
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Bypassing Tunnels: Leaking VPN Client Traffic
by Abusing Routing Tables

Nian Xue, New York University; Yashaswi Malla, Zihang Xia, and Christina Pöpper,
New York University Abu Dhabi; Mathy Vanhoef, imec-DistriNet, KU Leuven

https://www.usenix.org/conference/usenixsecurity23/presentation/xue

Bypassing Tunnels: Leaking VPN Client Traffic by Abusing Routing Tables

Nian Xue
New York University

Yashaswi Malla, Zihang Xia, Christina Pöpper
New York University Abu Dhabi

Mathy Vanhoef
imec-DistriNet, KU Leuven

Abstract
Virtual Private Networks (VPNs) authenticate and encrypt
network traffic to protect users’ security and privacy, and are
used in professional and personal settings to defend against
malicious actors, circumvent censorship, remotely work from
home, etc. It is therefore essential that VPNs are secure.

In this paper, we present two novel attacks that cause VPN
clients to leak traffic outside the protected VPN tunnel. The
root cause of both attacks is a widespread design flaw in how
clients configure the Operating System (OS) to route all traffic
through the VPN tunnel. This is typically done by updating
the system’s IP routing tables such that all traffic will first pass
through the VPN client. However, some routing exceptions
are added to ensure the system keeps functioning properly,
namely that traffic to the local network, and to the VPN server
itself, is sent outside the VPN tunnel. We show that by setting
up a Wi-Fi access point or by spoofing DNS responses, an
adversary can manipulate these exceptions to make the victim
send arbitrary traffic in plaintext outside the VPN tunnel. We
confirm our findings in practice by conducting 248 experi-
ments against 67 of the most representative VPN providers
on Windows, macOS, iOS, Linux, and Android. Our experi-
mental results reveal that a significant number (126 and 39)
and proportion (64.6% and 73.6%) of free, paid, open-source,
corporate, and built-in VPN clients are vulnerable to (variants
of) our two attacks respectively, suffering from leaky traffic.
We discuss countermeasures to mitigate the vulnerabilities
and confirm the effectiveness of selected defenses in practice.

1 Introduction

Virtual Private Networks (VPNs) were created to securely
connect different physical branches of a company over ex-
isting public networks such as the Internet [54]. Without a
VPN, companies would have to use private wired connections
between branches. A more cost-effective solution is using a
VPN, allowing one to establish a tunnel to securely send data,
and connect branches, over an untrusted network. Another
advantage is that VPNs allow employees to securely connect
from their homes to the private network of a business or orga-
nization. These days, VPNs are also used by Internet users to
send all traffic over the VPN tunnel. This is done to protect
online identities, hide IP addresses, circumvent censorship,
access blocked content, and perhaps most important, prevent
attackers from inspecting and manipulating the user’s traffic.

The security of open tunneling and VPN protocols has been
widely studied in various works. One of the first discoveries
was by Schneier and Mudge in 1998, who found cryptographic
flaws in the Point-to-Point Tunneling Protocol (PPTP) [53].
Researchers also discovered a host of other cryptographic
flaws in VPN protocols, with IPsec being a common target [3,
8, 9, 16, 17, 23]. However, the integration of these protocols
into real-world clients and platforms has not been widely
studied. Motivated by this, we found techniques to bypass
cryptographic protections and leak traffic in plaintext. As
a result, our attacks are independent of the cryptographic
protocol being used. Moreover, in contrast to the already-
known issue that badly configured VPN clients may leak DNS
or IPv6 traffic outside the VPN tunnel [30, 35, 47, 49], our
novel attacks allow an adversary to leak arbitrary IP traffic.

Recently there has also been a growing research focus on
the VPN ecosystem as a whole [35, 49], including how VPNs
are advertised and what users think about them [4, 20, 43].
One complexity is that the security of VPN software is highly
dependent on the implementation and configuration used by
specific vendors, making it non-trivial to gain a complete pic-
ture of the ecosystem. For instance, out of necessity, several
works focus on a specific platform [30, 56, 64, 65] or focus
on a specific protocol such as IPsec [3, 8, 9, 16, 17, 23]. To
gain a proper understanding of how widespread the vulnera-
bilities that we discovered are, a large-scale evaluation was
performed. We evaluated different versions of Windows, iOS,
macOS, Android, and Linux for a wide range of VPN soft-
ware, including free and paid clients, open-source clients, and
commercial clients. Our results indicate that none of the VPN
providers or clients are secure on all platforms.

The idea behind our novel attacks is to manipulate the
client into sending (selected) traffic outside the VPN tunnel,
meaning it will be leaked in plaintext. Under normal condi-
tions, the client’s routing table assures that all traffic generated
by the client will be sent through the VPN tunnel. However,
most clients add exceptions to their routing table to send the
following two types of traffic outside the VPN tunnel:

(1) Traffic sent to and from the local network; and

(2) Traffic sent to and from the VPN server.

The first rule assures that the local network remains accessible
while using the VPN, meaning the user can use the VPN
while simultaneously printing files, performing screen casting
to a local display, and so on. The second rule assures that

USENIX Association 32nd USENIX Security Symposium 5719

there is no routing loop, i. e., that already-encrypted VPN
packets do not undergo encryption again. Unfortunately, we
demonstrate that an adversary can manipulate these routing
exceptions such that arbitrary traffic will be sent outside the
VPN tunnel. First, an adversary can manipulate the IP address
range of the local network, causing leakage of Internet traffic.
Second, under the right conditions, an adversary can spoof
the IP address of the VPN server, again causing leakage of
(arbitrary) traffic due to the above routing exceptions.

The above two routing exceptions lead to two attack types,
which we call LocalNet and ServerIP attacks, respectively.
The main goal of these attacks is to leak traffic in plaintext,
but our attacks may also lead to the targeted blocking of traffic
while the VPN is being used. The LocalNet attacks assume
that the adversary can control the IP range assigned to the
local network where the victim situates, which is trivially fea-
sible if the adversary is a rogue Wi-Fi Access Point (AP). The
ServerIP attacks assume that the adversary can spoof DNS
replies, which is possible when the adversary acts as a rogue
AP or when the adversary controls a (core) router near the
victim. Our attacks are not computationally expensive, mean-
ing anyone with the appropriate network access can perform
them, and they are independent of the VPN protocol being
used. Overall, our attacks break the security and anonymity
that VPNs are expected to provide. Even if the victim is using
another layer of encryption such as HTTPS, our attacks reveal
which websites a user is visiting [46], which can be a signif-
icant privacy risk. Moreover, the leaked traffic can contain
sensitive data if plaintext HTTP is used, and our attack can
be used as a basis to subsequently attempt to attack HTTPS.

To summarize, our primary contributions are:
• We reveal security and privacy vulnerabilities in VPN

clients. These vulnerabilities are configuration-specific,
affect a large number of VPN apps, and result in our
LocalNet attacks and ServerIP attacks.

• We realize attack setups and evaluate which VPN clients
are vulnerable to our two attacks, by conducting a large
set of experiments against both desktop and mobile plat-
forms, covering Windows, macOS, and Linux, as well
as Android and iOS.

• We propose and discuss practical mitigations for both of
our novel attacks, and will make public the instructions
and scripts we used for conducting the attacks in order
to achieve replicability of the experiments [2].

Disclosure: We reported our findings to CERT/CC and to
affected VPN vendors for which we found security contact in-
formation. Further details can be found on our repository [2].

2 Background

In this section, we give an introduction to VPNs and explain
how they typically route IP traffic and configure DNS servers.

Internet

Target Internet
Resource

Network Access Server
from VPN Provider

Remote Device with
VPN Client enabled

VPN
Tunnel

VPN
Tunnel

Figure 1: Typical full-tunnel VPN configuration where the
client sends all traffic through the VPN server.

2.1 Virtual Private Networks

VPNs have attracted a large number of users, for instance,
31% of all internet users have at some point used a VPN [58].
The history of VPNs dates back to 1996 when the first VPN
protocol, called PPTP, was introduced by Microsoft [26, 53].
As time passed, VPNs grew into essential tools for staying
safe and secure online. Current features of VPNs go far be-
yond their original purpose: they can now secure Internet
connections, hide physical locations, evade government cen-
sorship, allow to access geo-blocked media content, prevent
malware and hacking, etc. VPNs can be classified in multi-
ple ways. For our attacks, the most important difference is
between split-tunnel and full-tunnel VPNs. In a split-tunnel
VPN, only a subset of all traffic will be sent through the en-
crypted tunnel. For instance, when a VPN is used to remotely
access the internal network of a company, the VPN client
is configured to only send traffic to the company network
over the VPN tunnel, while all other traffic is sent as normal
over the Internet. Split tunneling is also used to specify that
only selected apps will (not) use the VPN. In a full-tunnel
VPN, on the other hand, all client traffic is sent through the
tunnel, and the VPN server then forwards traffic to its final
destination (see Figure 1). In this paper, we will target VPNs
that are intended to be full-tunnel ones, but we will show how
they can be manipulated to still send traffic outside the VPN
tunnel.

To use VPNs, users have multiple options: they can use:
(1) the built-in VPN functionality of the OS; (2) a standalone
VPN client developed by a VPN provider; or (3) a 3rd-party
client such as OpenVPN Connect [44], Tunnelblick [57], or
Windscribe [63] which can load configuration files created by
a VPN provider. The behavior of the VPN client will depend
on exactly which software is used. Currently, most commer-
cial VPN providers offer a standalone client, which helps
users set up VPN connections in an easy manner. In addition,
a few VPN clients support only one OS, while others, like
Cisco AnyConnect [12], are available for multiple mainstream
operating systems across both desktop and mobile platforms.

When using a standalone or commercial VPN client, the
client will often pull configuration data from the remote VPN
provider’s server before creating the VPN tunnel. This config-
uration data can include a list of VPN servers from different
geographic areas, the IP addresses of these servers, the sup-

5720 32nd USENIX Security Symposium USENIX Association

[author@zbook ~]$ ip route

Default: all traffic is sent over the tun0 interface. This interface represents
the VPN tunnel. So by default all traffic goes through the VPN tunnel.
default via 10.8.0.1 dev tun0

Exception 1: local network traffic is directly sent to the destination
192.168.197.0/24 dev enp0s20f0u4 proto kernel scope link

Exception 2: traffic to the VPN server (176.126.240.111) is sent to the
router (192.168.197.34) so the VPN client can still reach the VPN server
176.126.240.111 via 192.168.197.34 dev enp0s20f0u4

Figure 2: Example of two VPN routing exceptions.

ported VPN protocols for each server, etc. Users can generally
decide which VPN protocol to adopt while creating the VPN
tunnel, with common options being OpenVPN, WireGuard,
or IPsec. As a result, the precise configuration of the client,
and whether it is vulnerable to (variants of) our attacks, may
depend on the chosen VPN server and protocol.

2.2 IP Routing Table and VPNs
When a VPN client is installed or started, the software will typ-
ically create a virtual network adapter that represents the VPN
tunnel. Any packets sent over this virtual network adapter
will be handled by the VPN client, which will encapsulate the
packets using the selected VPN protocol. The encapsulated
packets are then sent to the VPN server, where the plain-
text header of the encapsulated packets always contains the
IP addresses of the client and VPN server, and the real IP
destination address of the original packet remains hidden.

To forward all traffic through the tunnel, a typical approach
is to add a default route to the host’s IP routing table with as
the next hop the VPN’s virtual interface.1 Figure 2 shows an
example of this: a default rule is added that causes all traffic
to be sent over tun0, which is the VPN tunnel’s interface.
As a result, by default, all traffic is sent over the VPN tunnel
instead of the host’s physical interface so that outgoing traffic
is encrypted and authenticated by the VPN protocol.

However, as we will demonstrate in this work, in real-world
scenarios and on several operating systems, the IP routing
tables will also contain exceptions to send select traffic outside
the VPN tunnel. In particular, more specific rules are typically
added such that packets to the local network and to the VPN
server itself are sent outside the VPN tunnel.

