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Abstract

Federated learning (FL) enables multiple clients to collabo-
ratively train a model with the coordination of a central server.
Although FL improves data privacy via keeping each client’s
training data locally, an attacker—e.g., an untrusted server—
can still compromise the privacy of clients’ local training
data via various inference attacks. A de facto approach to
preserving FL privacy is Differential Privacy (DP), which
adds random noise during training. However, when applied to
FL, DP suffers from a key limitation: it sacrifices the model
accuracy substantially—which is even more severely than
being applied to traditional centralized learning—to achieve
a meaningful level of privacy.

In this paper, we study the accuracy degradation cause of
FL+DP and then design an approach to improve the accuracy.
First, we propose that such accuracy degradation is partially
because DP introduces additional heterogeneity among FL
clients when adding different random noise with clipping bias
during local training. To the best of our knowledge, we are
the first to associate DP in FL with client heterogeneity. Sec-
ond, we design PRIVATEFL to learn accurate, differentially
private models in FL with reduced heterogeneity. The key
idea is to jointly learn a differentially private, personalized
data transformation for each client during local training. The
personalized data transformation shifts client’s local data dis-
tribution to compensate the heterogeneity introduced by DP,
thus improving FL model’s accuracy.

In the evaluation, we combine and compare PRIVATEFL
with eight state-of-the-art differentially private FL methods
on seven benchmark datasets, including six image and one
non-image datasets. Our results show that PRIVATEFL learns
accurate FL models with a small ε, e.g., 93.3% on CIFAR-
10 with 100 clients under (ε = 2, δ = 1e−3)-DP. Moreover,
PRIVATEFL can be combined with prior works to reduce DP-
induced heterogeneity and further improve their accuracy.

∗
Equal contribution

1 Introduction

Federated Learning (FL) is a distributed learning framework,
which allows multiple clients to collaboratively train a model
with the coordination of a central server. Although FL im-
proves data privacy without uploading local training data to
the server, an adversary can still infer local data via vari-
ous attacks. For example, Nasr et al. [32] shows that a ma-
licious server can rely on membership inference attacks to
infer whether a local client has a given data sample. There-
fore, FL is often used together with Differential Privacy
(DP) [4, 12, 13, 42], a de facto approach in preserving data
privacy with formal guarantees.

Historically, there are two versions of differential pri-
vacy [31]: Local Differential Privacy (LDP) and Central Dif-
ferential Privacy (CDP). The former adds noise at client and
ensures each client with a privacy guarantee against mali-
cious server and client, and the latter adds noise at server and
ensures the global model with a privacy guarantee against ma-
licious clients. Recently, researchers also propose Distributed
Differential Privacy (DDP) [5, 18, 42] in between LDP and
CDP to prevent an honest-but-curious server [35].

However, regardless of the DP variation, one key challenge
in applying DP to the FL setting is the degradation of the
model’s accuracy. While it is natural that DP compromises
model’s accuracy due to the inherent utility-privacy trade-off,
such an accuracy degradation is even more severe under the
FL setting. For example, our experiment shows that the accu-
racy degradation comparing learning models with and without
(ε = 2, δ = 1e−3)-LDP under an FL setting with 100 clients
is 12.5% as opposed to 1.2% under a centralized learning with
all other parameters being the same (i.e., MNIST as the train-
ing set with i.i.d. distribution and three-fully-connected-layer
neural network as the model).

In the first part of the paper, we study the cause of such a
big accuracy degradation under FL and different variations of
DP (called FL+DP) as the motivation of our research. Specifi-
cally, an FL model’s accuracy is sensitive to the client data
distributions [26], e.g., an FL model trained with heteroge-
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neous data distribution among clients usually performs worse
compared with one trained with homogeneous data distribu-
tion. Our observation and study show that all variations of
DP introduce additional heterogeneity to FL clients during
training, thus hampering the overall FL model’s accuracy. In
other words, when noises are either added independently at
each local client in LDP and DDP or diversified by each local
client in CDP, such noises enlarge heterogeneity across clients.
To the best of our knowledge, we are the first to associate FL
accuracy degradation caused by DP with heterogeneity.

There is no prior work that studies the specific problem
of client heterogeneity introduced by DP under the FL set-
ting. On one hand, prior works, e.g., Papernot et al. [34] and
Tramer et al. [44], proposed to improve DP’s utility with
more data samples (e.g., those public data used to train an
encoder), better features, and different activation functions.
However, such approaches do not reduce client heterogeneity
introduced by DP. On the other hand, prior works proposed
to tame client data heterogeneity via personalized FL [19,26].
Particularly, DP-SCAFFOLD [33] combines a popular, per-
sonalized FL called SCAFFOLD [19] with DP to improve
privacy with heterogeneous data. However, such approaches,
including DP-SCAFFOLD, are designed for general training
data heterogeneity at each client but not those introduced by
DP: General training data heterogeneity is stable between
each round, but DP-induced heterogeneity changes due to
random noise added in each round.

Therefore, in the second and main part of the paper, we
design and implement an accurate, differentially private fed-
erated learning, called PRIVATEFL, with novel personalized
data transformation. The key insight of PRIVATEFL is to shift
client data distribution with personalized data transformation
at each FL client to tame heterogeneity introduced by DP.
While intuitively simple, the challenge is how to find the op-
timal transformation to reduce heterogeneity with improved
utility. Therefore, PRIVATEFL optimizes the transformation
in each FL round together with learning models and such an
optimized transformation has the following properties:

• Optimized for utility. PRIVATEFL learns the personalized
data transformation based on the local data distribution and
optimizes the transformation to minimize learning loss and
maximize local client’s model utility.

• Differentially private. PRIVATEFL ensures the original
privacy guarantee of different DP variations (L/D/CDP)
under their threat model. For example, PRIVATEFL applies
DP-SGD upon the data transformation during backpropa-
gation for LDP to guarantee that the combination of the
DNN and the data transformation is differentially private.

• Compatible. PRIVATEFL, serving as a pluggable compo-
nent to DNN, is complementary to and compatible with
personalized FL and/or existing DP utility improvement.

We evaluate the generality of PRIVATEFL using seven
benchmark datasets (e.g., CIFAR-100) on multiple model

architectures including the latest CLIP [36]. We also com-
bine PRIVATEFL with existing DP improvement meth-
ods [34, 44] and personalized FLs (e.g., FedBN [26] and DP-
SCAFFOLD [33]). Our evaluation shows that PRIVATEFL
further improves FL models’ accuracy when combined with
those works. Take DP-SCAFFOLD for example. PRIVATEFL
further improves the FL model’s accuracy by 5.7% upon DP-
SCAFFOLD with ε = 8 and by 22.5% with ε = 2.

To summarize, our key contributions are as follows:
• We find that the utility degradation of DP+FL is partially

due to additional heterogeneity introduced by DP.
• We design and implement PRIVATEFL, the first approach

to tame heterogeneity introduced by DP and improve
model utility via a personalized, optimized data transforma-
tion. Our implementation is open-source at this repository
(https://github.com/BHui97/PrivateFL).

• We demonstrate that PRIVATEFL can be combined with
personalized FL and other DP utility improvement methods
to further improve FL’s utility with DP.

2 Problem Formulation
2.1 Preliminary

Differential Privacy (DP) [4, 40]. Let D denote all possi-
ble datasets and R denote the domain of all possible trained
models. A randomized mechanism A : D→ R satisfies (ε,δ)-
differential privacy if—for any two neighboring datasets
D1,D2 ∈ D that differ in only a single data sample and for
any subset of output S⊆ R—the following Equation 1 holds:

Pr[A(D1) ∈ S]≤ exp(ε) ·Pr[A(D2) ∈ S]+δ. (1)

The parameters ε and δ are related to the unconditional
upper-bound of the potential privacy leakage, and are known
as privacy budgets. Specifically, ε represents the privacy guar-
antee: a lower ε corresponds to a higher level of privacy; and
δ indicates the probability that the upper-bound does not hold,
and is usually set to be the inverse of the training dataset size.

