
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Silent Bugs Matter:
A Study of Compiler-Introduced Security Bugs

Jianhao Xu, Nanjing University; Kangjie Lu, University of Minnesota; Zhengjie Du,
Zhu Ding, and Linke Li, Nanjing University; Qiushi Wu, University of Minnesota;

Mathias Payer, EPFL; Bing Mao, Nanjing University
https://www.usenix.org/conference/usenixsecurity23/presentation/xu-jianhao

Silent Bugs Matter: A Study of Compiler-Introduced Security Bugs

Jianhao Xu1 Kangjie Lu2 Zhengjie Du1 Zhu Ding1 Linke Li1 Qiushi Wu2 Mathias Payer3 Bing Mao1

1State Key Laboratory for Novel Software Technology, Nanjing University
2University of Minnesota 3EPFL

Abstract
Compilers assure that any produced optimized code is se-
mantically equivalent to the original code. However, even
“correct” compilers may introduce security bugs as security
properties go beyond translation correctness. Security bugs
introduced by such correct compiler behaviors can be dis-
putable; compiler developers expect users to strictly follow
language specifications and understand all assumptions, while
compiler users may incorrectly assume that their code is se-
cure. Such bugs are hard to find and prevent, especially when
it is unclear whether they should be fixed on the compiler or
user side. Nevertheless, these bugs are real and can be severe,
thus should be studied carefully.

We perform a comprehensive study on compiler-introduced
security bugs (CISB) and their root causes. We collect a large
set of CISB in the wild by manually analyzing 4,827 potential
bug reports of the most popular compilers (GCC and Clang),
distilling them into a taxonomy of CISB. We further conduct
a user study to understand how compiler users view compiler
behaviors. Our study shows that compiler-introduced security
bugs are common and may have serious security impacts. It is
unrealistic to expect compiler users to understand and comply
with compiler assumptions. For example, the “no-undefined-
behavior” assumption has become a nightmare for users and
a major cause of CISB.

1 Introduction

Compiled code must conform to the source code. The cor-
rectness of compilers is therefore tested [49, 118] and veri-
fied [27, 69]. A compiler is considered correct if it produces
code that is semantically equivalent to the original [80]. Such
a correctness assurance however does not ensure security.
D’Silva et al. [30] presented multiple cases in which correctly
implemented compiler optimizations still introduce severe
security issues like information leaks. We refer to compiler-
introduced security bugs as CISB.

Several fundamental reasons cause compilers to introduce
security bugs. (1) The security-related program states exceed

the scope of semantic functionalities of language specifica-
tions. The abstraction of source code can cover program states
related to security but not semantic functionalities, e.g., the
lifetime/region of sensitive data. Correctly implemented com-
piler optimizations, however, cannot preserve such program
states by design. Figure 1 shows an example in the Linux
kernel; the memset at line 5 is supposed to scrub sensitive
data on memory to prevent information leaks. However, with-
out specification on how to prevent information leaks (which
is orthogonal to functional semantics), compilers may elimi-
nate this memset after inferring that the stored variable hash
is never read later. As a countermeasure, developers must
resort to memzero_explicit at line 6 which prohibits com-
piler optimization. (2) The specifications can be implicit. The
specifications permit a compiler to provide the correctness as-
surance just for so-called “well-defined” code. However, pro-
gram states outside the scope (such as some undefined behav-
iors) can also be used to represent security properties. These
implicit specifications allow the compiler to do aggressive op-
timizations that may break security properties. For example,
a programmer may add a bound check like if(x+10<x) to
detect a signed integer overflow of x, but the compiler may as-
sume (according to the language specification) that the source
code is free of signed overflows and thus eliminates the check.

Such manipulation of security-related program states can
be opaque. As a result, even experienced developers may inad-
vertently and unknowingly write code that can be optimized to
contain security bugs. Existing approaches use tricks [29, 78]

1 /* commit: d4c5efdb97773f59a2b711754ca0953f24516739 */
2 /* drivers/char/random.c */
3 static void extract_buf(struct entropy_store *r, __u8 *out) {
4 ...
5 - memset(&hash, 0, sizeof(hash));
6 + memzero_explicit(&hash, sizeof(hash));
7 }

Figure 1: A Linux kernel patch for preventing the GCC elimination
of sensitive-data scrubbing. Note that memzero_explicit() has been
patched twice later: The first [91] prevented an optimization in GCC,
while the second [74] targeted Clang.

USENIX Association 32nd USENIX Security Symposium 3655

to “tame” the compiler; however, these tricks may fail with a
new compiler, as compiler optimizations constantly improve.

Because of these fundamental reasons, CISB are surpris-
ingly common. For example, Wang et al. [109] uncovered 160
such bugs in widely deployed systems; Lu et al. [65] detected
13 known and 10 new compiler-introduced information-leak
vulnerabilities in the Linux kernel. In addition to the findings
of these targeted studies, many CISB are reported by end-users
in the wild, such as a large number of CVE-assigned vulnera-
bilities [71, 72]. CISB can be exploitable, e.g., Jian et al. [90]
convert a CISB which eliminates a null pointer check to a
Use-After-Free, escaping the Chrome sandbox in the Tianfu
Cup 2020. CISB must be found and fixed just like the bugs
introduced by developers, but they are more challenging to
discover (thus having a longer latent period), i.e., the number
of undiscovered CISB may be large.

Therefore, it is important to study CISB. The research field
is however under-studied (§10). D’Silva et al. [30] defined the
correctness-security gap and three classes of such security
bugs by reasoning about them. Wang et al. [108] collected
a list of real-world examples of 7 known undefined behav-
iors. Wang et al. [109, 110] developed a static checker to
detect CISB due to a dozen kinds of undefined behavior. Lu
et al. [65] investigated information-leak bugs introduced by
uninitialized padding bytes introduced by compilers. Yang et
al. [119] and Sprundel [103] studied CISB caused by Dead
Store Elimination. Yang et al. [119] developed an optimiza-
tion pass for scrubbing-safe dead store elimination. These
studies each focus on a few patterns, but the breadth of the
problem calls for a comprehensive study of real-world CISB.