2.3 Configuration of DNS Servers
After establishing the VPN tunnel, a secure VPN client will
configure a trusted DNS server. This is necessary because the
default DNS server provided by the local network cannot be
trusted. That is, without updating the DNS server, a malicious
local network, such as a rogue Wi-Fi hotspot, can trivially
intercept traffic after the VPN tunnel is established [47].

1The routing table lists the next hop, i.e., the next network host, to send
packets to in order to reach specific network destinations [21].

3 Threat Model

In both of our attacks, we assume that the encrypted VPN
tunnel is not vulnerable to known attacks, e. g., it does not leak
traffic during tunnel failures [49] and does not leak DNS or
IPv6 traffic [47]. Additionally, we assume that the underlying
cryptography used by the VPN protocol cannot be broken,
that is, we assume a Dolev-Yao model where an adversary
can intercept, block, and modify network packets, but cannot
break cryptographic primitives [18]. We also treat the VPN
protocol itself as a perfect cryptographic primitive that cannot
be broken, e. g., traffic cannot be decrypted using analytical
attacks. Finally, we assume that credentials are secure, e. g.,
passwords cannot be brute-forced. In both attacks, the adver-
saries share the same goal: make the VPN users send their
traffic in plaintext, i. e., outside the VPN tunnel.

An important difference between our two attacks is where
the adversary can be located. In line with previous works, we
use the terms local-network and on-path attacker to differenti-
ate between these two positions [5, 33, 37, 56]:

Local-Network Attacker: In our LocalNet attacks, the ad-
versary is a local-network attacker (see Figure 3). This means
the adversary operates within a local network and waits for
the victim’s access, e. g., by setting up an open AP. They can
actively observe and manipulate the traffic between the AP
and the victim. Additionally, the local-network attacker can
control the local IP address configuration of any device within
the local network, including the IP address and netmask as-
signed to the victim. In practice, if the adversary controls a
public AP, they can assign IP addresses to clients using the
Dynamic Host Configuration Protocol (DHCP). The adver-
sary can then assign itself an arbitrary IP address as well.
For instance, the adversary can use the subnet 1.2.3.0/24 for
the rogue AP and assign itself an IP address in this subnet.
In our LocalNet attacks, whenever the victim contacts an IP
address within this subnet, it will send data directly (outside
the VPN tunnel) to this local host instead of sending it to the
real website through the VPN tunnel.

On-Path Attacker: In our ServerIP attacks, we assume the
adversary is an on-path attacker that must be located anywhere
on the network path between: (1) the victim and the DNS
server used to look up the VPN server’s IP address; and (2)
the victim and the target server towards which we want to leak
traffic. The adversary is able to intercept and modify network
traffic originating from the VPN user and destined to the DNS
server, and vice versa (see Figure 4 on page 5). Such a type of
attacker could, e. g., be an ISP, a compromised core-network
router, or a local attacker such as a rogue AP at public places
like an airport or a hotel trying to obtain leaked traffic. We
assume this position enables the adversary to intercept DNS
requests and spoof DNS replies. This adversary must also be
able to intercept traffic from the victim to the IP address(es)
in the spoofed DNS reply.

USENIX Association 32nd USENIX Security Symposium 5721

4 IP-Routing Exception Attacks

In this section, we describe our two novel attacks. In both
attacks, the adversary manipulates rules in the client’s IP
routing table such that selected traffic will be leaked outside
the VPN tunnel. Recall that when creating the VPN tunnel, a
virtual network adapter is typically created that represents this
tunnel. Any traffic sent over the virtual adapter is encrypted
by the VPN protocol. Additionally, the client’s routing table
is updated to make all traffic pass through this virtual adapter,
ensuring that all outgoing traffic is encrypted. However, two
common rules are added that specify that certain traffic should
be sent outside the VPN tunnel, namely (see also Figure 2):

1. Traffic directed to the local network.
2. Traffic directed to the VPN server.

Unfortunately, the first exception can be manipulated by a
local-network attacker, while the second exception can be ma-
nipulated by an on-path attacker. By manipulating these excep-
tions, an adversary can make the victim leak arbitrary traffic
outside the VPN tunnel, leading to our LocalNet attacks and
ServerIP attacks, respectively. The attacks are independent of
the VPN protocol being used, meaning all widely-known pro-
tocols such as PPTP [26], OpenVPN [44], IPsec/IKEv2 [34],
SSTP [39], and WireGuard [19], are all affected.

4.1 LocalNet Attacks
4.1.1 Leaking local traffic. Our first attack exploits a
common routing exception in many VPNs, namely allowing
direct access to the local network, meaning traffic to local IP
addresses is not sent through the VPN tunnel. This means that
a user can access other devices in this network while using the
VPN. This is usually done out of convenience, for instance,
so the user can connect to a local printer or cast videos to a
nearby display. Excluding local traffic from the VPN tunnel
is the default configuration for a large number of VPN clients,
as we will demonstrate through experiments. In addition, al-
though a number of VPN clients offer configuration options
regarding local network access, they typically allow access
by default. Only a few VPN clients, such as Mullvad VPN,
always block traffic sent to the local network when using the
VPN. Allowing local network access, however, introduces
a new attack vector: the adversary can be a rogue AP that
assigns arbitrary IP ranges to the local network, with serious
security and privacy consequences.

The LocalNet attacks abuse the local-network-accessible
feature to make the victim send arbitrary traffic outside the
VPN tunnel without encrypting it. For instance, it can make
the victim leak traffic towards a targeted web server. To
achieve this, the local-network attacker creates a rogue AP
and sets the local network’s IP range to one that contains the
IP address of the target server. The VPN client on the victim’s
device will then be tricked into believing that the website it is
trying to connect to is in the local network and thus will not

192.168.1.2

192.168.1.1

192.168.1.40

target.com
1.2.3.20

AP IP
Camouflage

Normal traffic outside tunnel
Encrypted traffic inside tunnel

target.com
1.2.3.20

Normal scenario

1.2.3.1

1.2.3.40

1.2.3.2

1.2.3.20

Leaked traffic outside tunnel

Figure 3: Network diagram of the LocalNet attacks where
traffic to target.com is leaked outside the VPN tunnel and
then redirected to a malicious server (see Section 4.1).

use the VPN tunnel when communicating with the website.
This leads to the data of the user being sent outside the VPN
tunnel without encryption, causing a serious data leak.

Figure 3 illustrates this scenario with an example. Normally,
a local network will use a private IP address range such as
192.168.1.0/24 [42]. If a user in this network tries to access a
web server with IP address 1.2.3.20, the VPN tunnel is used.
However, if the AP uses the IP address range 1.2.3.0/24 for
its local network, the target server’s IP address is within this
local network. Thus, the victim’s VPN client will believe that
the web server it is trying to connect to is in the same local
network as itself. As a result, the client will try to connect to
the web server directly without using the VPN tunnel.

Our attack can also be used to intercept nearly all IP traffic
by assigning the IP range 0.0.0.0/1 or 128.0.0.0/1 to the local
network. The adversary can then forward leaked packets to the
real server and, in case the victim is not using another layer of
protection such as HTTPS, monitor the resulting connection
to steal user data. Alternatively, if plaintext HTTP is used, the
adversary can set up a local server with the same IP address
as the real server to host a malicious copy of the website and,
e. g., steal user credentials or serve malware. In case HTTPS
is used, the attack reveals the IP address that the victim is com-
municating with, which is often enough information to learn
the website being visited [46]. Moreover, an adversary can
also try to launch subsequent attacks against any higher-layer
security protocol to steal user information (see Section 7.1).

4.1.2 Blocking traffic. We observed that with some VPNs
the attack did not cause the victim to send packets outside the
VPN tunnel, but instead caused the victim to block packets
toward the target IP address(es). We also consider this a secu-
rity risk. As a concrete example, an adversary can abuse this
to block the traffic and warnings of a victim’s security camera

5722 32nd USENIX Security Symposium USENIX Association

app, or block security updates, while other apps of the victim
do work properly, making the victim unaware of the attack.

4.2 ServerIP Attacks
4.2.1 Leaking server IP traffic. Our second attack ex-
ploits another common routing exception: traffic sent to the
IP address of the VPN server is not (again) sent through the
VPN tunnel. This prevents routing loops by not reencrypting
already-encrypted traffic to the VPN server.

Leaking traffic to the VPN server’s IP address can be (low)
security risk on its own. In particular, it can be abused to
deanonymize visitors of a website by making the website initi-
ate a HTTP request for the VPN server’s IP address [6, §5.2].
This can be achieved by abusing benign functionality of the
website, such as including a remote image in a forum post, or
by compromising the website’s server. By then monitoring
for plaintext traffic to the VPN server’s IP address, the real IP
address of the visitor can be learned.

4.2.2 Leaking arbitrary traffic. If an adversary can con-
trol the IP address that the client uses for the VPN server, the
above routing exception can be manipulated to leak arbitrary
traffic. One common method of how clients learn the VPN
server’s IP address is through plaintext DNS, meaning the
adversary can spoof DNS replies to change the server’s ad-
dress. In other words, we will exploit clients that use plaintext
DNS, and we will not target clients that hardcode the VPN
server’s IP address(es) in their code or in their configuration
files (see Section 5.6 for more details). In this scenario, an
on-path attacker between the victim and its DNS server can
then intercept DNS requests and spoof responses. Note that
a local-network attacker would also be able to spoof DNS
responses. In fact, if the adversary acts as a rogue AP, they
can use DHCP to assign clients a preferred DNS server, and
this server can even be controlled by the adversary itself.

After spoofing the VPN server’s IP address, the victim tries
to connect to the server at the spoofed IP address. The attacker
redirects these packets to the real VPN server so the client still
successfully establishes the VPN tunnel. This means that the
on-path attacker must also be located between the client and
the spoofed server IP address in order to redirect these packets.
Once the client establishes the VPN tunnel, all traffic to the
spoofed IP address will not be sent through the VPN tunnel.
For instance, by making the spoofed IP address coincide with
a legitimate web server, all traffic to this web server will be
sent directly to the server outside the VPN tunnel.

The resulting attack is illustrated in Figure 4, where the
adversary’s goal is to intercept data sent to target.com, i.e.,
to 1.2.3.4. Under normal conditions in this example, the VPN
server vpn.com has the IP address 2.2.2.2, meaning the victim
will send traffic to the target website through the VPN tunnel.
However, the attacker will spoof DNS responses so the victim
thinks that the VPN server vpn.com has the IP address 1.2.3.4,
and will redirect VPN traffic to the real VPN server so the

192.168.1.2 192.168.1.1
target.com

1.2.3.4

DNS
Spoofing

Normal scenario

target.com
1.2.3.4

Target Traffic
Dest IP:1.2.3.4

Target Traffic
Dest IP = 1.2.3.4192.168.1.2

VPN Traffic
Dest IP:1.2.3.4

VPN Traffic
Dest IP:2.2.2.2

192.168.1.1

DNS Cache
vpn.com
2.2.2.2

DNS Cache
vpn.com
1.2.3.4

vpn.com
2.2.2.2

vpn.com
2.2.2.2

Normal traffic outside tunnel
Encrypted traffic inside tunnel
Leaked traffic outside tunnel

Figure 4: Network diagram of the ServerIP attacks: traffic to
target.com is leaked outside the VPN tunnel (Section 4.2).

victim can still successfully establish a VPN connection. As
a result, all traffic to 1.2.3.4, so to target.com, will now be
sent in plaintext outside the VPN tunnel.

Our attack can also be abused to (try to) intercept all traffic
to the DNS server set by the VPN client. The adversary can
then intercept DNS requests and spoof replies, enabling the
interception of most IP-based traffic. Note that the IP address
of the DNS server set by the VPN client can be deduced from
the VPN used by the victim, and the VPN being used can be
deduced from the VPN server’s IP address.

4.2.3 Blocking traffic. A VPN client may block traffic to
the spoofed IP address of the VPN server. Some clients block
traffic on all ports except the port used by the VPN protocol.
Similar to the attack of Section 4.1.2, this can be abused to
block selected traffic, which we consider a security risk.