Federated Learning (FL) [26, 28]. FL allows multiple
clients to train a global model collaboratively while keep-
ing their training data locally. Specifically, in each training
round, the server sends the current global model to the clients
or a sampled subset of them; each client trains a local model
using its training data, and uploads it to the server; and the
server aggregates the clients’ local models as a new global
model. For instance, FedAVG [28] is a standard way to aggre-
gate local models, which takes the average of the local models
as a global model: θr+1 = 1

K ∑
K
k=0 θr

k, where θr+1 is the global
model for the (r+1)-th round, K is the number of clients, and
θr

k is the local model of client k in round r.

2.2 Threat Model

An adversary aims to infer sensitive information about clients’
local training data, e.g., data distribution [16] or member-
ships [32]. We first define different types of adversaries, and
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(a) [LDP] Heterogeneity vs. Privacy Level (b) [DDP] Heterogeneity vs. Privacy Level (c) [CDP] Heterogeneity vs. Privacy Level

Figure 1: A motivating example to illustrate that DP introduces additional client heterogeneity during training. Each horizontal
line shows the baseline heterogeneity introduced by clients’ non-i.i.d local training data.

then introduce different variants of FL+DP that can prevent
different adversaries.
• Untrusted Server. Such an adversary controls the FL

server and may either passively exploit each client’s local
models (i.e., honest-but-curious server) or actively tamper
with the aggregation procedure (i.e., malicious server) to
perform inference attacks.

• Untrusted Client. Such an adversary controls one or
multiple clients, and tries to perform inference attacks to
other clients’ local training data via passively exploiting
the global models from the server (i.e., honest-but-curious
clients) or actively tampering with the local models on its
controlled clients (i.e., malicious clients).
Different FL+DP variants have different threat models

against the aforementioned adversaries. We present them from
the strongest to the weakest.
• Local Differential Privacy (LDP) [43, 47]. LDP is the

strongest variant, which defends against both untrusted
server and untrusted clients. Each LDP client adds noise in
each training step using DP-SGD [4] when training its local
model in each FL round. Note that the clients may use dif-
ferent privacy budgets ε, and the overall privacy guarantee
depends on the largest ε among all the clients.

• Distributed Differential Privacy (DDP) [5,18]. DDP is a
weaker variant, which defends against a honest-but-curious
server and untrusted clients. Each DDP client adds noise
to its trained local model (but not the training procedure)
and the server adopts secure aggregation. Note that since
the added noise is insufficient for an LDP-like guarantee,
DDP is still vulnerable to a malicious server [35].

• Central Differential Privacy (CDP) [15, 29]. CDP is
the weakest version of FL+DP. The CDP server adds cali-
brated noise during aggregation to achieve DP for the global
model. CDP can defend against untrusted clients, but not
an untrusted server. The reason is that the server can access
the clients’ noise-free local models in CDP.

2.3 Motivation

We motivate the design of PRIVATEFL by first understanding
the cause of the accuracy degradation of DP+FL. One cause,
according to our observation, is that DP introduces additional
heterogeneity to FL clients. In this subsection, we perform
experiments to validate our observation and our experimen-
tal setup is as follows. We assume 10 clients with non-i.i.d
local training data and each client has data from six random
classes. Then, we adopt the CIFAR-10 and MNIST datasets
for LDP and CDP, and the EMNIST dataset—following the
original paper [5]—for DDP. The model architecture, sample
rate, (ε,δ), learning rate, and batch size are the same as our
experiment setup in Section 5 (particularly Table 3).

In each FL training round, we calculate a client’s local train-
ing loss of its local model on its training data. Thus, for each
client, we have a distribution of its local training loss across
the FL training rounds. Such distribution is homogeneous in
an ideal case, i.e., the clients have very similar distributions
when their local training data are i.i.d. and DP is not used
during training. We then calculate the earth mover’s distance
(EMD) [37] between such distributions for each pair of clients.
A larger EMD between the local training loss distributions
of two clients indicates more heterogeneity. Figure 1 shows
the mean and standard deviation of the EMDs between the
clients as ε varies for each of the three DP variants. Each
horizontal line in Figure 1 is the baseline heterogeneity in-
troduced by clients’ non-i.i.d local training data. The margin
between a line and the horizontal line indicates the additional
heterogeneity introduced by DP.

LDP-introduced Heterogeneity. Intuitively, LDP intro-
duces heterogeneity from two aspects. First, DP-SGD clips
gradients of random samples of training data, which intro-
duces clipping bias [9] and thus heterogeneity. Second, DP-
SGD adds random noise to the clipped gradients, which fur-
ther introduces heterogeneity among clients. Figure 1a shows
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Figure 2: In each round, PRIVATEFL performs three steps. Step 1: each client downloads the current global model. Step 2: each
client learns a personalized data transformation and a local model simultaneously (DP-SGD is adopted as the optimizer for LDP
and noise is added to the learnt local model for DDP). Step 3: each client uploads its local model to the server and keeps its
personalized data transformation locally. The server aggregates the local models using secure aggregation (DDP) or FedAVG
with noise added to the aggregation (CDP).

the heterogeneity when ε varies. The heterogeneity increases
as ε decreases, since a smaller ε adds more noises, thus intro-
ducing more heterogeneity.

DDP-introduced Heterogeneity. Similar to LDP, DDP in-
troduces heterogeneity because DDP adds random (different)
noise to the local models. Figure 1b shows that the hetero-
geneity decreases as ε increases (i.e., privacy level decreases).
The reason is that the noise level decreases as ε increases and
thus the noise-introduced heterogeneity also decreases.

CDP-introduced Heterogeneity. CDP introduces addi-
tional heterogeneity when the clients’ local training data are
non-i.i.d: while the noise is added by the server, the same
noise in a global model is amplified differently during lo-
cal training by clients. Specifically, the clients change the
same noise added by the server to the global model differently
because their local training data are non-i.i.d and introduce
additional heterogeneity to the local models returned to the
server. Figure 1c shows the heterogeneity as ε varies. Such
heterogeneity is relatively small when ε is large but increases
drastically as ε decreases. This is because a small ε introduces
more noise in a global model, which is further diversified and
amplified by the clients’ heterogeneous training data during
local training. We note that, when the clients’ local train-
ing data are i.i.d, CDP does not introduce much additional
heterogeneity because the clients would amplify the noise
added to the global model similarly, as shown in Figure 8b in
Appendix A.

Motivation Takeaway: Differential Privacy (DP) intro-
duces additional heterogeneity among FL clients, thus
hurting FL model’s utility; and DP-introduced hetero-
geneity increases as the privacy level.

3 Methodology
In this section, we describe personalized data transformation
under FL and then its combination with DP and other DP
utility improvement methods. Our high-level intuition is that
personalized data transformation is optimized during each
FL training round to better fit a local model with new DP-
introduced noise in the training round, thus improving the
accuracy of the global model.

3.1 Personalized Data Transformation

Notations. We assume K clients and denote by Dk the local
training dataset for client k, where k = 1,2, · · · ,K. The local
training dataset size is |Dk|. We consider (x,y) as a training
sample, where x ∈ Rn denotes the training input and y the
label of the input. We denote θ as the global model and r as
the training round index.

Definition. We define a personalized data transformation as
a local function xt = Tk(x) at client k, where Tk transforms a
given training sample x to xt . Different clients have different
Tk, which are kept locally without being aggregated by the
central server. The choice of Tk follows two principles: (i)
Taming heterogeneity and (ii) Preserving original features.
For the former one, Tk needs to shift the local data distribu-
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Algorithm 1 PRIVATEFL-LDP/DDP/CDP
Input: Learning rate η and the number of sampled clients Ks in each round.

For LDP: noise scale σ, group size L, and gradient norm bound C. For
DDP: bit-width b, target central noise variance µ > 0, signal bound
multiplier m > 0, bias v ∈ [0,1), gradient norm bound C, j× j diagonal
matrix J with uniformly random {-1, 1} values, j× j Hadamard matrix H,
and s that satisfies 2b = 2m

√
C2K2

s / j+Ks/(4s2)+µ. For CDP: gradient
norm bound C.

Output: Global model θ and the overall privacy budget (ε,δ) computed
using a privacy accounting method.

