiayi Ye, Chao Zhang, and Xinhui Han. Poster:
Uafchecker: Scalable static detection of use-after-free
vulnerabilities. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1529–1531, 2014.

[60] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, page 2139–2154, New York, NY, USA, 2017.
Association for Computing Machinery.

USENIX Association 32nd USENIX Security Symposium 2865

https://github.com/google/syzkaller
https://github.com/google/syzkaller

[61] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and
Gilles Pokam. Maple: A coverage-driven testing tool
for multithreaded programs. In Proceedings of the
ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, page
485–502, New York, NY, USA, 2012. Association for
Computing Machinery.

[62] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack:
Efficient detection of data race conditions via adaptive
tracking. SIGOPS Oper. Syst. Rev., page 221–234, oct
2005.

[63] Ming Yuan, Yeseop Lee, Chao Zhang, Yun Li, Yan Cai,
and Bodong Zhao. RAProducer: Efficiently Diagnose
and Reproduce Data Race Bugs for Binaries via Trace

Analysis, page 593–606. Association for Computing
Machinery, New York, NY, USA, 2021.

[64] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuex-
uan Wang, Heming Cui, and Junfeng Yang. Owl: Un-
derstanding and detecting concurrency attacks. In 2018
48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 219–230.
IEEE, 2018.

[65] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. FuzzGuard: Filtering
out Unreachable Inputs in Directed Grey-Box Fuzzing
through Deep Learning. USENIX Association, USA,
2020.

2866 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Linux Drivers
	Concurrency UAF Vulnerabilities
	Grey-box Fuzzing
	Motivation Example

	DDRace
	Overview
	Fuzzing Scope Identification
	Target Site Recognition
	Target Race Pair Extraction
	Companion Race Pair Extraction

	Directed Scheduling Fuzzing
	Distance Metrics and Feedback Mechanisms
	Seed Preservation and Selection
	Seed Mutation

	Adaptive State Migration

	Implementation
	Evaluation
	Experimental Setup
	Race Pair Extraction
	Vulnerability Discovery
	Comparison
	Ablation Study

	Discussion
	Code Exploration Stage
	Syscall Dependency
	Limitations and Future Work
	Negatives in Static Analysis
	Thread Scheduling
	Non-Deterministic Cases in State Migration
	Portability

	Related Works
	UAF Detection
	Concurrency Bug Discovery
	Data Race Detection
	Thread-Interleaving Exploration

	Fuzzing
	Directed Fuzzing
	Kernel Fuzzing
	Race Fuzzing

	Conclusion