We first conduct a labor-intensive study to collect CISB in
the wild. (§2) From the tremendous number of bug reports re-
ported to both the compilers and target programs, we perform
our filtering strategy and get a set of potential CISB reports
with 4,827 cases. Then we spend about 1,500 person-hours
analyzing, confirming, and reproducing all potential CISB.

Based on our CISB dataset, we further investigate the fol-
lowing research questions:

• RQ1: What are the causes, formation, and security impacts
of CISB? (§3, §4, and §5)

• RQ2: What are the knowledge and views of programmers
about CISB and the mitigations? (§6)

• RQ3: What are the risks of existing mitigations? (§7)
• RQ4: What are the challenges and opportunities for further

research? (§8)

We derive multiple important findings and lessons from
the study, including: (1) CISB are much more diverse than
previously thought. (2) CISB are common in the wild and
have severe security impacts. (3) The widely adopted “no-
undefined-behavior” assumption for compiler optimizations
has become a major cause of CISB. (4) A large percentage of
C programmers are oblivious to this assumption, and there is
still a knowledge gap between knowing about the assumption

and avoiding CISB. (5) The CISB mitigations provided by
compilers are effective for a small part of CISB but suffer
from high-performance overhead. (6) The CISB mitigations
may further be bypassed by compiler optimizations.

Through this study, we highlight future research opportu-
nities on secure compilation. In particular, compiler users
are expected to prevent CISB, while they generally have less
knowledge of CISB compared to compiler developers. Thus,
CISB still widely exist. We should instead develop automated
techniques that avoid problematic compiler optimizations or
precisely detect potential victim code. This research will hope-
fully guide and motivate further research; secure compilation
still has a long way to go. To this, we contribute the following:

• We identify a large set of different kinds of CISB in
the real world with a practical methodology. Our CISB
dataset is available at https://sites.google.com/
view/cisb-study. We propose a taxonomy of CISB
(Table 4) based on the root causes, formation, and secu-
rity impacts for each class.

• We perform a user study (N=62) demonstrating that C
programmers often lack knowledge and have difficulty
understanding CISB (§6). The questionnaire is available
in our published dataset. We hope the study results pro-
vide feedback to security and compiler research.

• We investigate and show the risks of existing mitigations.
Specifically, (i) we show CISB prevention performed by
programmers is risky, derived from real cases; (ii) we
perform a comprehensive evaluation of existing mitiga-
tions provided by compilers, with our dataset.

• We shed light on future research based on the new knowl-
edge obtained and revisit current research progress on
this problem. By showing the challenges and opportu-
nities ahead, we hope this study serves as a motivation
and guidance for future research on secure compilation.

2 The CISB Dataset

2.1 Problem Scope and Attacker Model
We define a software bug as a CISB when:

• the code, when executed without optimization, has no secu-
rity issues on the target machine;

• compiler optimizations modify the code during compilation,
creating the vulnerability;

• the code should not contain any incorrect usage of language
keywords 1;

• the compiler optimization is formally correct, i.e., the com-
piler does not violate any language specification.
1C keywords like C attributes provide a way to annotate language con-

structs such as variables, functions, or types, which can convey information
to help compiler optimizations.

3656 32nd USENIX Security Symposium USENIX Association

https://sites.google.com/view/cisb-study
https://sites.google.com/view/cisb-study

It is worth noting that the term “introduced” in CISB is only
used to describe that the bug is created during the compilation
phase, but is not present in the source code. The term is not
supposed to assign responsibility.
Attacker Model. Our definition of a security bug is impact-
driven. That is, we define a bug as a security bug when it can
cause security impacts (breaking integrity such as memory
corruption, availability such as crashing, or confidentiality
such as leaking information). Triggerability (i.e., how to reach
a bug) is out of scope because we focus on bug types rather
than concrete bug cases. When conditions are met, all CISB
types we studied can be reachable in specific programs.

Since our determination of a CISB is impact driven, in the
following, we discuss common security impacts we encoun-
tered during our study.

• Introducing invalid instructions such as division-by-0. Such
invalid instructions would crash (breaking availability) the
program on some architectures.

• Introducing memory errors, including out-of-bound access,
use-after-free, and uninitialized uses. Memory errors are
generally security-critical, so they are in the scope of CISB.

• Introducing resource exhaustion such as infinite loops and
deadlocks, breaking availability.

• Introducing race conditions such as TOCTTOU [112] (or
Double Fetch [116]) bugs. Race conditions can further
cause critical attacks [113]. However, not all introduced
race conditions are security-critical, requiring us to confirm
their impact manually.

• Introducing other impacts. There could be other security
impacts such as side-channel attacks. To handle those cases,
we manually analyze them individually.

2.2 Methodology of Bug Collection
To comprehensively study CISB, we first need to collect a
substantial set of real compiler-introduced security bugs, as
no such dataset exists. Our rationale for collecting CISB is
that when a compiler-introduced bug is discovered, in general,
two things would happen: either the compiler maintainers fix
the compiler issue, or the compiler users modify their code
to avoid the compiler optimizations. We collect compiler-
introduced bugs (mixed with compiler bugs) from the follow-
ing two sources.
Bugzilla for compilers. First, we collect bug reports
that users submitted to the compiler bug trackers (GCC-
Bugzilla [36] and LLVM-Bugzilla [62]). In general, we find
that they include substantial information about different kinds
of potential compiler issues. However, most cases are not in
our study scope; compiler users often report non-compiler
cases or cases related to compiler correctness. It is worth not-
ing that this project considers cases orthogonal to compiler
correctness; interestingly, such cases are usually marked as
INVALID [98] by compiler developers (since their Bugzilla is

set to track compiler correctness bugs). Among these cases,
some are indeed related to CISB (our targets) while most of
them are not; so we manually review all reports to identify
cases that introduce security bugs.

Program patches related to compiler issues. To quickly
avoid erroneous compiler optimizations, compiler users often
change their source code to avoid the optimizations (instead
of trying to change compiler behaviors). In this case, a patch
will be issued and typically contains information on how
compilers may introduce bugs. Therefore, we use the patch
history of popular OSS programs as the second bug source.
In particular, we pick the Linux kernel as the target because it
has a huge and diverse code base with many corner cases that
would trigger optimization issues.