1: Server initializes θ0 randomly
2: for each round r = 1,2, · · · do
3: K r ← server samples a set of Ks clients randomly
4: for each client k ∈K r in parallel do
5: θr

kL
= LocalUpdate(k,θr) ▷ get local model from client k

6: if LDP then ▷ update global model
7: θr+1← 1

Ks
∑k∈K r θr

kL

8: if DDP then
9: θr

L← sum of {θr
kL
}k∈K r modular 2b

10: θr+1← 1
s JH⊤θr

L

11: if CDP then
12: ζk ← ||θr

kL
−θr||2,∀k ∈K r

13: ζ← median{ζk}k∈K r ▷ median norm bound for CDP

14: θr+1← θr + 1
Ks
(∑k∈K r

θr
kL
−θr

max(1, ζk
ζ
)
+N (0,σ2ζ2I))

15: return θr and (ε,δ)

tion of each client to tame heterogeneity caused either by the
inherent data heterogeneity or DP. For the latter one, Tk needs
to keep the original features of the training data so that FL can
learn such features to train an accurate global model. Theoret-
ically, Tk can be any function. However, our empirical study
in Section 4 finds that linear transformation satisfies these two
principles well, thus outperforming many other alternatives.

3.2 Learning the Transformation

Intuitively, our idea is to learn a Tk together with the local
model and tailor Tk for different clients to tame heterogeneity.
In particular, we view Tk as the beginning layer (called layer
zero) of a local model and denote Tk as θkT for the purpose of
learning. Formally, we denote by θkL a local model and θk an
extended local model of client k, where θk is the composition
of the transformation layer θkT and the local model θkL . Fig-
ure 2 shows the detailed procedure of learning θk including
θkT . Specifically, a client k learns an extended local model via
solving the following optimization problem in round r:

min
θr

k

1
|Dk| ∑

(xi,yi)∈Dk

l(θr
k,xi,yi), (2)

where l(θr
k,xi,yi) is the loss of the extended local model θr

k
for a training sample (xi,yi). When solving the optimization
problem, the local model θr

kL
is initialized as the global model

θr and the transformation layer θr
kT

is initialized as the learnt
transformation layer θ

r−1
kT

in the previous round. After learn-
ing an extended local model, client k uploads the local model

Algorithm 2 LocalUpdate(k,θ)
Input: Client k and global model θ

Output: Local model θkL
1: θk ← θkT ⊙θ ▷ obtain an extended local model
2: for each local iteration do
3: if LDP then
4: Take a random mini-batch B with sampling probability L/nk
5: for each (xi,yi) ∈ B do
6: gi← ∇l(θk,xi,yi) ▷ compute gradient
7: gi← gi/max(1, ||gi ||2

C ) ▷ clip gradient if needed

8: g← 1
|B| ∑i(gi +N (0,σ2C2I)) ▷ add noise

9: if CDP or DDP then
10: Take a random mini-batch B with size L
11: g← 1

|B| ∑(xi ,yi)∈B ∇l(θk,xi,yi) ▷ non-private gradient

12: θk ← θk−ηg
13: θkL ← get local model from θk
14: if DDP then
15: θkL ← DDPNoise(θkL ) ▷ add noise for DDP
16: return θkL ▷ upload local model

Algorithm 3 DDPNoise(θkL)

Input: Local model θkL
Output: Noisy local model θkL
1: θkL ← s ·min(1,C/||θkL ||2) ·θkL ▷ clip local model
2: θkL ←

1√
j HJθkL ▷ random rotation

3: M← min{(sC+
√

j)2,s2C2 + j/4+
√

2log(1/v) · (sC+
√

j/2)}
4: while ||θkL ||22 ≤M do
5: θkL ← stochastically round the coordinates of θkL

6: θkL ← θkL +Sk(0,s2µ/Kr) ▷ add noise drawn from Skellam distribution
7: return θkL

θr
kL

to the server. The server aggregates the local models as a
new global model for the next round.

Note that our transformation θr
kT

is different from a classic
neural network layer due to the following reasons. First, θr

kT
is personalized and not aggregated by the server. The purpose
of personalization is to tame client heterogeneity. Second, θr

kT
is initialized to be identity transformation in round zero, i.e.,
θ0

kT
(x) = x. Intuitively, we adopt this initialization setting be-

cause an identity transformation preserves the original data’s
features. We will discuss different initializations in Section 4.

3.3 Differentially Private Transformation

The transformation θkT that we introduced so far is personal-
ized to tame heterogeneity, but not yet to be combined with
DP. In this section, we describe how to combine our person-
alized transformation with each of the three DP variants in
PRIVATEFL. Algorithm 1 and Algorithm 2 show the pseudo-
code of PRIVATEFL on the server and client, respectively.
Next, we describe them separately.

Server (Algorithm 1). The server first randomly initializes
the global model θ0. In each round, the server randomly se-
lects a subset of Ks clients and asks each of them to compute a
local model. In LDP, the server takes the average of the clients’
local models as a new global model (Line 7), following Fe-
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Table 1: Impact of transformation function on the accuracy of
the global model and average Earth Mover’s Distance (EMD)
between the clients’ local training loss distributions in PRI-
VATEFL.

linear transformation non-linear transformation

function accuracy EMD function accuracy EMD

one-to-one αx+β 0.892 0.220 Sigmoid(αx+β) 0.457 0.411

Tanh(αx+β) 0.613 0.393

many-to-one Conv2d(x) 0.829 0.272 αx2 +β 0.137 0.142

ReLU(αx+β) 0.421 0.419

dAvg. In DDP, the server aggregates the clients’ local models
using a particular aggregation rule (Line 10), which the au-
thors of DDP called secure aggregation. In CDP, the server
calculates the norm of each local model update (Line 12),
takes the median of the norms (Line 13), uses the median
norm to clip the local model updates if needed, and adds
noise to the average clipped local model update before using
it to update the global model (Line 14). The norm bound is
the median value which follows the original CDP paper [15].
Note that privacy protection is ensured because the server in
CDP is trustworthy.

Client (Algorithm 2). Given the current global model, a
client aims to learn a local model and a personalized data trans-
formation simultaneously. Specifically, a client first initializes
an extended local model via concatenating its transformation
layer learnt in the last round and the current global model
(Line 1). Then, the client iteratively updates its extended local
model. In each iteration, for LDP, the client samples a mini-
batch of its training data, computes the gradient of the loss
function for each sampled training sample, clips the gradient
if needed, adds noise to the clipped gradient, and uses the
average noisy, clipped gradient of the mini-batch to update
the extended local model. For DDP or CDP, the client uses
the average gradient of a mini-batch to update the extended
local model in each iteration, following the standard stochas-
tic gradient descent. After learning an extended local model,
the client obtains the local model part (Line 13). In LDP and
CDP, the client uploads the local model to the server. In DDP,
the client adds noise to the local model using Algorithm 3
and uploads the noisy local model to the server.

DP Guarantee. PRIVATEFL-LDP ensures (ε,δ)-DP for
each extended local model, which includes both transforma-
tion layer and local model. Specifically, each client learns an
extended local model using DP-SGD and thus an extended
local model achieves (ε,δ)-DP. Therefore, the final global
model also achieves (ε,δ)-DP. PRIVATEFL-DDP ensures
each local model achieves DP using DDP and thus the global
model θ is differentially private. PRIVATEFL-CDP ensures
the global model θ is differentially private via adding noise to
the aggregation using CDP, though the local models are not
differentially private. Therefore, PRIVATEFL-LDP (or DDP

Figure 3: Impact of different transformation functions on the
clients’ average EMD in PRIVATEFL as the clients’ local
training data heterogeneity varies.

or CDP) has the same DP guarantee as FedAvg+LDP (or DDP
or CDP).