5 Measurements and Experimental Validation

In this section, we evaluate our attacks against a large set of
VPN clients. We describe the VPN clients and hardware used
in our tests, then elaborate on the experimental setup used
to test whether these clients are vulnerable, and finally, we
provide an overview of results and special observations.

5.1 VPN Selection Criteria
The VPN market is huge and dynamic: there are hundreds
of VPNs across the Internet with frequent version updates
and new products, making it infeasible to evaluate all of them.
To pick an influential and representative set of VPNs for our
evaluation, we used the following selection criteria:

1. Widely-used and influential. We picked the most
widely-used VPNs to obtain a representative sample.
For Android, we can directly see the number of down-
loads for each app on the Google Play Store, and pick

USENIX Association 32nd USENIX Security Symposium 5723

the most downloaded ones. For other platforms such as
iOS and macOS, the number of downloads per app is not
visible, and we instead use the number of user ratings
to pick the most rated apps. The idea is that an app with
more ratings will likely have more users.

2. Multiple OSs and versions. In our evaluation, we also
cover multiple platforms, namely Android, iOS, macOS,
Windows, and Linux. This is important because the be-
havior of an app may depend on the platform that it is
running on. Therefore, we also explicitly picked apps
that support multiple platforms. Additionally, the fea-
tures and behavior of an app may depend on whether a
free or paid version is used, and because of this, we will
also test both paid and free VPN clients.

3. Overlap with previous papers. To enable an easier
comparison with related work, we also evaluated VPNs
that recent papers studied [10, 30, 35, 47, 49]. That is, we
picked VPNs that are evaluated in all or many of these
papers. These papers themselves chose VPNs based on
popular review and recommendation websites, personal
recommendations, widely-used free and paid ones, etc.

In total, we investigated 63 VPN applications and 4 OS built-
in VPNs on multiple mobile and desktop platforms over five
mainstream operating systems. All combined, we tested 195
unique VPN client and OS combinations for the LocalNet
attacks, and 53 unique combinations for the ServerIP attacks.

5.2 Hardware and Software Setup

We tested our attacks against 15 devices that cover mobile
and desktop platforms: three iPhones (iPhone 12 mini with
iOS 14.1, iPhone 12 with iOS 16.1.1, and iPhone 13 Pro Max
with iOS 15.6.1), three Androids (Android 9, 12 and 13), one
Android pad (Android 8.1.0), two MacBooks (macOS 12.6
and 13.0.1), two laptops running Windows 10 and 11 Pro, and
laptops running four different Ubuntu releases (16.04, 18.04,
20.04, and 22.04). To create a rogue AP we use a Panda
300Mbps Wireless 802.11n USB dongle, a laptop running
Ubuntu 16.04, and version 0.4.6 of the create ap script to
start and configure the AP [36]. Finally, we use a web browser,
e. g., Chrome or Safari, to check if we can visit the target web-
sites outside the VPN tunnel, and we also double-check leaks
outside the VPN tunnel by inspecting traffic in Wireshark.

Once the rogue AP is started using the create ap script,
victim devices can connect to it for access to the Internet, and
all the traffic coming from the victim device can be inspected
with the Wireshark packet analyzer. The create ap script
also allows users to configure the IP address of the AP and
thereby the subnet used by the local network. In our tests, this
IP address is picked such that the resulting subnet of the local
network contains the target website’s IP address.

To test paid VPN clients, we created an account for each
client, paid for the service, and verified its correct opera-

tion. When no standalone client was available, but VPN pro-
files like OpenVPN configurations were offered by the VPN
provider, we downloaded the config files, and then conducted
the tests using the OS built-in VPN or a 3rd-party VPN client.

5.3 LocalNet attacks: Experimental Setup
The steps to perform the LocalNet attacks are shown in Fig-
ure 5 and were implemented to determine if a VPN client
is vulnerable. The goal of these steps is to make the victim
leak traffic toward target.com outside the VPN tunnel. In
our tests, this website is not using HTTPS, meaning if it is
accessed outside the VPN tunnel we can then redirect the
request to a malicious phishing clone of the website. This
malicious copy is hosted in our local network on a Windows
web server running Internet Information Services (IIS). The
victim will only see this (easily recognizable) malicious copy
if it tries to access it outside the VPN tunnel, i.e., it will only
see it when vulnerable to our attack.

In step 1⃝ of the attack, we assume that the victim has con-
nected to the rogue AP and that it will use DHCP to request
an IP address. In step 2⃝, the rogue AP will not reply with a
typical RFC1918 private IP address, but it will instead hand
out an IP address within the same subnet as the IP address
corresponding to target.com. In our example, the IP address
of the target is 1.2.3.20, and the rogue AP uses the correspond-
ing subnet 1.2.3.0/24 for the local network. When the VPN
client then establishes a secure tunnel in step 3⃝, it will update
the client’s routing table to send all traffic through this tunnel,
except traffic towards devices within the local network so that
local devices remain accessible when using the VPN. This
means most internet traffic will still use the VPN tunnel, as
indicated in step 4⃝, meaning the victim is unlikely to notice
the attack since the VPN keeps working as expected.

In step 5⃝, the victim visits target.com. Since the IP
address of this website now falls within the local network, the
victim will directly access the server without using the secure
VPN tunnel. That is, the client will use ARP to determine the
MAC address of the local device that has IP address 1.2.3.20,
and will then send traffic directly to the malicious clone of
the website that is hosted within the same local network.

We remark that in the above example, all traffic to IP ad-
dresses in the subnet 1.2.3.0/24 will be sent outside the VPN
tunnel. The attack can be made more targeted by defining the
local network as a smaller subnet such as 1.2.3.16/29. This
would make the victim send traffic to IP addresses within the
range 1.2.3.16-23 outside the VPN tunnel. Alternatively, an
adversary can assign the IP range 0.0.0.0/1 or 128.0.0.0/1 to
the local network to intercept nearly all IP traffic.

5.4 LocalNet Attacks: Results
The number of VPN clients vulnerable to LocalNet attacks is
summarized in Figure 6 and a detailed overview is presented

5724 32nd USENIX Security Symposium USENIX Association

No Connection 2.2.2.2 target.com
1.2.3.20

Assign new IP
Address: 1.2.3.12/24

AP IP Camouflage

Traffic to target.com

Routing Table

Destination Netif
1.2.3.0/24 wlan0
2.2.2.2/32 wlan0
0/0 tun0

Destination Netif
192.168.1.0/24 wlan0
0/0 wlan0

1

2

5

1.2.3.1 Phishing Website
1.2.3.20

Request IP Address

VPN Tunnel Setup
(Add rule to routing table)

1.2.3.12

Websites
excluding
target.com

Normal Traffic
3

4

Figure 5: Illustration of how the LocalNet attacks can be used to leak traffic towards target.com outside the VPN tunnel. In this
example, the leaked web request is then redirected to a malicious phishing website.

Android

Linux

Windows

macOS

iOS

0 10 20 30 40 50

Vulnerable Blocks non-RFC1918 local traffic Secure

Figure 6: Number of VPN clients vulnerable to (variants of)
the LocalNet attacks for each tested OS.

in Table 1 in the Appendix. In total, we tested 63 VPN ap-
plications, which includes 18 paid ones, and we also tested 4
built-in ones. Some of the apps were available for all five OSs,
while others were only available for specific OSs: we tested
42 apps for Android, 46 for iOS, 39 for Windows, 40 for ma-
cOS, and 28 for Linux. Overall, we can see that the attack
affects a large number of VPN apps. Following an in-depth
analysis, we make the following observations:

5.4.1 The OS influences the security of VPN clients.
From Figure 6 we observe a clear correlation between the OS
and the vulnerability of an app. For instance, most VPN apps
on Android were not vulnerable (33 out of 42), while all of
those tested on iOS were vulnerable on at least one device (see
also Observation 5.4.2). On Linux, 10 out of 28 VPNs were
vulnerable, on Windows two-thirds were vulnerable (26 out

of 39), while on macOS 35 out of 40 VPNs were vulnerable.
One reason why Android is more secure is because, since

version 4.4, it uses policy-based routing where routing deci-
sions are also made based on the app generating the traffic
instead of purely on the destination address [13, 47, 48]. This
is implemented using per-UID routing [41].

We also noticed that although VPN clients may be devel-
oped by the same company, their behavior and default settings
on different platforms vary. For instance, depending on the
platform, access to the local network is allowed or not, their
firewall is on or off, and the same VPN provider may be vul-
nerable in one platform but not the other (see Table 1). In
particular, we observe many providers whose app is secure on
Android but vulnerable on iOS and/or macOS. We can con-
clude that the OS has a major influence on a client’s security
and that this is not solely a problem of the app developer.

5.4.2 All VPN apps on iOS are vulnerable and only one
VPN app on macOS is secure. All tested VPNs on iOS
leak traffic (see Figure 6 and Table 1). On macOS, only Cisco
AnyConnect was secure. All other VPN clients on macOS
leaked traffic, with the exception of ExpressVPN and Mullvad
who blocked access to IP addresses within the local network,
which we also consider a security risk (recall Section 4.1.2).

Surprisingly, Psiphon was secure on our iPhone 12 mini
running iOS 14.1 but was vulnerable on all other tested iOS
devices (iPhone 13 Pro Max, iPad 8th gen, iPhone 12 Pro, and
iPad mini 2). Inspection of the Psiphon source code revealed
that when using iOS 14.0 or 14.1, it sets the API parameter
includeAllNetworks, but not excludeLocalNetworks, re-
sulting in secure behavior (see Listing 1 in the Appendix).
Older iOS versions do not support these parameters, and on
iOS 14.2 and above Psiphon always sets both, making it vul-

USENIX Association 32nd USENIX Security Symposium 5725

nerable. Few vendors set excludeLocalNetworks because it
may cause Airdrop to no longer work [7] and because it may
reduce overall network reliability [28]. This causes iOS to be
less secure. Overall, having nearly all VPN apps vulnerable
on macOS and iOS shows that its OS is partly to blame.

To prevent the attack on iOS, the above two parameters
can be used to disallow local network access when the local
network uses non-RFC1918 IP addresses. For instance, Wind-
scribe updated its client with this approach and was the first
to prevent the attack on iOS.

5.4.3 8.2% of clients block traffic towards non-RFC1918
IP addresses in the local network. With 16 out of 195
tested VPN/OS combinations, the attack did not cause traffic
leakage, but instead made the victim unable to visit the target
website, with the browser usually showing an error that the
request was blocked by a firewall. These cases are represented
by the “Blocks” category in Figure 6 and by the △ symbol
in Table 1. We investigated the root cause of this issue for
a random subset of affected VPNs. This revealed that these
VPNs configure the routing table to send data to the local
network outside the VPN tunnel. However, they also employ
a firewall that blocks all outgoing traffic except (encrypted)
packets to the VPN server or packets to private RFC1918 IP
addresses. This means that traffic to IP addresses in the local
network gets blocked instead of being sent through the VPN
tunnel. An adversary can abuse this to block access to certain
IP addresses, which is also a security risk (see Section 4.1.2).

On Windows, X-VPN blocked local traffic but broadcasted
ARP requests when a process tries to access a local IP address.
We conjecture that this is because the Windows firewall was
configured to block packets, but not the initiation of connec-
tions, to local IP addresses. An adversary can abuse this to
determine whether the victim is visiting a sensitive website.
In particular, when the adversary sees an ARP request for the
IP address corresponding to target.com, then they know the
victim is trying to load this website.

5.4.4 The behavior of three VPN clients depended on
the version being used. Most standalone clients remain
vulnerable even with a version update if their earlier ver-
sions are vulnerable. However, among these clients we inves-
tigated, only three VPN clients (Network Manager OpenVPN
Gnome, OpenConnect CLI, and OpenVPN CLI) on four differ-
ent Ubuntu releases (16.04, 18.04, 20.04, and 22.04) behave
differently. We find that the earlier two versions on Ubuntu
16.04 and 18.04 are vulnerable, whereas the later two versions
are secure. In addition, by comparing both free and paid ver-
sions on several clients (e. g., Hide.me VPN and VPN Proxy
Master), we observe that the paid services are no more secure
than the free ones on the same clients in our experiments.