Combining the aforementioned methods, we initially col-
lected 9,334 GCC Bugzilla bug reports, 1,443 LLVM Bugzilla
bug reports, and 998,963 unique kernel commit logs. To fur-
ther refine the bug report set, we propose the following method
to find the most relevant CISB cases.

• We first select related Bugzilla reports based on their at-
tribute values. Attribute values are assigned when the com-
piler user submits the bug report to Bugzilla. For example,
we observe that, for a CISB, when asked to assign which
component of the compiler has the bug, compiler users tend
to choose values like "-New Bugs" or "LLVM Codegen".

• We further use the cross-keyword strategy to select the most
relevant git logs of the Linux kernel. That is, we define
some groups of keywords; each represents similar cases.
We can use the intersection of git logs in different groups
to discover the most relevant cases. Table 1 shows some of
our intersection results.

This scheme allows us to target the most relevant cases. Fi-
nally, we select 1,601 cases from Bugzilla and 3,226 from
the Linux patch history for manual analysis. This scale is
larger than other existing studies that require manual inspec-
tion [77, 89, 120], which involves hundreds of StackOverflow
pages or GitHub commits.

Table 1: The result of keyword intersection in the Linux kernel
(5.16) The grey cells represent the git commits we collected. We use
regular expressions such as "[Gg]cc|GCC" for keyword "gcc"(The
details are shown in Table 8 of Appendix).

gcc clang compiler optimize security attack
gcc 9,658 - - - - -
clang - 3,285 - - - -
compiler - - 9,101 - - -
optimize 651 159 883 11,696 - -
security 138 62 114 112 6,356 -
attack 21 9 24 31 152 1032

USENIX Association 32nd USENIX Security Symposium 3657

2.3 The Bug Set
From this labor-intensive study, we collect 120 CISB; 68 from
1,601 Bugzilla reports, and 52 from 3,226 Linux patches. This
sample set is similar to other bug study works involving man-
ual inspection e.g., 146 bugs in [89], 109 bugs in [44]. These
bugs can be summarized as 48 unique CISB types. (We group
bugs with the same cause and impact into a unique bug type.)
From them, we reproduce 34 unique CISB types. Vulnera-
bility reproduction is laborious [73], and reproducing CISB
is often harder, as it requires triggering certain compiler be-
haviors while avoiding the effects of unrelated optimizations.
We were unable to reproduce the remaining cases due to the
lack of triggering environment settings or because they were
related to some architectures that we were unable to test.
Bug Distribution. Table 2 shows the number of security bugs
for each class (see the classification in Table 4). First, CISB are
much more diverse than previous studies [30, 108] thought.
Second, we found fewer Orthogonal Specification (defined in
§3.1) cases in Bugzilla, probably because users know such
situations and choose not to report them to Bugzilla. However,
these cases are also common, according to their distribution
in the Linux patch history. Table 3 shows the distribution of
CISB by year, which indicates that the incidence of CISB in
recent years trends higher than in earlier years. Additionally,
the universal application of compilers and optimizations in-
creases the impacts of CISB. Lots of software can be affected,
such as the Linux kernel, impacting many end-users.
Security Impacts of CISB in Real World. The CISB we
found can lead to different types of security impacts. Specifi-
cally, 21.6% can cause system hanging (DoS), 50.8% lead to
crashes, and 19.2% lead to information leaks. The remaining
8.3% are related to security check bypassing, which may lead
to, e.g., memory errors or information leaks, depending on
the guarding checks.
Dataset Sharing. Our dataset is available online, including
test cases and their triggering oracles for all the reproduced
CISB. This dataset can benefit the research community in
several ways. In addition to helping researchers to develop and
evaluate new techniques for CISB detection and prevention,
the CISB cases can serve as educational and training materials
for students and junior analysts.

3 RQ1: General Causes and Classifications

3.1 Fundamental and General Causes
To answer why a CISB happens requires answering why the
compiler’s transformations dismantle the security property
specified by programmers. Based on all the cases we found in
the study, we summarize them as two general root causes of
CISB. In summary, security properties can be represented by
source-level abstraction [80], but are orthogonal to the func-
tionality of semantics, while the correctness of programming

languages like C/C++ lies in maintaining semantic equiva-
lence. Therefore, the security boundary in the source is invisi-
ble to current compilers.
Root Cause 1: Implicit Specification (ISpec). The com-
piler makes assumptions that conflict with the functionality
of the code in respect to the security property. This allows the
compiler to perform aggressive optimizations to dismantle the
security property. For example, the compiler can assume Un-
defined Behavior does not exist, while programmers may rely
on the execution result of the Undefined Behavior to ensure
the required security property. We refer to the specification
of these assumptions as Implicit Specification (ISpec) as they
implicitly disallow the functionality which the explicit execu-
tion result can verify. Such specifications can be those of the
language specification or other de-facto ones of the compiler.
In Figure 2, the compiler user blames the compiler for elim-
inating the null pointer check on line 6. The conflict here is
that the compiler assumes that a null pointer dereference does
not exist while the programmer leaves a null pointer derefer-
ence at line 4 as it is useful and does not cause a segmentation
fault in some environments such as embedded ARM devices.
Based on this assumption, as the pointer b is dereferenced at
line 5, the compiler infers that the pointer cannot be null at
line 6. Such a removed check will propagate the null pointer
and may endanger the system. For example, accessing such
an escaped null pointer may be exploited to gain execution
control by rewriting the interrupt table [10].

1 /* GCC bugzilla id:33629 */
2 void bad_code(void *a)
3 {
4 int *b = a;
5 int c = *b;
6 if (b) {
7 ...
8 }
9 ...

10 }

Figure 2: A GCC Bugzilla case showing that the compiler assump-
tion of undefined behaviors eliminates necessary security checks.