3.4 Compatibility with Existing Approaches

One advantage of PRIVATEFL is that it is compatible—and
can be combined—with existing utility improvement ap-
proaches for both DP and FL. Essentially, PRIVATEFL pro-
vides a data transformation upon training data, which can
be used together with other approaches. We use two exam-
ples for illustration. First, consider state-of-the-art work [44]
that uses a feature extractor (called encoder) pre-trained on
public dataset to improve DP utility. PRIVATEFL can use a
pre-trained encoder to extract features of the training inputs
and treat them as new training inputs. Then, we can apply PRI-
VATEFL on the new training inputs. Second, consider existing
personalized FL [19, 26], especially personalized FL with DP,
namely DP-SCAFFOLD [33]. Because PRIVATEFL performs
upon the training data and DP-SCAFFOLD performs on the
client updates, they are naturally compatible with each other.

4 Empirical Analysis of Transformation
In this section, we perform empirical analysis of possible
personalized data transformations and their impacts on PRI-
VATEFL’s performance. Specifically, we study two important
factors: the transformation function space and the parameter
space. Note that our analysis is by no means exhaustive and
the purpose is to show that the empirical results confirm our
intuition on the transformation choice.

Our empirical analysis adopts the following setting: LDP
with ε = 8 and δ = 1e−3, MNIST dataset, and 100 clients
(each client has data from two classes). Without any trans-
formation, the accuracy of the global model is 0.811 and
the average EMD (discussed in Section 2.3) between clients’
local training loss distributions is 0.369.

4.1 Transformation Function Space Analysis

We first analyze different transformation functions and com-
pare their effectiveness in decreasing client heterogeneity and
improving model accuracy in PRIVATEFL. Since the trans-
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Table 2: Testing accuracy of the global model in PRIVATEFL
when α and β have different free dimensions.

β = 0 β ∈ Rd β ∈ Rn×n×d

α = 1 0.811 0.865 0.841
α ∈ Rd 0.862 0.876 0.892
α ∈ Rn×n×d 0.849 0.863 0.802

formation function space is infinite, we have to choose a
limited set of popular functions for experiments. Specifically,
we choose Polynomial, Sigmoid, Conv2d (we use kernel size
of 7× 7), and Tanh, and compare their performance with a
linear transformation (αx+β). Note that we represent a train-
ing input x as a n× n× d tensor, where n is the image size
and d is the number of channels (3 for color image and 1 for
gray image). α and β are also n×n×d tensors. αx represents
element-wise product between α and x. Note that the parame-
ters of a transformation function are automatically learnt in
PRIVATEFL.

Results. Table 1 shows the impact of different transforma-
tion functions on the accuracy of the global model and clients’
average EMD, while Figure 3 shows the impact of different
transformation functions on the clients’ average EMD when
the clients’ local training data heterogeneity varies, i.e., each
client has 2, 4, 6, 8, or 10 classes of data. We observe that
linear transformation αx+β achieves the best results, i.e., the
accuracy is the largest and the average EMD is small. We
note that the transformation αx2 +β achieves stable average
EMD as the clients’ local training data heterogeneity varies,
and it achieves smaller EMD than the linear transformation
when the clients’ local training data are highly non-i.i.d (see
Figure 3). However, αx2+β substantially sacrifices the model
accuracy, e.g., accuracy reduces to 0.137 in Table 1. This is
because such transformation dramatically ruins the features,
which reduces clients’ heterogeneity but also makes the fea-
tures useless.

Intuitive Explanation. Linear transformation better pre-
serves features in the training samples and at the same time
reduces heterogeneity introduced by DP. Consider that there
exists a manifold that separates different classes of the origi-
nal training data before transformation. Linear transformation
shifts the manifold and keeps the original separability of dif-
ferent classes. As a high-level illustration, we show some
transformed samples in Appendix B. By contrast, non-linear
transformation distorts the manifold and distances between
transformed samples. Specifically, activation functions like
Tanh and Sigmoid regularize the range of feature values and
reduce the original data’s feature values. Similarly, one-to-
one transformation better preserves features of original train-
ing data. Consider the aforementioned manifold separating
classes. Many-to-one transformation distorts the manifold
and may map samples of different classes to the same data

Figure 4: Testing accuracy of the global model in PRIVATEFL
when α and β have different initializations.

point. More specifically, Conv2d(x) maintains the correlation
of features but loses some of them via convolution operation.

4.2 Transformation Parameter Space Analysis

After we determine that linear transformation works better
than other alternatives, we then explore the parameter space of
linear transformation, which includes parameter dimensions
and initial values.

4.2.1. Parameter Dimension. Table 2 shows the global
model’s average testing accuracy with different free dimen-
sions of parameters α and β. Specifically, α = 1 (or β = 0)
means that each element of α is 1 (of β is 0). α ∈ Rd (or
β ∈ Rd) means that each n× n matrix of α (or β), which
corresponds to an image channel, shares the same value. In
other words, α or β has d free parameters. α ∈ Rn×n×d (or
β ∈ Rn×n×d) means that each element of α (or β) is a free
parameter, leading to dn2 free parameters for α (or β). We ob-
serve that α ∈ Rd and β ∈ Rn×n×d achieve the best accuracy.

Intuitive Explanation. There is a tradeoff between param-
eter dimension size and the model’s performance under DP +
FL. On one hand, prior work [34] shows that a DP model’s
performance decreases as the parameter size increases be-
cause the DP noise is related to

√
#parameters. On the other

hand, a larger parameter dimension can better shift the train-
ing data distribution and tame client heterogeneity. Therefore,
our finding shows that a channel-wise α and a pixel-channel-
wise β, i.e., a parameter dimension in between, works the best
among different alternatives.

4.2.2. Parameter Initialization. Figure 4 shows the global
model’s testing accuracy with different initial values of α and
β. Specifically, we assign both parameters’ initial values in
the range [-1,1] with a 0.2 step size. PRIVATEFL achieves
the highest accuracy when α = 1 as the initial value, and the
accuracy starts to decrease as α approaches 0 and then in-
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Table 3: Default settings for architectures and hyperparameters of PRIVATEFL on different datasets.

Dataset DP architecture # clients # rounds sample rate (ε,δ) η batch size

MNIST LDP/CDP 3-layer DNN 100 150 1 (8, 1e-3) 1e-1/5e-3 64
Fashion-MNIST LDP/CDP 3-layer DNN 100 150 0.3 (8, 1e-3) 1e-1/5e-3 64

EMNIST LDP/CDP 3-layer DNN 100 100 0.3 (8, 1e-3) 1e-1 64
CH-MNIST LDP/CDP AlexNet 40 30/150 0.8 (8, 1e-3) 1e-1/1e-4 64
CIFAR-10 LDP/CDP ResNet 100 150/60 1 (8, 1e-3) 1e-1/5e-4 64/16
CIFAR-100 LDP/CDP CLIP + 1-layer DNN 100 20 1 (8, 1e-3) 1e-1 4/250

Purchase-100 LDP/CDP 4-layer DNN 50 580/150 0.1 (8, 1e-3) 1e-1/5e-3 64

creases as it approaches -1. PRIVATEFL achieves the highest
accuracy when β = 0 as the initial value, and the accuracy
starts to decrease as it moves either to 1 or -1.

Intuitive Explanation. Identity transformation preserves
original features of the training samples and that is why it
works the best as the initial parameters. Instead, assigning
random values to initialize both α and β makes a model less
likely to learn true features because the randomness arbitrarily
distorts features of training samples.

5 Implementation and Experimental Setup
Implementation. We implement PRIVATEFL using Python
3.8. Our implementation is open-source at this repository
(https://github.com/BHui97/PrivateFL). We follow Py-
Torch Opacus 1.1.2 [3] to implement LDP, previous work [1]
to implement CDP, and TensorFlow Federated 0.24.0 to im-
plement DDP [2]. We use the moment accountant [40] to com-
pute privacy budget for LDP, CDP, and DDP. All experiments
are performed using two GeForce RTX 3090 graphics cards
(NVIDIA). Our evaluation mainly adopts two metrics: testing
accuracy of the global model and EMD between clients’ local
training loss distributions.