5.4.5 Three VPN apps used DNS servers that always
returned special use IP addresses. We encountered three
cases where the VPN client was using a DNS server that
returns IP addresses in the range 198.18.0.0/15 for all domains

(see the symbol - in Table 1). These IP addresses are normally
used in benchmark tests of network interconnect devices [1,
14]. Packets with a source address from this range are not
meant to be forwarded over the Internet, and in this sense,
they can be treated as private IP addresses. Interestingly, the
VPN server redirected traffic to these special IP addresses
to a real IP address of the domain, allowing the user to still
access all websites. It is unclear why these VPN providers do
this, but we conjecture that one advantage is that if a client
accidentally leaks traffic outside the VPN tunnel, then due to
the usage of these special IP addresses the leaked packets are
less likely to be forwarded over the Internet.

Our default attack fails against these clients because they
use an IP address from this special range to visit target.com.
However, by using a subnet within 198.18.0.0/15 for the rogue
AP’s local network, our attack remains possible.

5.4.6 Several VPNs have an option to (dis)allow local
network access. Some VPNs have an option to (dis)allow
access to the local network while using the VPN. Interest-
ingly, we found that the default setting of this option can vary
depending on the OS. Some of these apps such as Surfshark,
ExpressVPN, and Windscribe (iOS) had their local access
setting turned on by default. So users who are unaware of this
setting may be in a vulnerable position by default.

For ExpressVPN and Windscribe, the local network access
option had no effect on iOS and Android. That is, when using
these clients on Android, access to the local network was
always disallowed independent of this setting, and on iOS
access to the local network was always allowed. This implies
that on iOS, configuring these clients to disallow access to
the local network will not prevent our attack.

5.4.7 Windscribe and ExpressVPN only allow local net-
work access when using RFC1918 private IP addresses.
The open-source Windscribe client on Windows and macOS
only allows enabling local network access when the local net-
work is using private IP addresses as defined in RFC1918 [42].
In particular, local network access is only allowed when using
192.168.0.0/16, 172.16.0.0/12, or 10.0.0.0/8. Similar behav-
ior was observed with the proprietary ExpressVPN client on
Windows and macOS, but there was no warning in the user
interface. Although this behavior prevents traffic leaks, it has
the side effect that the victim cannot visit the target website
anymore as described in Observation 5.4.3.

With Windscribe on Android, local network access is dis-
abled by default but can be enabled independent of the IP
addresses used by the local network, and doing so makes
the client vulnerable. On iOS, access to the local network
is enabled by default, and can be turned on or off indepen-
dent of the IP addresses used for the local network, meaning
Windscribe on iOS is by default vulnerable to our attack.

5.4.8 Four tested VPNs provide only a browser whose
traffic is secured. Four tested VPNs do not tunnel all traffic
generated by a system, but instead, provide a browser where

5726 32nd USENIX Security Symposium USENIX Association

192.168.1.2 192.168.1.1
vpn.com
2.2.2.2

target.com
1.2.3.4

nslookup vpn.com

Name: vpn.com
Address: 1.2.3.4/32

DNS Response

DNS Spoofing

VPN Tunnel
SetupIP: 1.2.3.4 IP: 2.2.2.2

Normal Traffic

Traffic to target.com

Packet Rerouting
Destination Netif
192.168.1.0/24 wlan0
1.2.3.4/32 wlan0
0/0 tun0

Destination Netif
192.168.1.0/24 wlan0
0/0 wlan0

1

2

3

4 5

6

7

Websites
excluding
target.com

Routing Table

Figure 7: Illustration of how the ServerIP attacks can be used to leak traffic towards target.com outside the VPN tunnel.

only traffic generated within this browser is tunneled over
the VPN connection. These were VPN Proxy Browser, Smart
VPN: Proxy, Best VPN Unlimited proxy, and VPN Proxy:
Fast & Unlimited. Traffic outside these VPN-browsers will be
sent in plaintext outside the tunnel, which can be considered a
security risk [49, §VI.H]. However, our attack cannot be used
to leak browser traffic since that traffic is always tunneled.
Since these VPNs do not tunnel all traffic of a device, they
are excluded from Figure 6 and Table 1.

5.5 ServerIP Attacks: Experimental Setup

The steps to perform the ServerIP attacks, with the main goal
to make the victim load target.com outside the VPN tunnel,
are shown in Figure 7. For convenience, we host this website
on a DigitalOcean server. The website displays the IP address
and port of the client, making it easy to detect if the attack
succeeds: if the client loads the page and it shows the VPN
server’s IP address, then the attack failed. Conversely, if it
shows the victim’s real IP address, then the attack succeeded.

In step 1⃝ of the attack, we assume the victim has connected
to our rogue AP, and that it uses the DNS server that was
advertised in the DHCP responses of the rouge AP. We assume
the victim uses this DNS server to look up the IP address of
the VPN server, i. e., the IP address of vpn.com. Since the
rouge AP can advertise a DNS server under the control of the
adversary, we can trivially make the server return the wrong
IP. In our attack, in step 2⃝, the DNS server returns the IP
address of the target website instead of the IP address of the
VPN server. We achieve this in practice using the create ap
script with the parameters to set up a custom dnsmasq server
that uses the Linux hosts file to return the spoofed IP address.

After the client receives the DNS response in step 3⃝, it will

try to connect to the VPN server at the incorrect IP address
in step 4⃝, which in Figure 7 is 1.2.3.4. To ensure the victim
can successfully establish the VPN tunnel, the adversary will
reroute all the VPN packets sent to 1.2.3.4 to the real VPN
server at 2.2.2.2 (step 5⃝). We use iptable rules to redirect
VPN traffic to the real IP address of the VPN server and we
detect VPN traffic based on the destination IP address and the
port. This iptable rule also ensures that responses from the
real VPN server are forwarded to the client. All combined,
the adversary does not break the cryptographic VPN tunnel,
but simply forwards VPN packets to the real VPN server (and
back) by simply rewriting the destination IP addresses.

After establishing the VPN tunnel in steps 4⃝ and 5⃝, the
client updates its routing table to send all traffic over the VPN
tunnel except traffic to the VPN server itself. In other words,
all traffic to 1.2.3.4 will be sent directly to its destination
outside the tunnel. The victim is unlikely to notice this attack
since all other traffic is still sent normally over the VPN tun-
nel (step 6⃝). Finally, in step 7⃝ all traffic to target.com is
now sent directly to 2.2.2.2 outside the VPN tunnel.

In case the VPN server uses the same port as the target traf-
fic, deep packet inspection must be used to differentiate VPN
tunnel traffic from the target traffic. For instance, OpenVPN or
DTLS packets can be differentiated from leaked HTTPS traf-
fic due to the plaintext header used in OpenVPN and DTLS.

Although we act as a rogue AP in our experiments, a real
adversary can also be an on-path attacker (recall Section 3).

5.6 ServerIP Attacks: Results

We noticed that the custom clients of most VPN providers are
not vulnerable to the ServerIP attacks. This is because they do
not use DNS to find the VPN server’s IP address, which will

USENIX Association 32nd USENIX Security Symposium 5727

Android

iOS

macOS

Windows

Linux

0 5 10 15 20

Vulnerable Leaks traffic on certain ports Secure

Figure 8: Number of 3rd-party and built-in VPN clients af-
fected by (variants of) the ServerIP attacks for each tested OS.

be further described in Observation 5.6.1 below. Motivated by
this, we shifted our focus to testing 3rd-party clients and OS
built-in VPN clients. Since fewer such clients exist compared
to custom ones, it becomes important to test various external
VPN servers and profiles.

We collected usable VPN profiles that allowed us to estab-
lish a VPN tunnel and we searched for profile templates that
we analyzed without connecting to the VPN server. Usable
templates were gathered from websites that provide free pro-
files (e. g., VPNBook and VPN Gate) and from paid providers
(e. g., StrongVPN and Surfshark). Profile templates, which do
not contain credentials to connect to the server, were gathered
by looking through public GitHub repositories that contain
mirrors of VPN profiles (e. g., M-VPN and NordVPN), and
by searching for VPN setup guides on university and com-
pany websites. We also found VPN setup instruction pages of
universities where screenshots contained enough information
for our analysis, i. e., whether hostnames were used in the pro-
file (Observation 5.6.3). In total, this resulted in 21 profiles
and profile templates that were analyzed, covering WireGuard
configs, OpenVPN profiles, L2TP/IPsec configurations for
built-in VPNs, and so on (see Table 2).

We evaluated a combination of 3rd-party and built-in VPN
clients using the collected usable profiles, with the results sum-
marized in Figure 8 (see Table 2 in the Appendix for details).
Since our attack is only possible when using a hostname to
identify the server, these results exclude configurations with
hardcoded IP addresses, which we separately discuss in Ob-
servations 5.6.3 and 5.6.7. In total, we tested 17 VPN apps,
some of which are only available on certain OSs: we tested
10 Android apps, 5 iOS apps, 11 Windows apps, 10 macOS
apps, and 17 Linux apps, resulting in 53 experiments in total.

Against 73.6% of tested VPN clients when using a pro-
file with hostnames, ServerIP attacks can be abused to leak
arbitrary traffic. Further notable observations are:

5.6.1 Two VPN providers’ custom clients are vulnerable.
Windscribe on iOS when using IKEv2, and Avira Phantom

VPN on macOS and iOS, use plaintext DNS to find the VPN
server’s IP address and as a result can be attacked to leak
arbitrary traffic. All others do not use plaintext DNS and are
therefore secure. We conjecture that most clients either use a
proprietary protocol to get the server’s IP address or that they
use a hardcoded list of VPN servers, where the custom client
must be updated if this list changes.

Although we did not further test these custom VPN clients
and excluded them from Figure 8 and Table 2, they never-
theless constitute a significant portion of all VPN apps on
the market. Additionally, even if an adversary is unable to
spoof the VPN server’s IP address against these clients, they
may steal leak traffic that is sent to the real VPN server’s IP
address on certain OSs (see Observation 5.6.7).

5.6.2 The built-in IKEv2 API on iOS is vulnerable.
During the disclosure, we found that Windscribe was vul-
nerable to the ServerIP attacks on iOS because it by de-
fault used the built-in NEVPNProtocolIKEv2 of iOS. This
means iOS itself causes both the plaintext DNS requests
and the traffic leaks to the VPN server’s IP address. To
avoid plaintext DNS requests, the VPN server’s IP address
can be given to NEVPNProtocolIKEv2 while attributes such
as serverCertificateCommonName can be used to still se-
curely verify the VPN server’s identity.

5.6.3 76% of tested VPN profiles use hostname(s) instead
of static IP address. When using a static (hardcoded) IP
address for the VPN server, an adversary cannot perform
ServerIP attacks to leak arbitrary traffic. Unfortunately, using
static IPs is uncommon in practice: out of the 21 profiles we
collected, only 5 use static IP addresses. This matches the
official setup guide for OpenVPN which recommends using
hostnames [45], since it has the advantage that the server’s IP
address can easily be changed. This is useful when updating
servers or when an IP address gets blocked by governments.
This means that most profiles, when used with an insecure
VPN client, can be attacked to leak arbitrary traffic.

5.6.4 The OS influences the security of VPN clients.
The observation as made in 5.4.1 also applies to the ServerIP
attacks: there is a correlation between the OS and the vulnera-
bility of a 3rd-party client. Most noticeable is that on Android
only built-in VPNs were vulnerable. The situation is more
serious on other platforms: on Windows, Linux, macOS, and
Android, only WireGuard was secure.

Similar to Observation 5.4.1, we found that the same client
may behave differently depending on the OS. For instance,
Cisco AnyConnect has four different behaviors over five plat-
forms (see Table 2) and was only fully secure on Android.

5.6.5 Cisco AnyConnect only leaks traffic on selected
ports. For Cisco AnyConnect on Windows, macOS, and
Linux, the attack was partially successful: only packets on
certain ports were leaked (symbol G# in Table 2 and category
“Leaks” in Figure 8). In all cases, TCP or UDP packets with
the same destination port as the VPN tunnel were sent outside

5728 32nd USENIX Security Symposium USENIX Association

the tunnel. For instance, when the VPN tunnel was using
the DTLS protocol on port 443, all TCP and UDP traffic to
port 443 is leaked outside the tunnel. Depending on the VPN
server being used, traffic to ports 80 and 8000 was also leaked
outside the tunnel. Traffic to other ports was being blocked,
which we also consider a security issue (recall Section 4.2.3).