Root Cause 2: Orthogonal Specification (OSpec). The se-
curity property exceeds the semantic functionality scope of
language specifications. We refer to the theoretical specifi-
cation required to preserve security during compilation as
an Orthogonal Specification (OSpec); they are orthogonal
to those of correctness. Such security properties can be the
execution time or the lifetime/region of sensitive data. For ex-
ample, Figure 1 shows a typical case in the Linux kernel where
the compiler introduces an information leak, as the confiden-
tiality of sensitive data is orthogonal to semantic functionality.
The memset should clear the sensitive buffer after its last use
to prohibit a memory disclosure vulnerability from revealing
the secret. Unfortunately, the compiler may eliminate it when
performing dead store elimination (DSE), because the newly
stored value is never used. The sensitive data then persists
in memory and may be disclosed by an attacker or captured
in a memory dump, thus leaking information. Note that such

3658 32nd USENIX Security Symposium USENIX Association

Table 2: Statistics of bugs reported to Bugzilla and in the Linux kernel. Table 4 shows the classification. ISpec is short for implicit specification
and OSpec is short for Orthogonal Specification (both defined in §3.1). We attribute bugs with the same cause and impact to a unique kind.

Bug class bugs Bugzilla bugs Kernel bugs
Unique bugs Total Proportion Unique bugs Total Unique bugs Total

ISpec1: Eliminating security related code 18 59 0.49 13 50 8 9
ISpec2: Reordering order-sensitive security code 7 10 0.08 1 4 6 6
ISpec3: Introducing Insecure Instructions 17 25 0.21 5 12 12 13
OSpec1: Making sensitive data out of bound 3 20 0.17 2 2 3 18
OSpec2: Breaking timing guarantees 2 5 0.04 0 0 2 5
OSpec3: Introducing insecure micro-architectural side effect 1 1 0.01 0 0 1 1

All 48 120 21 68 32 52

Table 3: Temporal distribution (report date) of bug classes. Bug
classes are like in Table 2. The 04-06 refers to the year 2004 to 2006.

Years 04-06 07-09 10-12 13-15 16-18 19-21
ISpec1 1 12 14 10 11 11
ISpec2 2 2 6
ISpec3 3 4 4 10 4
OSpec1 1 1 8 4 6
OSpec2 2 2 1
OSpec3 1
All 5 17 18 26 26 28

security specifications form a general abstraction of program
specifications. They are related to general security properties
but not limited to a specific program.

3.2 Three-Layer Classification

While there are two general root causes, in our study we
observe that they can lead to various insecure compiler be-
haviors that result in security consequences. We propose a
three-layer taxonomy, as shown in Table 4. This classification
aims to help understand CISB from different perspectives:
root causes(§3.1), insecure compiler behaviors, and security
consequences. See corresponding examples in §4 and §5.

4 RQ1: Implicit-Specification

This section explains the causes of CISB of Implicit Speci-
fications (ISpec): how these bugs happen and their impacts
according to our taxonomy and real-world cases.
Causes. As shown in §3.1, the root cause of ISpec cases is the
conflict between compilers’ implicit assumptions and source
code functionalities (ISpec-conflict). In particular, based on
our identified cases, the assumptions involved in the ISpec-
conflict can be divided into three classes.

• No-UB, is the most common type of ISpec where compilers
assume that the source code is free of Undefined Behavior
(UB). Language specifications permit this assumption to
reduce compiler complexity and help compilers produce
faster code. A conflict arises when programmers rely on the
execution of UB for the functionality of their code. Note
that CISB of No-UB (UB-CISB) is different from UB bugs:

triggering UB in the source code of UB-CISB will not cause
any correctness or security issues.

• Default-behavior, is the type of ISpec where compilers de-
cide it is appropriate to perform certain default behaviors or
make default assumptions. For example, compilers may pro-
mote other types to int (integer promotion), and compilers
assume functions always return by default. A conflict arises
when programmers expect that such Default-behavior does
not happen in their source code.

• Environment, is the type of ISpec where compilers assume
some implementation details of the environment such as
whether an instruction type should be used or memory align-
ment of subtypes. The conflict arises when programmers
write tailored code on their target machine which does not
match the Environment.

How a security bug happens. The ISpec-conflict acts only
as a prerequisite for a CISB. The bug will not happen until (i)
the compiler obtains additional information from inferences
based on such ISpec assumptions, (ii) the compiler performs
optimizations based on such information and breaks the func-
tionality of the security property. The aggressive inference
based on ISpec can be about the range of a variable’s value
or the ordering relationship of two operations. Such informa-
tion can help compilers infer redundant code or candidate
instructions for reordering or replacement.
Insecure optimization behaviors. For ISpec cases, the se-
curity property should be in the functionality scope of com-
piler specifications. Then insecure optimization behaviors that
break the security property must be a modification of function-
ality, i.e., it can be the elimination, reordering, or introduction
of code actions. We will now (i) discuss real-world cases for
a concrete look at ISpec cases, i.e., showing which inference
is used and the concrete ISpec-conflict; (ii) demonstrate their
security impacts.

4.1 Eliminating Security-related Code
Code elimination is a class of common optimization behaviors
such as Dead Code Elimination or Dead Store Elimination;
the elimination is performed based on the inference of values,
relations, or the status of operations. A CISB happens when
the inference is derived from ISpec and conflicts with the

USENIX Association 32nd USENIX Security Symposium 3659

Table 4: A three-layer taxonomy of compiler introduced security bugs.

Root cause Insecure optimization behaviors Security consequences

Eliminating security related code §4.1 Elimination of security checks

Implicit Specification §4 Elimination of critical memory operations

(No-UB, Default-behavior, Reordering order-sensitive security code §4.2 Disorder between order-sensitive memory operations

and Environment) Disorder between security checks and dangerous operations

Introducing insecure instructions §4.3 Introduction of invalid instructions of certain environments
Introduction of insecure logic

Orthogonal Specification §5

Making sensitive data out of bound §5.1 Violation of sensitive data’s living-time boundary
Violation of sensitive data’s space(memory) boundary

Breaking timing guarantees §5.2 Introduction of the time side channel
Disordered concurrency sequence due to modification of duration

Introducing micro-architectural side effects §5.3 Introduction of bounds check bypass vulnerability

source code. For the cases whose security-related code has
been eliminated, we further divide them based on the specific
security consequences, including eliminating security checks
and critical memory operations.
Elimination of security checks. Security checks [64] are
conditional statements used to check the value or status of
some variables to further ensure security. Common security
checks include NULL checks, bound checks or permission
checks. When being eliminated, their protection for these
security guarantees is broken.