Experimental Setup. We use multiple benchmark datasets
following previous DP work [34, 44], i.e., MNIST, Fashion-
MNIST, and CIFAR-10. In addition, we also use EMNIST (a
popular FL dataset), CH-MNIST (a medical dataset), CIFAR-
100 (a challenging dataset with 100 classes), and Purchase-
100 (a non-image dataset). Appendix C shows more details
about the datasets. We follow the state-of-the-art personalized
FL work [39] to assign training data to clients. Specifically,
we first choose N classes for each client uniformly at random.
Then, we assign pk,c

∑ pk,c
of the training samples in class c to

each client k whose chosen classes contain c, where pk,c is
a random number in the range (0.4,0.6). Our default data
distribution adopts N = 2 following previous work [31, 39].
Table 3 shows other default parameter settings, which we
adopt in experiments unless otherwise mentioned.

We use FedAVG as our default aggregation rule. We follow
previous works [15,31] to set the default privacy budget (ε,δ)
as (8,1e− 3). By default, we use one local training epoch,
i.e., the number of local training iterations is |Dk|

|B| , where |Dk|
is the local training dataset size of client k and |B| is the batch

size. The noise multiplier is calculated by the Opacus RDP
accountant given the number of training rounds, sample rate,
target ε, and target δ. For DDP, we evaluate on EMNIST fol-
lowing the setting in the original paper [5]. We also evaluate
different ε values, i.e., [2, 4, 6]. Since ε depends on the num-
ber of training rounds, we use different number of training
rounds for different ε values. In particular, for the considered
ε values, we use [60, 80, 100] training rounds for MNIST, [60,
80, 100] for Fashion-MNIST, [30, 50, 60] for EMNIST, [10,
15, 25] for CH-MNIST, [280, 400, 500] for Purchase-100, [30,
40, 50] for CIFAR-10, and [20, 20, 20] for CIFAR-100.

6 Evaluation
We answer the following Research Questions (RQs).
• [RQ1] How does PRIVATEFL improve LDP, CDP, and DDP

on FedAVG and personalized FLs?
• [RQ2] What is the performance of existing DP-improving

methods on FL, and how does PRIVATEFL further improve
them as an add-on method?

• [RQ3] Why can PRIVATEFL improve FL’s accuracy under
DP?

• [RQ4] How does different client data distribution affect the
performance of PRIVATEFL?

• [RQ5] How does different number of clients affect the per-
formance of PRIVATEFL?

• [RQ6] How does PRIVATEFL perform in cross-device FL?

6.1 RQ1: FL+DP Accuracy Improvement

In this Research Question, we show that PRIVATEFL can
improve FL model’s accuracy with LDP, CDP, and DDP. Our
evaluation starts from FedAVG [28] and then comes to two
personalized FL, namely FedBN [26] and SCAFFOLD [33].

6.1.1. Differentially Private FedAVG. We first compare Fe-
dAVG and PRIVATEFL on both image and non-image datasets
for LDP, CDP, and DDP. For LDP and CDP, we adopt the set-
tings in Table 3. For DDP, we follow exactly the same setting
as the original paper [5]. That is, we only evaluate DDP on
EMNIST. We follow their setting to assign the training data
to 3,400 clients and use a sample rate of 0.03 during training.

LDP. Figure 5 shows the testing accuracy of different meth-
ods when the privacy budget ε varies. First, PRIVATEFL-LDP
improves FedAVG-LDP’s accuracy by 2.3% to 10.2% on im-
age dataset (6.3% on average), and by 11.4%–20.5% on a
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(a) MNIST (b) FashionMNIST (c) EMNIST

(d) Purchase-100 (e) CH-MNIST (f) CIFAR-10

Figure 5: [RQ1-1] Testing accuracy comparison between PRIVATEFL and FedAVG + DP with different privacy budgets.

Table 4: [RQ1-1] Testing accuracy comparison of DDP [5]
and PRIVATEFL-DDP with different privacy budgets.

EMNIST ε = 2 ε = 4 ε = 6 ε = 8

DDP [5] 0.691 0.725 0.776 0.785
PRIVATEFL-DDP 0.776 0.806 0.839 0.845

non-image dataset, i.e., particularly Purchase-100 (14.5% on
average). Second, we observe a big improvement on Purchase-
100. The reasons are two-fold. On one hand, the feature val-
ues of Purchase-100 are boolean, which are easily perturbed
by random noise, leading to more performance degradation
(and hence the followup improvement). On the other hand, the
Purchase-100 dataset has 100 classes, leading to more training
data heterogeneity compared with other datasets. Third, the
accuracy gap between PRIVATEFL-LDP and FedAVG-LDP
becomes larger when ε is smaller on majority of the datasets.
This result aligns with our motivation example, i.e., Figure 1a:
DP introduces more heterogeneity among the clients when ε

is smaller because the noise is larger.

CDP. Figure 5 also shows that PRIVATEFL-CDP improves
FedAVG-CDP’s accuracy by 3.4%–32.2% on image dataset
(12.1% on average) and by 26.8%–34.4% on Purchase-100
(30.4% on average). First, a big improvement on Purchase-
100 still holds. Second, compared with LDP, PRIVATEFL-
CDP brings a bigger improvement over FedAVG-CDP on
average. The reason is that CDP does not require adding
noise on the personalized data transformation. Thus, it is
more effective to mitigate the heterogeneity compared with
LDP that adds noise on the transformation.

Table 5: [RQ1-2] Testing accuracy of (differentially private)
personalized FL methods and their combinations with PRI-
VATEFL. Note that DP-SCAFFOLD is only compatible with
LDP but not CDP. PP-SGD is only compatible with CDP but
not LDP.

DP FL ε = 2 ε = 4 ε = 6 ε = 8

CDP

FedBN [26] 0.712 0.827 0.837 0.865
FedBN+PRIVATEFL 0.829 0.916 0.934 0.938

PP-SGD [6] 0.222 0.365 0.607 0.898
PP-SGD+PRIVATEFL 0.228 0.394 0.651 0.924

LDP

DP-SCAFFOLD [33] 0.306 0.448 0.560 0.634
DP-SCAFFOLD+PRIVATEFL 0.531 0.557 0.652 0.691

FedGN (a variant of FedBN [26]) 0.672 0.723 0.751 0.802
FedGN+PRIVATEFL 0.784 0.843 0.874 0.893

DDP. Table 4 shows that PRIVATEFL-DDP improves
DDP’s accuracy by 6.0%–8.5% on EMNIST dataset (7.2%
on average) with different privacy budgets. The reason is that
DDP adds local noise to each client, thus introducing client
heterogeneity. We also observe a bigger improvement when ε

is smaller. The reason is the same as we discussed previously,
i.e., a smaller ε requires more noise thus introduces more
heterogeneity. We note that the accuracy is generally lower
than LDP/CDP because the DDP setting has 3,400 clients as
opposed to 100 clients for the experiments on LDP/CDP.

We also found that in the same FL settings, DDP and CDP
achieve similar accuracy. Thus, we mainly focus on LDP and
CDP in the rest of our evaluation unless otherwise mentioned.

6.1.2. Differentially Private Personalized FL. Table 5
shows the accuracy of (differentially private) personalized
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Table 6: [RQ2-1] Testing accuracy of different methods on
CIFAR-10 and CIFAR-100 when different pre-trained en-
coders are available. ε = ∞ indicates non-private training.