5.6.6 The behavior of two clients depended on the cho-
sen VPN server. For Cisco AnyConnect on macOS and
Windows, the ports on which traffic is leaked depend on the
chosen server. For instance, when connected to a server in
the UAE, only traffic on port 443 was leaked, while when
connected to a server in the USA, traffic on ports 80, 443, and
8000 was leaked. Additionally, we observed that Windscribe
always uses plaintext DNS to look up the VPN server’s IP
address when using a 3rd-party OpenVPN profile.

5.6.7 Static server IP addresses are still a privacy risk.
Using static IPs for the VPN server in OpenVPN profiles
prevents leakage of arbitrary traffic. However, all tested Open-
VPN clients, on all OSs except Android, leak traffic to the
VPN server’s IP address and are therefore still affected by the
privacy risks discussed in Section 4.2.1.

5.6.8 Some apps use proprietary protocols or software
updates to get the server’s IP address. We found that X-
VPN, Best VPN Proxy Master, and Cisco AnyConnect use
a proprietary protocol to obtain the VPN server’s IP address.
These apps first communicate with a master server and then
switch to another server for the remainder of the tunnel’s
lifetime. The other apps appear to maintain a list of VPN
servers and can immediately connect to a desired VPN server.
This list is likely kept fresh through regular software updates.

5.6.9 Android’s built-in VPN is more vulnerable than
its VPN apps. From Table 2 we see that Android is only
vulnerable to ServerIP attacks when using its built-in VPN.
Namely, Android 8.1.0 is vulnerable when using IPsec Xauth
but not when using L2TP/IPsec. We also confirmed this on
a Galaxy S3 running Android 7. By inspecting the Android
Open Source Project code, we believe this is the case for
all Android versions below Android 12 (see Listing 2 in the
Appendix). Since Android 12, these legacy VPN protocols
are no longer supported by the official Android code base,
meaning Android 12 and above are not vulnerable.

Our Samsung Galaxy Note 10+ 5G still supports legacy
VPN protocols and was vulnerable when using L2TP/IPsec.
By reverse engineering its firmware, we found that they modi-
fied Android’s VPN code, causing it to be vulnerable for both
LT2TP/IPsec and IPsec Xauth even when using Android 12.

6 Countermeasures

In this section, we give an overview of countermeasures, dis-
cuss their effectiveness, and test selected defenses in practice.

6.1 Countermeasures to LocalNet Attacks
6.1.1 Disable local traffic. The most straightforward and
complete defense against the LocalNet attacks is disabling lo-
cal traffic by default. However, not all VPN clients offer such
functionality. For the clients that did support disabling local
traffic, and that implemented this correctly, we confirmed that
this prevented the attack. The downside of this defense is that
legitimate use of the local network, such as accessing printers
or streaming videos to a TV, no longer works while using the
VPN. This downside can be lessened by still allowing local
traffic when connected to a trusted network. For instance,
when connected to a trusted protected Wi-Fi network, such
as one’s company or home network, local traffic can still be
allowed. Another option is implementing a variant of policy-
based routing where only specific applications are allowed to
access the local network (see also Section 6.2.1).

6.1.2 Filtering excluded local IPs. An alternative de-
fense, in case access to the local network while using the
VPN is essential by default, is to only allow direct access to
non-routable IP addresses. In particular, RFC 1918 defines
valid IP ranges for private (local) networks [42], and only
these ranges should ever be excluded from the VPN tunnel.
These non-routable IP addresses are never assigned to public
servers. As a result, if only RFC 1918 IPv4 addresses are
ever excluded from the VPN tunnel, an adversary cannot trick
the victim into excluding the IP address of any public server.
Unfortunately, this defense is not complete. In particular, if
the VPN is used in a split-tunnel setting (Section 2.1) to gain
remote access to the private (local) network of an organiza-
tion, an adversary can still perform the attack to leak traffic
toward company services hosted in the private network.

6.2 Countermeasures to ServerIP Attacks
6.2.1 Policy-based routing. A defense against ServerIP
attacks is policy-based routing, where routing is not purely
based on the destination IP address, but also on other factors
such as the application generating the traffic. In particular,
a complete defense is to use policy-based routing to send
the traffic of all applications, except the VPN client, through
the VPN tunnel. On Linux, this can be achieved by defining
multiple routing tables, where the routing table being used
depends on which user generated the traffic or on the fwmark
assigned to the packet. The VPN client can then be started
under a unique user ID or it can assign a unique fwmark to
VPN packets. If the traffic is generated by the VPN app, then
a routing table is used that allows direct access to the Internet.
However, all other apps use a routing table that redirects all
traffic, independent of the destination IP address, to the VPN
tunnel. This would prevent the ServerIP attacks, since the
traffic of all other apps is always sent through the VPN tunnel.
Policy-based routing was introduced in Android 4.4 and user-
based routing is available on Linux since kernel 4.4 [41]. We

USENIX Association 32nd USENIX Security Symposium 5729

confirmed that Android 13 properly implements this approach
and thus prevents the attack.

We remark that Tor uses a method resembling policy-based
routing. To tunnel client traffic, Tor sets up a local proxy that
client applications must be explicitly configured to use, in-
stead of using a virtual network interface and modified routing
tables. Application-to-proxy communications happen through
the local loopback interface, whereas connections between
the local proxy and the Tor network happen through the Tor
protocol. DNS queries are performed directly through Tor, by-
passing any locally configured DNS server. This configuration
prevents all the attacks presented in this paper.

6.2.2 Verifying the server IP address. Another mitiga-
tion is to verify the VPN server’s IP address once the client
has connected to the server. For instance, after the client estab-
lished a secure connection with the VPN server, the server can
send its public IP over this secure connection. If the provided
IP address does not match the IP address that the client is
using for the server, the VPN connection is terminated, and
the client can then try to reconnect to the real IP address. This
prevents an adversary from making the client exclude an arbi-
trary IP address from the VPN tunnel, preventing unintended
leakage. However, this does not prevent deanonymization at-
tacks where the victim is tricked into initiating connections
in plaintext with the VPN server itself (recall Section 4.2.1).

6.2.3 Authenticated DNS. To leak arbitrary traffic in the
ServerIP attacks, the adversary needs to spoof DNS responses.
The impact of the attack can therefore be lowered by using
DNS over TLS or DNS over HTTPS [27,29]. These protocols
encrypt and authenticate DNS requests by encapsulating them
inside the TLS or HTTPS protocol. Alternatively, DNSSEC
could be used, which authenticates all DNS replies, meaning
an adversary cannot modify or spoof them [52]. When using
such a protected variant of DNS, it is essential that the client
does not fall back to plaintext unauthenticated DNS when
protected DNS requests are failing. Otherwise, an adversary
could attempt to block protected DNS requests, and then spoof
DNS responses when the client falls back to using plaintext
unauthenticated DNS. Unfortunately, using protected DNS
does not prevent deanonymization attacks where the victim is
tricked into initiating connections in plaintext with the VPN
server itself (recall Section 4.2.1).

7 Discussion

In this section, we discuss the impact and limitations of the
presented attacks and cover ethical considerations.

7.1 Impact and Practical Consequences
Both our attacks can leak traffic outside the VPN tunnel,
which can be abused to intercept traffic, deanonymize users,
modify webpages to serve malware, redirect users to phishing

websites, and so on. Even if the victim is using another layer of
encryption such as HTTPS, attacks may remain possible. For
instance, a leaked server IP address is often enough to iden-
tify the website being visited [46]. More advanced HTTPS
fingerprinting techniques can also identify the webpage be-
ing visited [40]. More worrisome, attacks like SSLstrip can
remove HTTPS protection altogether [38], at least if HTTP
Strict Transport Security (HSTS) is not being used, which
currently only 25% of websites employ [59].

We confirmed the feasibility of monitoring HTTPS traffic
for the LocalNet attacks. To redirect the leaked HTTPS traffic
to the real server, we enabled proxy ARP on the AP, and added
a route on the AP to forward traffic to the server through
the default gateway of the network. Using this configuration,
vulnerable victims leaked traffic to the server outside the VPN
tunnel while still being able to load the website. An adversary
can then attempt the previously-mentioned HTTPS attacks.

To intercept most IP-based traffic in the ServerIP attacks,
an adversary can try to intercept traffic to the DNS server set
by the VPN client, so that DNS replies can then be spoofed.
We confirmed the feasibility of this against a macOS client
running OpenVPN, where the VPN server was configured to
advertise a single OpenDNS server.

7.2 Applicability against IPv6
We only targeted IPv4 traffic because it is still more commonly
used than IPv6, e. g., at the time of writing roughly 60% of
traffic to Google is using IPv4 [25]. Additionally, Ramesh
et al. showed in 2022 that only 11 out of 80 tested VPN
providers support IPv6 [49, §6.A]. We also experienced that
even if a VPN supports IPv6, it may not be reliable. For
instance, hide.me can connect over IPv6, but not all its servers
support this, and connectivity was unreliable when using IPv6.

Focusing only on IPv4 does not limit an attacker. A local
attacker can block all IPv6 packets, and thereby force the vic-
tim to use IPv4 to subsequently perform the attacks. Similarly,
the on-path attacker can modify DNS responses to only re-
turn IPv4 addresses, meaning our attacks also remain possible
even if the victim supports or uses IPv6.

To test whether our attacks also work against IPv6, we con-
figured an OpenVPN server that is reachable over IPv6 and
that offers IPv6 connectivity once the VPN tunnel is estab-
lished. By using v0.6.7 of linux-router [61] we confirmed
that both LocalNet attacks and ServerIP attacks remain pos-
sible when using IPv6. Once IPv6 support is more widely
adopted by VPN apps, it will be interesting to evaluate our
attacks against them when the VPN is using IPv6.

7.3 Ethical Considerations
To avoid ethical issues, we collected data through a passive
approach and carried out experiments in a closed environ-
ment. We neither attack any real VPN servers nor websites

5730 32nd USENIX Security Symposium USENIX Association

on the public network. We registered users and subscribed
to VPN services from corresponding official websites. That
means we were the legitimate users and intended receivers
of the VPN packets. We did not attempt to send unrelated or
malicious packets outside our test environment. To the best of
our knowledge, the data collection process did not violate any
networks’ Terms and Conditions that were presented to the
users. None of the mentioned traffic or network monitoring is
illegal, and we did not impact the public network.

We performed the experiments in a way that does not affect
other legitimate VPN users. Specifically, we perform the two
attacks in an environment with simulated victim users. For the
two attacks, the phishing website is situated within our local
network and cannot be reached by users outside of our test
network. The target website for ServerIP attacks was running
on DigitalOcean with a secret IP. Our experiments did not
cause any levels of denial-of-service to a VPN server, nor did
they attempt to modify or target real websites.

In our experiments, we created a new Wi-Fi AP and did not
imitate an existing network. This AP had a name indicating it
was not a usable network, such as “testnetwork”, and was set
up in our lab where we carried out these experiments.

8 Related Work

Recent research efforts paid considerable attention to VPN
services, products, and ecosystems. In 2018, Zhang et al.
conducted a thorough security analysis of 84 well-known
OpenVPN-based Android applications on the Google Play
market [65]. Meanwhile, an empirical analysis was conducted
on the VPN ecosystem, including the economical and tech-
nical influences of the VPN services [35]. In 2019, Bui et al.
figured out that VPN clients had various configuration flaws
in the cryptographic protocol of VPNs [10]. While in 2020,
Wilson et al. investigated VPN applications for iOS devices,
concerned with the applications for security and privacy is-
sues [62]. A recent study published in 2022 developed a tool
called VPNalyzer that could be used to systematically as-
sess desktop VPN services and investigate the VPN ecosys-
tem [49]. This tool can detect leakage of certain plaintext pack-
ets outside the VPN tunnel, but does not investigate IP routing
manipulations, meaning it is unable to discover our novel at-
tacks. Additionally, a quantitative survey of 1,252 VPN users
and qualitative interviews of nine providers was conducted,
aiming to improve the VPN ecosystem [50] while Streum et al.
focus on evaluating DoS resilience for three major open-
source VPN solutions [55]. Researchers also looked for im-
plementation flaws in VPNs. For instance, Daniel et al. [15]
searched for vulnerabilities in the OpenVPN state machine.
Collectively, these studies outline and emphasize critical secu-
rity issues for VPN applications within the VPN ecosystem.