The security impact depends on what the eliminated check
protected. One common impact is introducing an infinite
loop; it happens when the condition check is used as a loop
check. As for those caused by No-UB, the most common
impact is introducing an unexpected UB such as null pointer
dereference, division by 0, or out-of-bound access. Next, we
discuss real cases by the involved inference and ISpec-conflict.
(i) Value range inference via No-UB. With such an inference,
the compiler can decide a security check is redundant. Typical
cases include assuming no signed integer overflow and no
null pointer dereference (such as shown in Figure 2).
(ii) Same value inference via Default-behavior. The compiler
can eliminate subsequent checks of the same value with such
an inference. As in a case on the Linux kernel [47], the value
can also be the return value of a function. The ISpec-conflict
exists in this case when the compiler infers that two adjacent
callings of function have_cpuid_p() share the same return
value while the value may be affected by global. That is
because the function may access flag registers in the inline
assembly code and flag registers are “global”.
Elimination of critical memory operations. The elimi-
nated security code may be critical memory operations. This
is mainly caused by implicit inferences against some mem-
ory objects and incorrectly determining necessary memory
operations as redundant.

The security impacts are mostly memory corruptions, e.g.,
uninitialized memory access when initialization is eliminated.
As the value of the victim variable is modified, sometimes it
may break the intended logic and introduce specific insecure
logic, like bypassing security checks [39].
(i) Redundant memory-operation inference via No-UB. Com-

pilers can make such inferences when the memory operations
involve one or more UB. For example, compilers assume no
modification against a constant variable and no strict alias
violation. However, developers may need to modify the con-
stant variable to do the initialization [29]. In this case, this
trick works for GCC with a memory barrier but Clang will
determine the barrier redundant and remove the initialization.
Compilers also assume no data race, based on which compil-
ers can falsely decide unused objects and remove operations
such as initialization against them [85].
(ii) Value not-used inference of Implicit Default-behavior. A
typical ISpec-conflict exists when a memory cell is only read
in the asm block but not listed in the “Input Operands”. Ac-
cording to the specification [37], if a value is in the “Input
Operands”, it is read in the asm block. However, the compiler
infers that if the value is not in the “Input Operands”, then
it is not read in the asm block. Such an implicit inference
is not logically equivalent to the specification. Note if the
inference is explicitly expressed in specifications, then the
source allows "Value not-used inference" by specifications.
This case is therefore not CISB but a source bug. One such
case in the Linux kernel [12] results in a file system failure.

4.2 Reordering Order-sensitive Security Code

Some security-related operations have a strict ordering re-
quirement; breaking the ordering may cause security issues.
This behavior is often caused by the compiler’s improper
inference of the relation among some operations based on No-
UB and Default-behavior. The security consequences depend
on which part of the code is reordered.
Disorder between order-sensitive memory operations.
Due to No-UB, compilers may make inferences to judge
the relation among memory operations and reorder them.
However, such reordering may violate security rules, lead-
ing to security bugs. We found that such disorder can eas-
ily cause memory corruption, e.g., when the initialization
of a variable is reordered to be after its uses, which leads
to uninitialized uses. This can also introduce data races
and corruption. We found that common related compiler as-
sumptions are no strict-aliasing violation and no data races,

3660 32nd USENIX Security Symposium USENIX Association

and we found ample security bugs caused by these assump-
tions [2, 28, 35, 40, 58, 101, 107, 115].
Disorder between security checks and critical operations.
Commonly, critical operations are executed only when they
pass security checks. Therefore, the reordering of them would
immediately result in the bypassing of the security checks. In
the case shown in Figure 3, the order of the check in line 2
and the division in line 7 must be ensured. The compiler by
default assumes the function ereport to return. That is, line
7 will always be executed no matter which branch is taken
and arg2 is unchanged between line 2 and line 7. Based on
such inference, the compiler of some architecture will move
the division at line 7 ahead of the check at line 2, eventually
bypassing the check, introducing a new division-by-zero and
terminating the application.

1 /* debian bugreport id:616180 */
2 if (arg2 == 0)
3 ereport(ERROR,/* will not return */
4 (errcode(ERRCODE_DIVISION_BY_ZERO),
5 errmsg("division by zero")));
6 /* arg2 cannot be 0 here */
7 result = arg1 / arg2;

Figure 3: A case about function return assumption caused security
check reordering. GCC on SPARC64 moves the division in line 7
before the check in line 2, resulting in a divide-by-zero issue.

4.3 Introducing Insecure Instructions

Compilers can also introduce insecure code via implicit spec-
ifications (e.g., the assumptions of alignment or the layout
of structures), thereby undermining security guarantees. We
again divide this class based on the security consequences of
such translation.
Introduction of invalid instructions of certain environ-
ments. Compilers can produce invalid instructions when
the actual environment differs from the assumed one or when
the default behavior does not fit a real scenario.

Based on such inference, the compiler can produce other-
wise invalid instructions in a certain environment. A typical
case in our study is that compilers may produce unaligned
access on align-required architectures or use align-required
instructions to perform unaligned access. As is shown in an
LLVM case [25], the compiler uses a VLDR, an align-required
instruction on ARM Cortex-M4, to perform a faster 4 byte
read even when the memory access is unaligned. A hardware
crash happens when a VLDR is performed in an unaligned way.
Functionality inference via Default-behavior. Based on such
inference, compilers can produce insecure logic. For example,
on GCC Bugzilla [100], the compiler replaces a calling of
printf() to puts() with such inference. However, puts()
does not allow NULL as a parameter while printf() does.
As a result, the compiler optimization causes the program to
crash when puts() receives a NULL parameter.
Introduction of insecure logic. Compilers can make as-

sumptions that do not fit a real scenario and further modify
the explicit user-expected logic in the source code. Such trans-
formation may introduce security problems when the original
logic is modified to an insecure one.
Standard function inference via Environment. A ISpec-conflict
may exist when programmers define their own standard func-
tions. We found such a case in the Linux kernel, as shown
in Figure 4. The compiler assumes that memset() must re-
turn, and the return value is its first argument, i.e., the pointer
waiter. As the return value of ARM functions is stored in
the register R0, the compiler can further infer that the value
of waiter is stored in R0 after the call of memset() in line 5.
With these inferences, the compiler replaces waiter with R0
in line 6 and line 7. However, this kernel version of memset
should not return any value. Therefore, R0 can be used for
other purposes and cannot represent the waiter in line 6
and line 7; changing this pointer to R0 will cause memory
corruption.