Pretrained DP Method ε = 2 ε = 4 ε = 6 ε = 8 ε = ∞

C
IF

A
R

10

CDP
FedAVG 0.416 0.497 0.526 0.529 0.865
DN [44] 0.480 0.549 0.562 0.579 0.911

ResNeXt on DN+PRIVATEFL 0.812 0.876 0.889 0.892 0.939
CIFAR-100

LDP
FedAVG 0.369 0.429 0.484 0.504 0.865
DN [44] 0.402 0.526 0.564 0.598 0.911

DN+PRIVATEFL 0.816 0.860 0.874 0.880 0.939

CDP
FedAVG 0.438 0.496 0.556 0.562 0.854
DN [44] 0.443 0.495 0.556 0.562 0.869

SimCLR on DN+PRIVATEFL 0.836 0.854 0.866 0.883 0.934
ImageNet

LDP
FedAVG 0.322 0.417 0.493 0.516 0.854
DN [44] 0.349 0.429 0.491 0.507 0.869

DN+PRIVATEFL 0.724 0.805 0.816 0.842 0.934

CDP
FedAVG 0.861 0.870 0.896 0.902 0.925

CLIP on DN [44] 0.861 0.882 0.895 0.905 0.927
public data DN+PRIVATEFL 0.933 0.945 0.953 0.957 0.961

(400 million)
LDP

FedAVG 0.761 0.780 0.797 0.827 0.925
DN [44] 0.763 0.772 0.795 0.821 0.927

DN+PRIVATEFL 0.867 0.882 0.899 0.919 0.961

C
IF

A
R

10
0

CDP
FedAVG 0.021 0.023 0.031 0.036 0.499
DN [44] 0.014 0.025 0.038 0.041 0.512

SimCLR on DN+PRIVATEFL 0.560 0.612 0.628 0.644 0.802
ImageNet

LDP
FedAVG 0.064 0.072 0.078 0.103 0.499
DN [44] 0.082 0.095 0.103 0.105 0.512

DN+PRIVATEFL 0.682 0.711 0.716 0.732 0.802

CDP
FedAVG 0.023 0.026 0.048 0.062 0.635
DN [44] 0.015 0.025 0.042 0.068 0.649

CLIP on DN+PRIVATEFL 0.594 0.663 0.674 0.774 0.839
public data

LDP
FedAVG 0.345 0.413 0.423 0.435 0.635

(400 million) DN [44] 0.337 0.416 0.438 0.442 0.649
DN+PRIVATEFL 0.711 0.744 0.758 0.768 0.839

FLs and their combinations with PRIVATEFL. We choose
the same datasets, number of clients, and data distributions
as those used in the original papers. For example, we use
MNIST with 100 clients and two classes per client for DP-
SCAFFOLD [33] and FedBN [26]. Similarly, we use EM-
NIST for PP-SGD [6] following the original paper’s setting.
Note that DP-SCAFFOLD is only applicable to LDP but not
CDP, while PP-SDG is only applicable to CDP but not LDP
because the personalization is not protected by DP. In addi-
tion, we replace the batch normalization (BN) in FedBN with
group normalization (GN) under LDP following the imple-
mentation of Pytorch Opacus because BN does not work for
DP. The variant is thus called FedGN.

We observe that PRIVATEFL can further improve accuracy
of personalized FL methods for both CDP and LDP. For CDP
and personalized FL, PRIVATEFL improves model’s accu-
racy by 0.6%–11.7% with an average of 6.01%. For LDP
and personalized FL, PRIVATEFL improves model’s accuracy
by 5.7%–22.5%. This is because personalized FL and PRI-
VATEFL capture different types of heterogeneity (e.g., local
training data heterogeneity and DP-induced heterogeneity),
and PRIVATEFL can be combined with personalized FL to
further improve their accuracy. Take PP-SGD+PRIVATEFL
as an example. PP-SGD separates local and global models,
but DP-induced heterogeneity still exists in the global model.

Table 7: [RQ2-2] Testing accuracy when different activation
functions are used.

DP Method ε = 2 ε = 4 ε = 6 ε = 8

M
N

IS
T

CDP
ReLU 0.612 0.753 0.788 0.797

Tanh [34] 0.620 0.741 0.784 0.793
Tanh+PRIVATEFL 0.701 0.783 0.884 0.923

LDP
ReLU 0.379 0.496 0.511 0.548

Tanh [34] 0.702 0.734 0.769 0.812
Tanh+PRIVATEFL 0.743 0.831 0.852 0.895

E
M

N
IS

T

DDP [5]
ReLU 0.691 0.725 0.747 0.761

Tanh [34] 0.679 0.732 0.736 0.754
Tanh+PRIVATEFL 0.747 0.793 0.825 0.847

Table 8: [RQ2-3] Testing accuracy of per-round clip and per-
step clip for CDP on MNIST.

ε = 2 ε = 4 ε = 6 ε = 8

Per-round-clip 0.641 0.745 0.796 0.827
Per-step-clip [29] 0.652 0.763 0.774 0.829

Per-step-clip+PRIVATEFL 0.726 0.804 0.892 0.911

Therefore, PRIVATEFL can be used to help PP-SGD reduce
such heterogeneity in the global model.

[RQ1] Take-away: PRIVATEFL improves model’s accu-
racy under different DP variants and can be combined
with personalized FLs to further improve accuracy.

6.2 RQ2: Combination with DP-improving Methods

In this Research Question, we show that PRIVATEFL comple-
ments existing methods to improve utility of DP and can be
combined with them to further improve DP’s utility.

6.2.1. Pre-trained Encoder. Previous works [27,44] showed
that an encoder (i.e., a feature extractor) pre-trained on pub-
lic data can be used to build more accurate differentially
private classifiers. Specifically, we can use the encoder to
extract features and train a differentially private linear classi-
fier based on the features. We consider multiple pre-trained
encoders including a ResNeXt classifier [50] pre-trained on
CIFAR-100, a SimCLR encoder [8] pre-trained on unlabeled
ImageNet, and CLIP [36], which is the state-of-the-art en-
coder pre-trained on 400 million image-text pairs. Given a
pre-trained encoder, each client uses it to extract features for
its training/testing inputs. Then, FL (e.g., FedAVG) trains a
linear classifier based on the extracted features. Data normal-
ization (DN) [44] further normalizes the features before using
them for training. The mean and variance in DN for ResNeXt
are collected from CIFAR-100, while for SimCLR and CLIP,
both values are set as 0.5 following the DN paper.

Table 6 shows the accuracy of FedAVG, DN, and DN +
PRIVATEFL in different settings. First, DN + PRIVATEFL
consistently achieves the best accuracy, indicating that PRI-
VATEFL can be combined with existing pre-trained encoder
based methods to further improve DP’s utility. The reason
is that FedAVG and DN do not consider DP-induced hetero-
geneity when training linear classifiers based on the extracted
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(a) [MNIST] Heterogeneity (b) [MNIST] Convergence (c) [CIFAR-10] Heterogeneity (d) [CIFAR-10] Convergence

Figure 6: [RQ3] Illustration on why PRIVATEFL can improve the accuracy of FL+DP. (a)(c): Average EMD between the clients’
local training loss distributions when each client has 2, 4, 6, 8, or 10 classes of data. (b)(d): testing loss of the global model as a
function of training round. We use 3-layer DNN for MNIST and pre-trained CLIP encoder plus 1-layer DNN for CIFAR-10.

features. Interestingly, except for ResNext where DN can
utilize the statistics collected from CIFAR-100, DN often
achieves lower accuracy than FedAVG.

Second, PRIVATEFL can significantly improve the accu-
racy of private training when a pre-trained encoder is available,
and reduce the accuracy gap between private and non-private
training. Take CIFAR-10 as an example, the accuracy gap
between non-private and private DN+PRIVATEFL with CDP
(ε = 8) ranges from 0.4% (CLIP) to 5.1% (SimCLR). In com-
parison, the accuracy gap between non-private and private
DN with CDP (ε = 8) ranges from 2.2% (CLIP) to 33.2%
(ResNeXt). Third, CLIP consistently achieves the highest ac-
curacy improvement. The reason is that CLIP is pre-trained on
the largest dataset, which enables it to extract better features,
compared to the other two pre-trained encoders.

6.2.2. Activation Function Substitution. Papernot et
al. [34] shows that Tanh activation function can improve the
accuracy of a model trained by DP-SGD. We follow the pa-
per to replace ReLU activation function as Tanh in FedAVG.
Table 7 shows the testing accuracy when different activation
functions are used. First, we observe that Tanh introduces
substantial accuracy improvement for LDP while minimal im-
provement for CDP/DDP. In some cases, Tanh even reduces
the accuracy by around 1% for CDP/DDP. The reason is that
Tanh can avoid gradient explosion for DP-SGD, which is used
by LDP, and thus improves accuracy for LDP. However, CDP
and DDP do not add noise during local training, and thus their
performance does not explicitly depend on activation func-
tions. Second, Tanh+PRIVATEFL consistently achieves the
best accuracy, indicating that PRIVATEFL can be combined
with existing activation function based methods to further
improve DP’s utility.