Several works have studied the accidental leakage of DNS
or IPv6 packets. Khan et al. [35] analyzed a broad set of VPN
providers to study various aspects, including DNS and IPv6

leakage and the leakage of traffic when the VPN tunnel is
temporarily disconnected. Wangchuk et al. [60] analyze DNS
leaks, App permissions, and encryption usage of Android
VPNs. Ikram et al. [30] analyze Android apps for DNS and
IPv6 leakage and other things such as JavaScript injection.
Fazal et al. [22] describe a risk when using hosts with both
a Wi-Fi and Ethernet connection. There is also an RFC that
describes how dual-stack IPv4 and IPv6 hosts might leak traf-
fic [24]. Researchers also studied leaks before the VPN tunnel
was established and how to deal with captive portals in Wi-Fi
networks [11]. Other work abuses flaws in NAT functionality
and the weak host model of Linux that manipulate TCP con-
nections inside the VPN tunnel [56], or abuse ICMP messages
to perform denial-of-service attacks [32, 51].

Many recent studies focus on specific platforms. For in-
stance, VPNalyzer [49] is designed for investigating desktop
VPNs, and the authors in [10] only analyze the vulnerabilities
of desktop VPNs. As for mobile platforms, some research
merely deals with iOS [62], while others only concentrate on
Android [30,65]. In contrast, our research covers both mobile
and desktop platforms, as well as mainstream OSs, including
Windows, Linux, macOS, iOS, and Android.

Ramesh et al. pointed out that some VPNs enabled access
to the default gateway, which was considered a deanonymiza-
tion risk [49], and may imply allowing access to the whole
local network. Closer to our work, the authors in [47] manip-
ulated a victim’s routing table to leak DNS requests outside
the VPN tunnel. This was done by using the gateway option
of DHCP responses and by assigning a small bogus subnet
to the victim that included the DNS server’s IP address. They
studied OpenVPN and PPTP/L2TP, while we cover all exist-
ing VPN protocols. Additionally, our LocalNet attacks can
leak traffic towards any IP address, even if the victim does not
use DNS, and our attack works even when the victim is using
an authenticated DNS protocol such as DNSSec or DoH.

9 Conclusion

We discovered two novel attacks against VPN clients that en-
able an attacker to manipulate a victim’s routing table in order
to leak packets outside the VPN tunnel. We conjecture one
reason why these routing manipulation vulnerabilities were
only discovered more than two decades after the introduction
of VPNs, is that most previous works focused on the VPN
protocols themselves, but only few studied their integration
into real-world clients and platforms.

We found that the security of VPN clients often depends on
the OS, meaning one must always take into account the OS
when discussing the security of a VPN client. We also believe
that the OS should provide a straightforward and secure API
to configure and start VPN clients. This avoids each VPN
having to implement its own firewall or routing table code on
each supported OS, which should increase overall security.

USENIX Association 32nd USENIX Security Symposium 5731

Acknowledgments

This research is partially supported by the Center for Cyber
Security at NYU Abu Dhabi; the Research Fund KU Leuven,
and by the Flemish Research Programme Cybersecurity.

References

[1] Benchmarking Methodology for Network Interconnect
Devices. RFC 2544, March 1999.

[2] https://github.com/vanhoefm/vpnleaks, 2023.

[3] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy:
How diffie-hellman fails in practice. In ACM CCS, 2015.

[4] Omer Akgul, Richard Roberts, Moses Namara, Dave
Levin, and Michelle L Mazurek. Investigating influencer
VPN ads on YouTube. In IEEE S&P. IEEE, 2022.

[5] Suzan Ali, Mounir Elgharabawy, Quentin Duchaussoy,
Mohammad Mannan, and Amr Youssef. Betrayed by the
guardian: Security and privacy risks of parental control
solutions. In ACSAC, 2020.

[6] Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian
Finder. vpwns: Virtual pwned networks. In USENIX
FOCI, 2012.

[7] Apple. macOS catalina 10.15 release notes. developer.
apple.com/documentation/macos-release-notes/macos-
catalina-10 15-release-notes. Accessed May 29, 2023.

[8] Karthikeyan Bhargavan and Gaëtan Leurent. On the
practical (in-) security of 64-bit block ciphers: Collision
attacks on HTTP over TLS and OpenVPN. In ACM
CCS, 2016.

[9] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript
collision attacks: Breaking authentication in TLS, IKE,
and SSH. In NDSS, 2016.

[10] Thanh Bui, Siddharth Rao, Markku Antikainen, and Tuo-
mas Aura. Client-side vulnerabilities in commercial
VPNs. In NordSec, 2019.

[11] Christian Burkert, Johanna Ansohn McDougall, Hannes
Federrath, and Mathias Fischer. Analysing leakage dur-
ing VPN establishment in public Wi-Fi networks. In
IEEE ICC, 2021.

[12] Cisco. Cisco anyconnect. https://www.cisco.com/c/
en/us/support/security/secure-client-5/model.html/.
Accessed September 16, 2022.

[13] Lorenzo Colitti. How the linux networking stack is made
to work on android devices. In Netdev Conf, 2016.

[14] Michelle Cotton and Leo Vegoda. Special Use IPv4
Addresses. RFC 5735, January 2010.

[15] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. In-
ferring OpenVPN state machines using protocol state
fuzzing. In EuroS&P Workshops, 2018.

[16] Jean Paul Degabriele and Kenneth G Paterson. Attack-
ing the IPsec standards in encryption-only configura-
tions. In IEEE S&P. IEEE, 2007.

[17] Jean Paul Degabriele and Kenneth G Paterson. On the
(in) security of IPsec in MAC-then-encrypt configura-
tions. In ACM CCS, 2010.

[18] Danny Dolev and Andrew Yao. On the security of public
key protocols. IEEE Trans. on information theory, 1983.

[19] Jason A Donenfeld. WireGuard: next generation kernel
network tunnel. In NDSS, 2017.

[20] Agnieszka Dutkowska-Zuk, Austin Hounsel, Amy Mor-
rill, Andre Xiong, Marshini Chetty, and Nick Feamster.
How and why people use virtual private networks. In
USENIX Security, 2022.

[21] Kevin R Fall and W Richard Stevens. TCP/IP illustrated,
volume 1: The protocols. Addison-Wesley, 2011.

[22] Lookman Fazal, Sachin Ganu, Martin Kappes, A. S. Kr-
ishnakumar, and Parameshwaran Krishnan. Tackling
security vulnerabilities in VPN-based wireless deploy-
ments. IEEE ICC, 2004.

[23] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam
Czubak, and Marcin Szymanek. The dangers of key
reuse: Practical attacks on IPsec IKE. In USENIX Secu-
rity, 2018.

[24] Fernando Gont. Layer 3 Virtual Private Network (VPN)
Tunnel Traffic Leakages in Dual-Stack Hosts/Networks.
RFC 7359, August 2014.

[25] Google. IPv6 statistics. Retrieved 6 February 2023 from
google.com/intl/en/ipv6/statistics.html, 2023.

[26] Kory Hamzeh, Grueep Pall, William Verthein, Jeff
Taarud, W Little, and Glen Zorn. Point-to-Point Tunnel-
ing Protocol (PPTP). RFC 2637, 1999.

[27] Paul E. Hoffman and Patrick McManus. DNS Queries
over HTTPS (DoH). RFC 8484, October 2018.

[28] Michael Horowitz. VPNs on iOS are a scam. https://ww
w.michaelhorowitz.com/VPNs.on.iOS.are.scam.php,
2022. Accessed May 23, 2023.

5732 32nd USENIX Security Symposium USENIX Association

https://github.com/vanhoefm/vpnleaks
developer.apple.com/documentation/macos-release-notes/macos-catalina-10_15-release-notes
developer.apple.com/documentation/macos-release-notes/macos-catalina-10_15-release-notes
developer.apple.com/documentation/macos-release-notes/macos-catalina-10_15-release-notes
https://www.cisco.com/c/en/us/support/security/secure-client-5/model.html/
https://www.cisco.com/c/en/us/support/security/secure-client-5/model.html/
google.com/intl/en/ipv6/statistics.html
https://www.michaelhorowitz.com/VPNs.on.iOS.are.scam.php
https://www.michaelhorowitz.com/VPNs.on.iOS.are.scam.php

[29] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin,
Duane Wessels, and Paul E. Hoffman. Specification for
DNS over Transport Layer Security (TLS). RFC 7858,
May 2016.

[30] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga
Seneviratne, Mohamed Ali Kâafar, and Vern Paxson.
An analysis of the privacy and security risks of android
VPN permission-enabled apps. In ACM IMC, 2016.

[31] Psiphon Inc. psiphon-ios-vpn. https://github.com/
Psiphon-Inc/psiphon-ios-vpn/blob/332v1.1.20/PsiApi/
Sources/PsiApi/TunnelProviderManager.swift#L316,
2023. Accessed May 23, 2023.

[32] Ludovic Jacquin, Vincent Roca, and Jean-Louis Roch.
Too big or too small? the PTB-PTS ICMP-based attack
against IPsec gateways. In Global Communications
Conference, pages 530–536. IEEE, 2014.

[33] Yunhan Jack Jia, Qi Alfred Chen, Yikai Lin, Chao Kong,
and Z Morley Mao. Open doors for bob and mallory:
Open port usage in android apps and security implica-
tions. In EuroS&P. IEEE, 2017.

[34] Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Ero-
nen, and Tero Kivinen. Internet key exchange protocol
version 2 (IKEv2). Technical report, RFC 7296, 2014.

[35] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M.
Voelker, Alex C. Snoeren, Chris Kanich, and Narseo
Vallina-Rodriguez. An empirical analysis of the com-
mercial VPN ecosystem. In ACM IMC. ACM, 2018.

[36] Yiannis M. create ap. https://github.com/oblique/
create ap, 2013. Accessed September 12, 2022.

[37] Aanchal Malhotra, Isaac E. Cohen, Erik Brakke, and
Sharon Goldberg. Attacking the network time protocol.
In NDSS, 2016.

[38] Moxie Marlinspike. New tricks for defeating SSL in
practice. In Black Hat Briefings, 2009.

[39] Microsoft. Secure Socket Tunneling Protocol (SSTP).
https://docs.microsoft.com/en-us/openspecs/window
s protocols/ms-sstp/. Accessed September 16, 2022.

[40] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug
Tygar. I know why you went to the clinic: Risks and
realization of HTTPS traffic analysis. In PETS, 2014.

[41] David S. Miller. Merge branch ’uid-routing’. Linux
commit 4fb74506838b, retrieved 2 December 2022
from https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=4fb74506838b, 2016.

[42] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter,
Eliot Lear, and Geert Jan de Groot. Address Allocation
for Private Internets. RFC 1918, February 1996.

[43] Moses Namara, Daricia Wilkinson, Kelly Caine, and
Bart P Knijnenburg. Emotional and practical considera-
tions towards the adoption and abandonment of VPNs as
a privacy-enhancing technology. PETS, 2020(1), 2020.

[44] OpenVPN. Openvpn. https://github.com/OpenVPN.
Accessed September 16, 2022.

[45] OpenVPN. Setting up your OpenVPN access server
hostname. Retrieved 6 February 2023 from https://
openvpn.net/vpn-server-resources/setting-up-your-
openvpn-access-server-hostname/, 2023.

[46] Simran Patil and Nikita Borisov. What can you learn
from an IP? In ANRW, 2019.