1 /* commit: 455bd4c430b0c0a361f38e8658a0d6cb469942b5 */
2 void debug_mutex_lock_common(struct mutex *lock,
3 struct mutex_waiter *waiter)
4 {
5 memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter));
6 waiter->magic = waiter;
7 INIT_LIST_HEAD(&waiter->list);
8 }

Figure 4: A case about the redefinition of standard function caus-
ing memory corruption. The compiler assumes the return value of
memset() at line 5 is in the register R0 and uses it to replace the
waiter in line 6,7; this will cause memory corruption.

Default-behavior assumption. Security-related logic can also
be modified due to Default-behavior. A typical scenario is
that security checks are invalidated due to automatically pro-
moting types. We found multiple cases in which compilers
automatically promote data types like char and short int,
which take fewer bytes than int, to int or unsigned int
when an operation is performed on them [87]. Such “int pro-
motion” is the default compiler behavior permitted in the
language specification. In this case, if (u8 + 1) is used to
catch the situation when the unsigned 8-bit number u8 is 255
by legal unsigned 8-bit overflow [95]. However, when “Int
Promotion” happens, the check fails because (255+1) is a
normal integer number, and there is no overflow to make (u8
+ 1) be 0. Such a failed check can be dangerous, e.g., when
it is used as a loop check. If it happens, an infinite loop will
break availability.
No-concurrency assumption via No-UB and Environment.
C/C++ compilers can do aggressive optimizations that are
correct for single-threaded execution, but dangerous in a con-
current environment due to the lack of explicit specification
of concurrency. With C11, C specifications include a de-
tailed memory model to better support concurrency, defining
concurrency-related UB. Programmers must use new primi-
tives to handle concurrency in their code, or their code will
be prone to UB. Suddenly, legacy code can be blamed for

USENIX Association 32nd USENIX Security Symposium 3661

containing UB. Different from other No-UB but similar to
Orthogonal-Specification cases, here compilers assume a no-
concurrency environment but not specific kinds of UB. An
ISpec-conflict exists when programmers arrange their threads
well but without provided primitives. For example: (a) a deep
copy can be optimized into a shallow copy for performance
reasons, breaking consistency. As Figure 5 shows, the com-
piler eliminates the deep copy of vma, leaving a time window
between line 5 and the use of vma. Because the later use
of vma has been replaced with the origin memory read of
the racy mm->mmap_cache (other than of vma), the value of
mm->mmap_cache may have been changed after it has passed
the check in line 5, leading to a typical TOCTTOU bug. (b)
The atomicity of critical operations can be broken. Com-
pilers may split one critical operation, such as one shared
memory access, into several ones, e.g., by splitting a larger
object into small ones and then accessing each part separately,
the critical operation becomes non-atomic. Such violation of
operation atomicity incurs interrupts against concurrent oper-
ations, and causes memory corruption or other insecure logic
errors. For example, Linux kernel developers found GCC uses
rep movsl rather than rep movsq for a structure copy, break-
ing the atomicity of the access to such a shared structure;
triggering memory corruption [121].

1 /* commit: b6a9b7f6b1f21735a7456d534dc0e68e61359d2c */
2 - vma = mm->mmap_cache;
3 + vma = ACCESS_ONCE(mm->mmap_cache);
4 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
5 struct rb_node *rb_node;

Figure 5: A double fetch bug introduced by GCC 4.8 on s390x.
ACCESS_ONCE() is used to force the compiler to do the deep copy.

5 RQ1: Orthogonal-Specification

For ISpec cases, the corresponding specifications are present
but implicitly break security properties. Contrary to ISpec, our
study reveals that security-related specifications can be com-
pletely omitted, as they are often orthogonal to correctness-
related specifications that compilers emphasize. According
to our study, Orthogonal Specification (OSpec, as defined in
§3.1) can also cause critical security impacts. We divide OS-
pec cases by the insecure optimization behaviors and security
consequences they bring.

5.1 Moving Sensitive Data Out of Boundary
We define a boundary violation of sensitive data as the exis-
tence of sensitive data in memory exceeding the boundaries of
space/time the developer intends to enforce. Due to security
boundaries for sensitive data not included in specifications,
compiler optimizations may break the intended boundaries
and lead to leaks or corruption of sensitive data.
Violation of living-time boundary of sensitive data. This
problem occurs when the sensitive data persists in memory

longer than its originally designed lifetime because of com-
piler optimization. Most sensitive data, such as secret keys,
urge such enforcement of the boundary. Common security
impacts include leaks or corruption of sensitive data due to
the expansion of attack surfaces.

One representative case is the elimination of secret scrub-
bing during the Dead Store Elimination (DSE) optimization.
Information leaks occur when compilers try to scrub some
sensitive data such as passwords or cryptographic keys. Previ-
ous work [9, 103, 119] also discussed this problem in detail.
Violation of sensitive data’s space (memory) boundary.
This problem occurs when the sensitive data reaches out of
the memory region its developer intends to enforce because
of compiler optimizations. Such enforcement of the memory
boundary of sensitive data is common in systems with mul-
tiple memory layers of different privileges such as the user
space and kernel space in the OS kernel. Similarly, they can
cause leaks or corruption of sensitive data. In general, pass-
ing uninitialized memory within a single address space does
not violate security; however, it becomes serious information
leaks when data passes past the kernel/user boundary. The
common cases are uninitialized structure padding and par-
tial union initialization introduced by compilers. Passing the
uninitialized memory introduces information leaks, as shown
in [65]. Unfortunately, this problem remains severe with sev-
eral recently observed cases in the Linux kernel [5, 8, 14].