6.2.3. Per-round Clip vs. Per-step Clip for CDP. McMa-
han et al. [29] shows that we can improve the accuracy of
CDP when a client clips its local model in each local training
step. We apply this method to FedAVG+CDP. Table 8 shows
the testing accuracy of per-round clip, per-step clip, and the
combination of PRIVATEFL and per-step clip on MNIST. Our
results align with McMahan et al., i.e., per-step clip improves

(a) MNIST (b) CIFAR-10

Figure 7: [RQ3] DP-induced heterogeneity vs. accuracy

accuracy for CDP. Moreover, PRIVATEFL can be combined
with per-step clip to further improve accuracy.

[RQ2] Take-away: PRIVATEFL can be combined with
existing DP utility improvement methods to further
boost utility by reducing DP-induced heterogeneity.

6.3 RQ3: Heterogeneity Reduction

In this Research Question, we explore why PRIVATEFL can
improve the accuracy of DP in FL. In particular, we show
that PRIVATEFL reduces additional heterogeneity introduced
by DP, thus improving FL accuracy. We use two metrics to
show the heterogeneity reduction. First, we use the average
EMD between the clients’ local training loss distributions as
discussed in Section 2.3. Second, we use the testing loss of
the global model. Our evaluation includes scenarios without
and with a pre-trained encoder, i.e., a 3-layer DNN for MNIST
trained with DP from scratch, and 1-layer DNN with a pre-
trained CLIP encoder for CIFAR-10.

Figures 6a and 6c show the EMD of different methods
when the training data heterogeneity changes from two classes
to 10 classes per client. Our results align with our earlier mo-
tivations, i.e., PRIVATEFL reduces DP-induced heterogeneity
and thus improves accuracy. Figure 7 explicitly shows the
accuracy as a function of average EMD. In these experiments,
each client has two classes of data and we vary the privacy
budget ε as 8, 6, 4, and 2. For each privacy budget, we ob-
tain an average EMD and accuracy for a method. Thus, we
obtain multiple accuracy-EMD pairs for each method, which
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Table 9: [RQ4] Testing accuracy of FedAVG and PRIVATEFL
with LDP and CDP on MNIST and CIFAR-10 datasets when
each client has 2, 4, 6, 8, or 10 (i.i.d) classes of data.

DP Method 2 4 6 8 10 (i.i.d)

M
N

IS
T CDP

FedAVG 0.811 0.831 0.852 0.871 0.892
PRIVATEFL 0.922 0.911 0.909 0.904 0.906

LDP
FedAVG 0.793 0.815 0.842 0.851 0.855

PRIVATEFL 0.886 0.882 0.876 0.868 0.872

C
IF

A
R

-1
0

CDP
FedAVG 0.892 0.903 0.907 0.916 0.924

PRIVATEFL 0.949 0.942 0.936 0.933 0.932

LDP
FedAVG 0.815 0.823 0.844 0.852 0.858

PRIVATEFL 0.911 0.889 0.892 0.874 0.883

are shown in Figure 7. Our results clearly show that accuracy
is higher when heterogeneity (measured by EMD) is less se-
vere. Second, Figure 6b and Figure 6d show that PRIVATEFL
makes the global model converge faster, i.e., the testing loss
decreases faster, which further explains why reducing hetero-
geneity improves accuracy.

Third, Figures 6a and 6c show that LDP introduces larger
heterogeneity than CDP. The reason is that LDP clips gradi-
ents and adds noise during local training of each local model,
while CDP does both steps on the trained local models. Fig-
ures 6b and 6d also show that the testing loss for LDP is
larger than CDP, which again suggests that the heterogeneity
introduced by LDP can decrease model’s accuracy more.

[RQ3] Take-away: PRIVATEFL improves the accuracy
for DP in FL because it can decrease the heterogeneity
introduced by DP among the clients.

6.4 RQ4: Client Data Heterogeneity

In this Research Question, we explore how the clients’ local
training data heterogeneity affects the performance of PRI-
VATEFL. We use MNIST and CIFAR-10 datasets. We set the
privacy budget (ε = 8,δ = 1e−5) to show results on a new
privacy budget since our prior experiments are based on the
default privacy budget. The other parameters are the same as
those in Table 3. We assign 2, 4, 6, 8, or 10 classes of data to
each client, where 10 classes of data per client indicate i.i.d.
We use a pre-trained CLIP plus 1-layer DNN for CIFAR-10
and a 3-layer DNN for MNIST trained from scratch.

Table 9 shows the testing accuracy of FedAVG and PRI-
VATEFL in CDP and LDP when each client has different
classes of training data. We have three observations. First,
PRIVATEFL outperforms FedAVG consistently from non-i.i.d.
to i.i.d. for both CDP and LDP with an average accuracy im-
provement of 4.7%. Second, PRIVATEFL under both CDP and
LDP performs the best in the setting with 2 classes per client
and the accuracy drops at most 3.7% when the clients’ local
data distribution becomes i.i.d. As a comparison, FedAVG
performs the best in an i.i.d. setting and its accuracy drops
at most 9.7% when the data distribution becomes non-i.i.d.

Table 10: [RQ5] Testing accuracy of FedAVG and PRI-
VATEFL with LDP and CDP on MNIST and CIFAR-10
datasets when the system has 50, 100, 200, or 500 clients.

DP Method 50 100 200 500

M
N

IS
T CDP

FedAVG 0.716 0.787 0.733 0.664
PRIVATEFL 0.891 0.912 0.866 0.843

LDP
FedAVG 0.866 0.802 0.732 0.664

PRIVATEFL 0.892 0.883 0.832 0.806

C
IF

A
R

-1
0

CDP
FedAVG 0.814 0.882 0.866 0.836

PRIVATEFL 0.942 0.949 0.941 0.937

LDP
FedAVG 0.815 0.818 0.865 0.843

PRIVATEFL 0.913 0.907 0.916 0.914

The reason is that PRIVATEFL can decrease the heterogene-
ity introduced by LDP and training data itself, and thus the
accuracy gets improved more when the clients’ data is more
non-i.i.d. Third, PRIVATEFL brings more accuracy improve-
ment on LDP than CDP in the i.i.d. setting, because LDP
incurs heterogeneity even under the i.i.d. setting.

[RQ4] Take-away: PRIVATEFL consistently improves
accuracy when the clients’ local training data has differ-
ent heterogeneity.

6.5 RQ5: Number of Clients

In this Research Question, we explore how different number
of clients (ranging from 50 to 500) affects the performance of
PRIVATEFL. We use MNIST and CIFAR-10 datasets with the
default parameter settings except (ε = 8,δ = 1e− 5). Each
client has 2 classes of data. Model architectures are the same
as those in Section 6.4.

Table 10 shows the testing accuracy of FedAVG and PRI-
VATEFL when the number of clients varies. We observe that
PRIVATEFL consistently outperforms FedAVG for both CDP
and LDP especially when the system has more clients. For
instance, the accuracy gap between PRIVATEFL and FedAVG
increases from 2.6% with 50 clients to 14.2% with 500 clients
on MNIST for LDP. We believe this is partially because more
clients indicate more heterogeneity.

[RQ5] Take-away: PRIVATEFL consistently improves
the accuracy of FL under DP when the system has dif-
ferent number of clients.

6.6 RQ6: Cross-device FL

In this Research Question, we evaluate whether PRIVATEFL
can improve the accuracy of cross-device FL, e.g., each client
only participates in one or two training rounds. Our experi-
ment setting is as follows. We use the MNIST dataset with
the default parameter settings. Each client has two classes of
data. We train the global model for a total of 10 or 20 rounds
depending on whether each client participates in one or two
training rounds. The sample rate is 0.1 in each training round.
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Table 11: [RQ6] Testing accuracy of FedAVG and PRI-
VATEFL on MNIST for cross-device FL, where each client
participates in one or two training rounds.