[47] Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed
Haddadi, and Alessandro Mei. A glance through the
VPN looking glass: IPv6 leakage and DNS hijacking in
commercial VPN clients. PETS, 2015.

[48] Amit Pundir. The state of AOSP common android-4.4
kernel. In Linaro Connect Las Vegas, 2016.

[49] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and
Roya Ensafi. VPNalyzer: Systematic investigation of
the VPN ecosystem. In NDSS, 2022.

[50] Reethika Ramesh, Anjali Vyas, and Roya Ensafi. All
of them claim to be the best: Multi-perspective study of
VPN users and VPN providers. In USENIX Security,
2023.

[51] Vincent Roca, Ludovic Jacquin, Saikou Fall, and Jean-
Louis Roch. New results for the PTB-PTS attack on
tunneling gateways. In GreHack, 2015.

[52] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and
Roy Arends. DNS Security Introduction and Require-
ments. RFC 4033, March 2005.

[53] Bruce Schneier and Mudge. Cryptanalysis of mi-
crosoft’s point-to-point tunneling protocol (PPTP). In
ACM CCS. ACM, 1998.

[54] Charlie Scott, Paul Wolfe, and Mike Erwin. Virtual
private networks. O’Reilly Media, Inc., 1999.

[55] Fabio Streun, Joel Wanner, and Adrian Perrig. Eval-
uating susceptibility of VPN implementations to DoS
attacks using adversarial testing. In NDSS, 2022.

[56] William J. Tolley, Beau Kujath, Mohammad Taha Khan,
Narseo Vallina-Rodriguez, and Jedidiah R. Crandall.
Blind In/On-Path attacks and applications to VPNs. In
USENIX Security 21. USENIX Association, 2021.

USENIX Association 32nd USENIX Security Symposium 5733

https://github.com/Psiphon-Inc/psiphon-ios-vpn/blob/332v1.1.20/PsiApi/Sources/PsiApi/TunnelProviderManager.swift#L316
https://github.com/Psiphon-Inc/psiphon-ios-vpn/blob/332v1.1.20/PsiApi/Sources/PsiApi/TunnelProviderManager.swift#L316
https://github.com/Psiphon-Inc/psiphon-ios-vpn/blob/332v1.1.20/PsiApi/Sources/PsiApi/TunnelProviderManager.swift#L316
https://github.com/oblique/create_ap
https://github.com/oblique/create_ap
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4fb74506838b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4fb74506838b
https://github.com/OpenVPN
https://openvpn.net/vpn-server-resources/setting-up-your-openvpn-access-server-hostname/
https://openvpn.net/vpn-server-resources/setting-up-your-openvpn-access-server-hostname/
https://openvpn.net/vpn-server-resources/setting-up-your-openvpn-access-server-hostname/

[57] Tunnelblick. Tunnelblick | Free open source OpenVPN
VPN client server software for macOS. https://tunnelbl
ick.net, 2022. Accessed September 16, 2022.

[58] Ivana Vojinovic. VPN statistics for 2022 – keeping your
browsing habits private, 2022.

[59] W3Techs. Usage statistics of HTTP strict transport
security for websites. Retrieved 26 January 2023 from
https://w3techs.com/technologies/details/ce-hsts and
https://archive.is/EilrO, 2023.

[60] Tashi Wangchuk, Digvijaysingh Rathod, et al. Forensic
and behavior analysis of free android VPNs. JAETM,
1(1):91–101, 2021.

[61] Gary Will. create ap. https://github.com/garywill/linux-
router, 2023. Accessed May 25, 2023.

[62] Jack Wilson, David McLuskie, and Ethan Bayne. In-
vestigation into the security and privacy of iOS VPN
applications. In ARES, 2020.

[63] Windscribe. Windscribe: Browse the web privately as it
was meant to be. https://github.com/windscribe, 2022.
Accessed September 16, 2022.

[64] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis
Kallitsis, J Alex Halderman, Jedidiah R Crandall, and
Roya Ensafi. OpenVPN is open to VPN fingerprinting.
In USENIX Security, 2022.

[65] Qi Zhang, Juanru Li, Yuanyuan Zhang, Hui Wang,
and Dawu Gu. Oh-pwn-VPN! security analysis of
OpenVPN-based android apps. In CANS, 2017.

Appendix

Listing 1: Psiphon code controlling local network access [31].
It is not vulnerable to LocalNet attacks on iOS 14.1 and 14.2.

1 if # available (iOS 14.0, *) {
2 self .wrappedManager.protocolConfiguration !. includeAllNetworks = true
3 }
4 if # available (iOS 14.2, *) {
5 // Excludes local network on both iOS and macOS running on Apple Silicon .
6 self .wrappedManager.protocolConfiguration !. excludeLocalNetworks = true
7 }

Listing 2: Android’s LegacyVpn class adds an exception for
the VPN server’s IP address. Variable endpointAddress is
empty when using L2TP, causing Android’s built-in VPN to
only be affected by ServerIP attacks when using IPsec Xauth.

1 // Add a throw route for the VPN server endpoint
2 if (endpointAddress instanceof Inet4Address) {
3 mConfig.routes .add(new RouteInfo(
4 new IpPrefix (endpointAddress, 32) , null /*gateway*/,
5 null /* iface */ , RTN THROW));
6 }

Table 1: Results for LocalNet attacks on different VPN clients.
VPN Provider Class OS Version Number LAN Setting | Result

Default LAN Access

OS Built-in VPN

Free Windows Windows 10 Pro No | N/A ✘
Free Windows Windows 11 Pro No | N/A ✘
Free macOS Ventura 13.0.1 No | N/A ✘
Free iOS iOS 16.1.1 No | N/A ✘
Free Android Android 8.1.0 No | N/A ✔
Free Android Android 12 No | N/A ✔

1.1.1.1

Free Windows 2022.10.106.0 No | N/A ✔
Free Linux 2022.9.591 No | N/A ✔
Free macOS 2022.10.107.0 No | N/A △
Free iOS 6.16 No | N/A ✘
Free Android 6.17 No | N/A ✔

Any VPN Free Windows 1.0.8 No | N/A ✘

Avira Phantom Free Windows 1.1.79.5 No | N/A △

Best VPN Free macOS 1.9.1 No | N/A ✘

Betternet

Paid Windows 7.2.1 No | N/A ✘
Paid macOS 2.10.0 No | N/A ✘
Paid iOS 5.31.0 No | N/A ✘
Paid Android 6.2.0 No | N/A ✔

Cisco AnyConnect

Free Windows 4.10.04065 Yes | No ✔
Free Linux 4.10.05095 Yes | No ✔
Free macOS 4.10.04065 Yes | No ✔
Free iOS 5.0.00246 No | N/A ✘
Free Android 5.0.00247 No | N/A ✔

Clario VPN

Paid Windows 5.9.1.1662 Yes | No ✘
Paid macOS 5.9.1.1662 Yes | No ✘
Paid iOS 1.9.28 Yes | Yes ✘
Paid Android 1.9.26.420979 Yes | No ✘

CyberGhost

Paid Windows 8.3.7.9795 No | N/A △
Paid Linux 1.3.4 No | N/A ✘
Paid macOS 8.3.9.167 No | N/A ✘
Paid iOS 8.4.0 No | N/A ✘
Paid Android 8.6.17.1164 No | N/A ✔

ExpressVPN

Paid Windows 12.37.0 Yes | Yes △
Paid Linux 3.36 No | N/A △
Paid macOS 11.12.0 Yes | Yes △
Paid iOS 11.70.0 Yes | Yes X
Paid Android 10.63.2 Yes | Yes ✔

Fast VPN-solo
unlimited proxy Free iOS 2.2.4 Yes | Yes X

Fast VPN
by Namecheap

Paid Windows 3.4.0.0 No | N/A ✘
Paid macOS 3.9.0 No | N/A ✘
Paid iOS 3.7.0 No | N/A ✘
Paid Android 3.4.2 No | N/A ✔

Free VPN
by Free VPN.org

Free macOS 3.884 No | N/A ✘
Free iOS 3.879 No | N/A ✘
Free Android 3.9 No | N/A ✔

Goose VPN

Paid Windows 5.0.0.9 No | N/A ✘
Paid macOS 5.1.3 No | N/A ✘
Paid iOS 5.1.4 No | N/A ✘
Paid Android 5.1.4(195) No | N/A ✔

Hide.me VPN

Free / Paid Windows 3.14.0 Yes |No △
Free / Paid Linux 0.9.2 No | N/A △
Free / Paid macOS 4.7.1 No | N/A ✘
Free / Paid iOS 4.11.0 No | N/A ✘
Free / Paid Android 3.10.0 Yes | Yes X

HideMyAss

Paid Windows 5.21.6744 No | N/A ✘
Paid Linux 0.5 No | N/A ✔
Paid macOS 5.4.7 No | N/A ✘
Paid iOS 5.10.0 No | N/A ✘
Paid Android 5.68.6510 No | N/A ✘

Hotspot Shield

Free Windows 2.10.8 No | N/A ✘
Free macOS 5.3.0b1028 No | N/A ✘
Free iOS 7.9.0 No | N/A ✘
Free Android 9.9.0 No | N/A ✔

IPVanish

Paid Windows 4.1.2.122 Yes | Yes X
Paid macOS 3.3.0(67479) No | N/A ✘
Paid iOS 4.4.0 No | N/A ✘
Paid Android 4.0.3.0 Yes | No ✔

Mullvad

Paid Windows 2022.5.0 Yes | No △
Paid macOS 2022.5 Yes | No △
Paid Linux 2022.5 Yes | No △
Paid iOS 2022.2 No | N/A ✘
Paid Android 2022.3 Yes | No ✔

5734 32nd USENIX Security Symposium USENIX Association

https://tunnelblick.net
https://tunnelblick.net
https://w3techs.com/technologies/details/ce-hsts
https://archive.is/EilrO
https://github.com/garywill/linux-router
https://github.com/garywill/linux-router
https://github.com/windscribe

Network Manager
OpenVPN Gnome

Free Linux 1.1.93 No | N/A ✘
Free Linux 1.8.2 No | N/A ✘
Free Linux 1.8.12 No | N/A ✔
Free Linux 1.8.18 No | N/A ✔

NordVPN

Paid Windows 7.2.2.0 No | N/A △
Paid Linux 1.0.0 No | N/A ✔
Paid macOS 7.12.2 No | N/A ✘
Paid iOS 7.21.1 No | N/A ✘
Paid Android 5.28.0 Yes | No ✔

OpenConnect CLI

Free Linux 7.06 No | N/A ✘
Free Linux 7.08 No | N/A ✘
Free Linux 8.05 No | N/A ✔
Free Linux 8.20 No | N/A ✔
Free macOS 9.0.1 No | N/A ✘

OpenConnect GUI Free Windows 1.5.3 No | N/A ✘
Free macOS 1.5.3 No | N/A ✘

OpenVPN CLI

Free Linux 2.3.10 No | N/A ✘
Free Linux 2.4.2 No | N/A ✘
Free Linux 2.4.7 No | N/A ✔
Free Linux 2.5.5 No | N/A ✔

OpenVPN Connect

Free Windows 3.3.6 No | N/A ✘
Free macOS 3.4.0 No | N/A ✘
Free iOS 3.3.2 No | N/A ✘
Free Android 3.3.0 No | N/A ✔

openvpn3-linux Free Linux openvpn3 19∼beta1 No | N/A ✘

OpenVPN for Andriod Free Android 0.7.14 Yes | Yes X

OpenVPN GUI Free Windows 11.29.0.0 No | N/A ✘

ProtonVPN Free Android 4.3.80.2 Yes | No ✔

Psiphon

Free Windows 176.20221118121227 No | N/A ✔
Free iOS 1.1.13 No | N/A ✘
Free Android 359 No | N/A ✔

PureVPN

Paid Windows 10.0.0.2 No | N/A ✘
Paid Linux 2.2.2 No | N/A ✘
Paid macOS 8.9.1 No | N/A ✘
Paid iOS 9.7.2 No | N/A ✘
Paid Android 8.37.114 No | N/A -