5.2 Breaking Timing Guarantees

Compilers are oblivious to timing guarantees (e.g., the same
execution time of two paths) enforced by developers, and opti-
mizations may destroy guarantees. For cases in this category,
we divide them based on the specific security consequences.
Introduction of the timing side channel. Compilers may
break the timing requirement and introduce timing side chan-
nels by many optimizations [30], e.g., the secret can be in-
ferred from the time information of the crypto code. For exam-
ple, the compiler makes the (Linux version) memcmp() return
early when a mismatch of the memory comparison occurs,
which may leak timing in crypto code [43]. In this case, the
developers disable this optimization on memcmp() using the
compiler option -Os. However, this patch is revised later [6],
as disabling compiler optimizations is fragile. As adding new
optimizations to -O0 or -Os would break the assumptions the
code is making.
Disordered concurrency sequence due to modification of
duration. A time delay can be used to ensure the concur-
rency sequence, such as waiting a given duration for some
hardware initialization progress to complete and then using
the hardware; however, compiler optimizations can change
the duration, and then the sequence is disordered. A typical se-
curity consequence of such a disorder is bypassing a security
check, such as a case [70] in the Linux kernel.

3662 32nd USENIX Security Symposium USENIX Association

5.3 Introducing Insecure Micro-architectural
Side Effects

Typically, a speculative execution side channel can be used
to leak sensitive information [46, 59]. Code sequences with
certain features are vulnerable to this side-channel attack. Due
to the unawareness of such side effects, compilers may add
such vulnerable features and bring side channel attack surface
to created code.
Introduction of bound-check bypass vulnerability. Sev-
eral code sequences can be used as the gadget to craft spec-
ulative execution side-channel attacks; bound-check bypass
vulnerability is one of them [42]. It can cause the leakage of
sensitive data through cache-based side-channel attacks. Com-
pilers can introduce speculative execution in bound-checks,
as shown in Figure 6 and this blog [41]. The switch can be
optimized to lines 9 and 10. Line 10 can now be speculatively
executed regardless of the check at line 9, which can finally
leak arbitrary information in memory through cache-based
side channel attacks as the method in the Meltdown paper [59].
The root problem is that the optimization introduces micro-
architectural side effects, and compilers are unaware of it.

1 /* Before optimization*/
2 switch(x) {
3 case 0: return y;
4 case 1: return z;
5 ...
6 default: return -1;
7 }
8 /* After optimization*/
9 if (x < 0 || x > 2) return -1;

10 goto case[x];

Figure 6: An example of compiler-introduced speculative bound
check pass caused information leaks. A Bound Check Bypass vul-
nerability is introduced by the compiler’s processing of switch.

6 RQ2: User Study and Survey

In general, compiler users are expected to prevent CISB. Given
a large number of compiler rules and assumptions, is it real-
istic for users to correctly follow them and avoid CISB? We
conduct a user study to answer this question from three angles:
A1: the programmers’ knowledge and awareness of CISB and
related issues, A2: the programmers’ first-hand experience
or estimates of experience of encountering a CISB, and A3:
programmer views of CISB. In addition, we also ask for their
expectations for prospective research.
Procedure of the user study. We select the most common
UB-CISB and CISB of OSpec for the study. (UB-CISB means
CISB caused by No-UB assumption, and CISB of OSpec
means the CISB caused by OSpec (as defined in §3.1).) To en-
sure that the participants precisely understand the concepts in
our study, we provide reading materials before questions. Our
reading materials include learner-friendly definitions of UB,
CISB, UB-CISB, CISB of OSpec, and three typical CISB cases.

Table 5: Table of Participant Demographics

Survey (n = 62)
Organization Compiler Developer Communities 9.68%

Company1 17.74%
Company2 11.29%
Company3 3.23%
Company4 1.61%
Unknown Company 1.61%
University1 22.58%
University2 17.74%
University3 11.29%
University4 1.61%
Unknown University 1.61%

Role security analyst / security maintainer 6.45%
compiler developer or maintainer 3.23%
professional C programmer 30.65%
academic researcher 22.58%
master student 11.29%
PhD student 22.58%
OS developer 1.61%
Others 1.61%

We also provide a UB bug to help programmers learn the dif-
ference between UB-CISB and UB bugs. After the knowledge
questions, we also briefly introduce mitigations and ask for
their opinions on who should bear the responsibility of the
two kinds of CISB. We further ask for their estimates of the
difficulty to learn, debug and avoid writing UB-CISB. Finally,
they are asked to express their expectations for prospective
research in this area.
Recruitment. After obtaining an ethics review waiver from
the local ethics review board 2, we recruit participants by dis-
tributing recruitment advertisements online to 4 universities
and 4 companies (see the detailed requirements for recruit-
ment in Appendix 12.1), contacting compiler developers or
maintainers, and snowball sampling where participants recom-
mended other colleagues. In total, we recruit 62 participants,
including 27 industry employees, 14 academic researchers,
and 21 graduate students with a background in system security
or programming languages. Table 5 details the demographics
of participants. Participants had an average of 7 years of C
programming experience. We follow a standard and ethical
way to reward participants (with gift cards), and 6 volunteers
declined the rewards. We believe the number of participants
is substantial, as it is already more than 12-20 participants as
suggested by qualitative research best practices literature [38]
and also aligns with related works [73, 104].
Results and findings. Here we present the main findings.
A1: Programmers’ knowledge and awareness: (1) There are
knowledge gaps among programmers’ knowledge of UB, No-
UB assumption, and UB-CISB. As shown in Figure 7, the
proportions of their knowledge are 90.3%, 48.4%, 41.9%,
respectively. (2) C programmers do not know CISB well,
especially for UB-CISB. Only 41.9% of them know about

2This study only includes interactions involving survey procedures. No
information which could identify the human subjects will be shared or stored
with the data.