DP FL Round ε = 2 ε = 4 ε = 6 ε = 8

CDP
FedAVG 1 0.421 0.545 0.563 0.612

2 0.483 0.619 0.641 0.653

PRIVATEFL 1 0.454 0.577 0.586 0.633
2 0.527 0.677 0.695 0.714

LDP
FedAVG 1 0.453 0.582 0.604 0.610

2 0.501 0.608 0.631 0.639

PRIVATEFL 1 0.502 0.592 0.628 0.644
2 0.529 0.640 0.683 0.728

Table 11 shows the accuracy of FedAVG and PRIVATEFL
for both LDP and CDP when the privacy budget ε varies. PRI-
VATEFL can improve the accuracy of FedAVG from 2.7% to
10.9% for both CDP and LDP under such a cross-device FL
setting. Note that the accuracy improvement of PRIVATEFL
is larger when each client participates in two training rounds.
The reason is that our personalized data transformation can
better fit the local training data and reduce DP-induced het-
erogeneity in such scenarios.

[RQ6] Take-away: PRIVATEFL improves the accuracy
of cross-device FL + DP.

7 Related Work
Federated Learning (FL). FL [21, 24, 45, 46, 52] is a col-
laborate learning setting that allows multiple clients to train a
model without sharing local training data. A global server is
to collect local model from each client then aggregate them
as the global model. Although there is no direct raw data
sharing between clients and server, FL is vulnerable to pri-
vacy attacks [7]. For instance, Geiping et al. [14] show that
a malicious server can recover clients’ training data via gra-
dient inversion attack; and Nasr et al. [32] propose that ma-
licious clients or server can launch membership inference
attacks. Apart from privacy leakage, data heterogeneity is
also a key challenge in FL. Achieving a good accuracy on
heterogeneous clients’ data in FL has been shown as a chal-
lenge [25, 38, 55]. Although there are existing personalized
FL methods [19, 26, 53, 54] addressing data heterogeneity
problem, they did not consider DP’s impacts.

Differential Privacy in FL. Differential privacy has been
applied in FL [15, 29, 31, 40, 43]. There are three kinds of dif-
ferential privacy applications in FL, local differential privacy
(LDP) [43, 47], central differential privacy (CDP) [15, 29],
and distributed differential privacy (DDP) [5, 10, 18]. LDP al-
lows each client to make its local model differentially-private
before sending it to the global server, e.g., clients can adopt
DP-SGD [4] locally so that they can have their own privacy
budgets. CDP requires a trustworthy server which makes the
global model differentially-private after receiving all local
models. DDP adds local noise after training and relies on

secure aggregation to achieve a comparable privacy guarantee
with CDP. However, both CDP and LDP cause significant
accuracy drop in FL as demonstrated by Naser et al. [31], and
DDP [5] has a similar performance with CDP as well as a
similar accuracy drop.

Recently, Noble et al. [33] combine LDP with existing per-
sonalized FL algorithm SCAFFOLD [19] to show accuracy
improvement on heterogeneous data. Stevens et al. [42] uti-
lize learning with error to improve communication efficiency
in DDP scenarios. PP-SGD [6] introduces a personalization
parameter to balance local learning without DP and global
learning with DP, thus improving the accuracy. As a compar-
ison, PP-SGD is only applicable to CDP because the local
personalization does not have DP guarantees. Furthermore,
PP-SGD’s utility improvement under CDP stems from person-
alization and therefore PRIVATEFL can further improve PP-
SGD’s performance by reducing DP-induced heterogeneity as
shown in our evaluation. In summary, PRIVATEFL addresses
the heterogeneity induced by DP and improves the accuracy
for LDP, CDP, DDP, and PP-SGD.

Differential Privacy in Centralized Learning. Differen-
tial privacy has been studied extensively in centralized learn-
ing [12, 13, 17, 48, 51]. Abadi et al. propose DP-SGD [4]
to make Stochastic Gradient Descent (SGD) differentially-
private via clipping and perturbing gradients during train-
ing. However, DP-SGD sacrifices accuracy compared with
SGD. Researchers have tried to address this issue both theo-
retically and empirically. Theoretically, Abadi et al. propose
moment accountant [4] to derive a tighter privacy budget; and
Mironov [30] propose Renyi-DP with a more strict upper-
bound of privacy budget. Empirically, Papernot et al. [34]
explore different activation functions, e.g., using Tanh instead
of ReLU as the activation function can improve accuracy in
DP; and Tramer et al. [44] and Liu et al. [27] show that an
encoder pre-trained on public data can be used as a feature
extractor to train more accurate differentially private clas-
sifiers. As we demonstrated in experiments, those methods
cannot address the DP-induced heterogeneity and thus our
PRIVATEFL can be combined with them to further improve
accuracy of FL+DP.

8 Conclusion
In this work, for the first time, we find that DP introduces
additional heterogeneity to the clients in FL, thus hampering
accuracy. Then, we show that personalized data transforma-
tion on the clients can mitigate the DP-induced heterogeneity
and thus improve the accuracy of differentially private FL
for different variants of DP including LDP, DDP, and CDP.
Moreover, linear transformation outperforms other alterna-
tives. Our personalized data transformation can be combined
with personalized FL methods and methods on improving ac-
curacy of DP to further improve the accuracy of differentially
private FL.
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Appendices
A Additional Motivation Experiments
We show additional motivation experiments when the clients’
local training data heterogeneity varies. We assume ten clients
with different levels of local training data heterogeneity, i.e.,
ranging from two to ten classes per client, which represents
different data distributions from non-i.i.d. to i.i.d. The privacy
budget ε is set as 8 and we train FL for 100 rounds.

Figure 8 shows the heterogeneity introduced by LDP/CDP
among the ten clients as the local training data heterogeneity
changes from non-i.i.d. to i.i.d. We observe that LDP/CDP
introduces additional heterogeneity no matter how the clients’
local training data are distributed. Moreover, LDP introduces
larger additional heterogeneity while CDP introduces smaller
additional heterogeneity as the clients’ local training data are
closer to i.i.d.

B Transformed Samples
Figure 9 shows several transformed samples on the ten clients
in training rounds [0 (original), 30, 70, 100] when linear trans-
formation is used, where the dataset is CIFAR-10 and the
detailed experimental setup is the same as those in Table 3.
Our linear transformation keeps the features of the samples
while changing pixel values to reduce clients’ heterogeneity.

Figure 10 shows transformed samples of MNIST and
Fashion-MNIST datasets when PRIVATEFL uses different
transformation functions. αx+β keeps the features of an im-
age, Sigmoid only remains the edge information, and Conv2d
blurs the images.

C Datasets
We use the following datasets in our evaluation:
• MNIST [23]. The MNIST dataset contains 60,000 28x28

grayscale hand-written digits images in 10 different classes.
We use 50,000 for training and 10,000 for testing.
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Figure 9: Transformed samples in CIFAR-10 during training in PRIVATEFL with linear transformation. The columns represent
the ten clients, and the rows represent training rounds [0 (original), 30, 70, 100] from top to bottom.

(a) x (b) αx+β (c) Sigmoid (d) Conv2d

Figure 10: Transformed samples on MNIST (first row) and
Fashion-MNIST (second row) datasets in the last training
round when PRIVATEFL uses different transformation func-
tions.

• Fashion-MNIST [49]. The Fashion-MNIST dataset con-
tains 70,000 28x28 grayscale images of fashion products in
10 different classes. We use 60,000 for training and 10,000
for testing.

• EMNIST [11]. The EMNIST dataset contains 280,000
28x28 grayscale hand-written digits images in 10 different
classes. We use 240,000 for training and 40,000 for testing.

• CH-MNIST [20]. The CH-MNIST dataset contains eight
classes of 5,000 histology tiles images (150x150) from
patients with colorectal cancer. We use 4,500 for training
and 500 for testing.

• CIFAR-10 [22]. The CIFAR-10 dataset contains 60,000
32x32 color images in 10 different classes. We use 50,000
for training and 10,000 for testing.

• CIFAR-100 [22]. The CIFAR-100 dataset contains 60,000
32x32 color images in 100 different classes. We use 50,000
for training and 10,000 for testing.

• Purchase-100. The Purchase-100 dataset contains 220,000
samples of 100 shoppers. It is a non-image dataset from
Kaggle’s “Aquired Valued Shoppers Challenge”. We fol-
low the data pre-processing in the previous work [41] and
use 176,000 samples for training and 44,000 samples for
testing.
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