Secure VPN Free iOS 2.6.37 No | N/A ✘
Free Android 4.0.4 No | N/A ✔

ShadowX VPN Free iOS 2.2.0 No | N/A ✘

Shimo Free macOS 5.0.4 No | N/A ✘

SkyVPN
Free Windows 0.9.27 No | N/A ✘
Free iOS 2.0.10 No | N/A ✘
Free Android 2.4.0 No | N/A ✘

SotfEther VPN Free Windows 4.41 No | N/A ✘
Free Linux 4.41 No | N/A ✘

Speedify

Free Windows 12.6.0.10617 No | N/A ✘
Free macOS 12.7.0.1658 No | N/A ✘
Free iOS 12.6.0.11482 No | N/A ✘
Free Android 12.5.0.11584 No | N/A ✔

Star VPN

Free Windows 1.5.4 No | N/A ✘
Free macOS 2.11.0 No | N/A ✘
Free iOS 3.6.0 No | N/A ✘
Free Android 1.8 No | N/A ✘

Strong VPN

Paid Windows 2.6.2.0 No | N/A ✘
Paid macOS 2.2.2 No | N/A ✘
Paid iOS 2.6.0 No | N/A ✘
Paid Android 2.3.3.6 Yes | No ✔

Super VPN - Free iOS 3.2.6 No | N/A -

Secure VPN Master Free Android 1.6.2 No | N/A ✔

TLS Tunnel Free Android 5.0.5 No | N/A ✔

TorGuard

Paid Windows 4.8.13 No | N/A ✘
Paid Linux 4.8.13 No | N/A ✘
Paid macOS 4.8.13 No | N/A ✘
Paid iOS 2.2.8 No | N/A ✘
Paid Android 1.60.9 No | N/A ✘

TouchVPN

Free Windows 2.0.2.274 No | N/A ✘
Free macOS 2.5.6.158 No | N/A ✘
Free iOS 4.4.1 No | N/A ✘
Free Android 2.0.8 No | N/A ✔

TunnelBear

Paid Windows 4.6.1 No | N/A △
Paid macOS 4.1.8 No | N/A ✘
Paid iOS 4.3.2 No | N/A ✘
Paid Android 3.6.8 No | N/A ✔

Tunnelblick Free macOS 3.8.7a No | N/A ✘

Turbo VPN

Free Windows 2.18.0.0 No | N/A ✘
Free macOS 1.8.1(44) No | N/A ✘
Free iOS 2.9.11 No | N/A ✘
Free Android 3.8.7.1 No | N/A ✔

Turbo VPN Lite Free Android 1.1.8.1 No | N/A ✔

Urban VPN Desktop Free macOS 1.10.0 No | N/A ✘

VPN for iPhone· Free iOS 2.1.5 No | N/A ✘

VPN Go Free iOS 2.0.2 No | N/A ✘
Free Android 1.0.25 No | N/A ✘

VPN Hotspot Free macOS 1.4.1 No | N/A ✘

VPN PotatoVPN Free iOS 16.0.1 No | N/A ✘

VPN Proxy Master

Free & Paid Windows 3.13.0.0 No | N/A ✘
Free & Paid macOS 2.15.0 No | N/A ✘
Free & Paid iOS 6.5.5 No | N/A ✘
Free & Paid Android 2.3.0.6 No | N/A ✔

VPN Proxy Master
for iPhone Free iOS 2.1.5 No | N/A -

VPN Shield Free macOS 1.1 No | N/A ✘

VPN Super
Unlimited Proxy

Free iOS 1.9.4 No | N/A ✘
Free Android 1.18.0 No | N/A ✔

VPN Surfshark

Paid Windows 4.4.1 Yes | Yes X
Paid Linux 1.2.3 No | N/A ✔
Paid MacOS 4.5.0 No | N/A ✘
Paid iOS 3.6.3 No | N/A ✘
Paid Android 2.8.2.8 Yes | Yes X

VPN Vault Free iOS 3.48 No | N/A ✘

VPN·· Free iOS 1.50 No | N/A ✘

VPN‘ Free iOS 2.7.2 No | N/A ✘

VPN° Free iOS 3.15 No | N/A ✘

Viscosity Free Windows 1.10.4 No | N/A ✘
Free macOS 1.10.4 No | N/A ✘

VyprVPN

Paid Windows 4.3.1.10763 No | N/A ✘
Paid macOS 4.1.0.8945 No | N/A ✘
Paid iOS 4.4.0.106 No | N/A ✘
Paid Android 4.5.2.113841 No | N/A ✔

Windscribe built-in

Free Windows 2.5.17 Yes | No △
Free Linux 2.5.17 Yes | No ✔
Free macOS 2.4.11 Yes | No △
Free iOS 3.4.1(273) Yes | Yes X
Free Android 3.3.1003 Yes | No ✔

Windscribe 3rd-party Free Linux 2.5.17 Yes | No ✔

WireGuard

Free Windows 0.5.3 No | N/A △
Free Linux 1.0.20210914 No | N/A ✔
Free macOS 1.0.15 No | N/A ✘
Free iOS 1.0.15 No | N/A ✘
Free Android 1.0.20220516 No | N/A ✔

XVPN

Free Windows 73.0 2674 No | N/A ✔
Free macOS 73.1.0 2791 No | N/A ✘
Free iOS 31.3 No | N/A ✘
Free Android 180 2778 No | N/A ✔

✘ always vulnerable, X vulnerable by default LAN-Access-Setting
- vulnerable by using special use IP addresses ✔ always secure,
✔secure by default LAN-Access-Setting, △ local traffic blocked

USENIX Association 32nd USENIX Security Symposium 5735

Table 2: Results of the ServerIP attacks on VPN clients that use plaintext DNS to get the VPN server’s IP address.
VPN Client VPN Service Provider OS Version Number VPN Protocol VPN Port Result

OS Built-in VPN

VPN Gate Windows Windows 10 Pro L2TP/IPsec 500 + 4500 ✘
VPN Gate Windows Windows 10 Pro SSTP 443 ✘
VPN Gate Windows Windows 11 Pro L2TP/IPsec 500 + 4500 ✘
VPN Gate Windows Windows 11 Pro SSTP 443 ✘
VPN Gate macOS Ventura 13.0.1 L2TP/IPsec 500 + 4500 ✘
VPN Gate iOS iOS 16.1.1 L2TP/IPsec 500 + 4500 ✘
VPN Gate Android Android 8.1.0 L2TP/IPsec 500 + 4500 ✔

Personal Server Android Android 8.1.0 IPsec Xauth PSK 500 + 4500 ✘
Personal Server Android Android 9 IKEv2/IPsec 500 + 4500 ✘

VPN Gate Android Android 12 L2TP/IPsec 500 + 4500 ✘
Personal Server Android Android 13 IKEv2/IPsec 500 + 4500 ✔

Cisco AnyConnect

University VPN Windows 4.10.04065 DTLSv1.2 443 G#
University VPN Linux 4.10.05095 DTLSv1.2 443 G#
University VPN macOS 4.10.04065 DTLSv1.2 443 G#
University VPN iOS 5.0.00246 DTLSv1.2 443 ✘
University VPN Android 5.0.00247 DTLSv1.2 443 ✔

Network Manager
OpenVPN Gnome

GooseVPN Linux 1.1.93 OpenVPN 443 ✘
StrongVPN Linux 1.8.2 OpenVPN 1194 ✘
StrongVPN Linux 1.8.12 OpenVPN 1194 ✘
StrongVPN Linux 1.8.18 OpenVPN 1194 ✘

OpenConnect CLI

University VPN Linux 7.06 Cisco AnyConnect 443 ✘
University VPN Linux 7.08 Cisco AnyConnect 443 ✘
University VPN Linux 8.05 Cisco AnyConnect 443 ✘
University VPN Linux 8.20 Cisco AnyConnect 443 ✘
University VPN macOS 12 Cisco AnyConnect 443 ✘

OpenConnect GUI University VPN Windows 1.5.3 Cisco AnyConnect 443 ✘
University VPN macOS 1.5.3 Cisco AnyConnect 443 ✘

OpenVPN CLI

GooseVPN Linux 2.3.10 OpenVPN 443 ✘
StrongVPN Linux 2.4.4 OpenVPN 1194 ✘
StrongVPN Linux 2.4.7 OpenVPN 1194 ✘
StrongVPN Linux 2.5.5 OpenVPN 1194 ✘

OpenVPN Connect

StrongVPN Windows 3.3.6 OpenVPN 1194 ✘
StrongVPN Linux openvpn3 19∼beta1 OpenVPN 1194 ✘
StrongVPN macOS 3.3.6 OpenVPN 1194 ✘
StrongVPN iOS 3.3.2 OpenVPN 1194 ✘
StrongVPN Android 3.3.0 OpenVPN 1194 ✔

OpenVPN for Android HideMyAss Android 0.7.14 OpenVPN 553 ✔

SoftEther VPN VPN Gate Windows 4.41 SoftEther 443 ✘
VPN Gate Linux 4.41 SoftEther 443 ✘

Shimo University VPN macOS 5.0.4 DTLSv1.2 443 ✘

Tunnelblick StrongVPN macOS 3.8.7a OpenVPN 1194 ✘

Viscosity StrongVPN Windows 1.10.4 OpenVPN 443 ✘
StrongVPN macOS 1.10.4 OpenVPN 443 ✘

Windscribe 3rd-party

StrongVPN Windows 2.5.17 OpenVPN 1194 ✘
StrongVPN Linux 2.5.17 OpenVPN 1194 ✘
StrongVPN macOS 2.4.11 OpenVPN 1194 ✘
GooseVPN iOS 3.4.1 OpenVPN 443 ✘
GooseVPN Android 3.4.1085 OpenVPN 443 ✔

WireGuard

Surfshark Windows 0.5.3 WireGuard 51820 ✔
Surfshark Linux 1.0.20210914 WireGuard 51820 ✔
Surfshark macOS 1.0.15 WireGuard 51820 ✔
Surfshark iOS 1.0.15 WireGuard 51820 ✔
Surfshark Android 1.0.20220516 WireGuard 51820 ✔

✘ always vulnerable, G# partially vulnerable for some ports, ✔ always secure

5736 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Virtual Private Networks
	IP Routing Table and VPNs
	Configuration of DNS Servers

	Threat Model
	IP-Routing Exception Attacks
	LocalNet Attacks
	Leaking local traffic.
	Blocking traffic.

	ServerIP Attacks
	Leaking server IP traffic.
	Leaking arbitrary traffic.
	Blocking traffic.

	Measurements and Experimental Validation
	VPN Selection Criteria
	Hardware and Software Setup
	LocalNet attacks: Experimental Setup
	LocalNet Attacks: Results
	The OS influences the security of VPN clients.
	All VPN apps on iOS are vulnerable and only one VPN app on macOS is secure.
	8.2% of clients block traffic towards non-RFC1918 IP addresses in the local network.
	The behavior of three VPN clients depended on the version being used.
	Three VPN apps used DNS servers that always returned special use IP addresses.
	Several VPNs have an option to (dis)allow local network access.
	Windscribe and ExpressVPN only allow local network access when using RFC1918 private IP addresses.
	Four tested VPNs provide only a browser whose traffic is secured.

	ServerIP Attacks: Experimental Setup
	ServerIP Attacks: Results
	Two VPN providers' custom clients are vulnerable.
	The built-in IKEv2 API on iOS is vulnerable.
	76% of tested VPN profiles use hostname(s) instead of static IP address.
	The OS influences the security of VPN clients.
	Cisco AnyConnect only leaks traffic on selected ports.
	The behavior of two clients depended on the chosen VPN server.
	Static server IP addresses are still a privacy risk.
	Some apps use proprietary protocols or software updates to get the server's IP address.
	Android's built-in VPN is more vulnerable than its VPN apps.

	Countermeasures
	Countermeasures to LocalNet Attacks
	Disable local traffic.
	Filtering excluded local IPs.

	Countermeasures to ServerIP Attacks
	Policy-based routing.
	Verifying the server IP address.
	Authenticated DNS.

	Discussion
	Impact and Practical Consequences
	Applicability against IPv6
	Ethical Considerations

	Related Work
	Conclusion