USENIX Association 32nd USENIX Security Symposium 3663

UB-CISB, and 50% know about CISB of OSpec. (3) C pro-
grammers do not know the UB-CISB mitigations provided by
compilers well, 41.9% of them do not know such mitigations
and 48.6% have heard about them but do not know the details.
A2: Programmer experience of UB-CISB: (4) It usually takes
a lot of time to solve UB-CISB. As shown in Figure 8, over
half of the programmers either took more than 2 hours to solve
a CISB or even did not manage to solve it. (5) C programmers
often consider it difficult for them to learn and understand,
debug or avoid a UB-CISB, as shown in Figure 9; Interest-
ingly, from some feedback, we found that some programmers
assume and trust the security of compilers. A hard part for
them in the first place is realizing that these problems are
silently introduced in binary code by the compiler.
A3: Programmer Views: (6) C programmers tend to agree that
the compiler should take a bit more responsibility for most
CISB. When asked to rank the degree of responsibility from 1
to 9 (1 means completely the responsibility of the program-
mer, 5 means neutral, 9 means completely the responsibility
of the compiler), they rank UB-CISB 5.81 and CISB of OSpec
5.87 on average. (7) Most C programmers think it is necessary
to collect all kinds of CISB behavior systematically. 82.3% of
them in our survey take it as “Extremely necessary” or “Very
necessary”.
Summary: The quantitative results of the above three aspects
show that it is unreliable to expect programmers to prevent
CISB themselves in the current situation.

Figure 7: The percentage of C programmers’ knowledge of UB
(Undefined Behavior), No-UB assumption and UB-CISB.

Figure 8: The percentage of the longest time to solve a UB-CISB,
for C programmers who have encountered a UB-CISB (N=23).

Feedback. We received positive feedback from participants,
e.g., the study helped them explain some unsolved issues; they
encountered a real UB-CISB just a few days after participation,
and our survey helped them find the root cause.

Bias prevention. We try to avoid biases by: (i) recruiting
participants from the compiler communities and inviting com-
piler developers or maintainers; (ii) making it clear in the
survey that our terminology does not represent any subjective

Figure 9: The degree of difficulty in the view of C programmers
to (i) learn and understand UB-CISB, (ii) debug the root cause by
themselves, (iii) avoid writing UB-CISB with No-UB told and the
complete list of UB rules.

assessment and encouraging them to share their own opin-
ions.

7 RQ3: Current Mitigations

Here we study current CISB mitigations and highlight any
remaining risks.

7.1 Programmer/User Efforts
Typically compiler users are expected to avoid CISB them-
selves. Compiler users usually have three choices: (1) Nor-
malizing the source code to avoid potential victim seman-
tics, such as undefined behaviors. (2) Using language level
or hardware level mechanisms such as volatile or memory
barriers to control (force or block) compiler behaviors. It is
ad-hoc and unstable to tame compiler behaviors, but some-
times users have limited choices. System-level programs or
libraries often provide some primitives as interfaces based on
these mechanisms. This is to provide unified and specialized
solutions for programmers and relies on experienced system
developers to handle complex compiler behaviors. Note that
such primitives may still fail, as shown in many Linux kernel
cases (e.g., Figure 1). (3) Blocking all compiler optimizations.
As the strategy O0 in Table 6, blocking optimizations is not
always effective (< 95%), and the performance overhead is
prohibitively high (> 2.5X). Our study reveals that it is risky
to rely on users to avoid CISB for the following reasons (in
addition to the quantitative evidence from our user study).
UB rules are hard to learn and understand. There are
200+ rules in the C standard (ISO C17 J2) for UB. Other than
those simple programming errors, such as buffer overflow,
use after free, about 180 may involve UB-CISB [68]. It is
impractical for compiler users to remember and follow all
these rules. Even given the full list of UB, these rules can be
easily misunderstood or ignored.
Compiler optimizations may further disable prevention.
Unexpectedly, we found that compiler optimizations may
silently break the prevention of a CISB. Based on our study,
we have found many such cases where a CISB cannot be fully

3664 32nd USENIX Security Symposium USENIX Association

patched at one time. As we have discussed in Figure 1, this
patch failed when GCC performed a new optimization [66],
and failed again when the compiler changed to LLVM [26].

7.2 Compiler Assistance

While generally users are expected to avoid CISB, compilers
provide some compilation options for preventing bugs or re-
porting warnings. However, based on our study, we found that
such mitigations do not work well: suffering from effective-
ness and performance issues.

To understand the issues, we set up an experiment. We
take all the reproduced cases in our dataset as representative
examples for real-world CISB. We select different compiler
mitigation strategies and study their effectiveness and perfor-
mance, as listed in Table 6. The attack target is to ensure that
the CISB occurs and is not caught by mitigations. The results
confirm that (1) The current mitigations are insufficient (e.g.,
“UBSan” and “Wall” misses about 70% of cases) (2) There is
a trade-off between effectiveness and performance. Effective
mitigations often hurt performance a lot.

It is worth noting that the effectiveness rates of “O3” and
“O2” come mostly from compiler warnings.

Table 6: An evaluation of the mitigations provided by the compiler.
For strategies, O0-O3: corresponding compiler option; “All-ub”:
a group of compiler flags to mitigate all UB-CISB. ‘All-cisb”: a
minimal group of options (restricting or disabling optimizations) to
prevent all the preventable CISB; “UBSan”: Undefined Behavior
Sanitizer; “Wall”: reporting warnings with flag “-Wall”. “Eff.(UB-
CISB)”, “Eff. (all CISB)” means the effectiveness of the strategy on
all the UB-CISB or CISB in our dataset related to the given compiler.
We take a strategy as effective if it avoids the bug from happen-
ing, or catches the bug at runtime or compilation time. “Overhead”
means the performance overhead tested on a benchmark (SPEC CPU
2006), of compiler GCC 12.0.1 and Clang 14.0.0, taking “O3” as the
baseline. (See the used compiler options of all strategies in Table 9.)

Strategy Eff.(UB-CISB) Eff. (all CISB) Overhead

O3 gcc 10.0% 9.7% 0%
clang 26.7% 16.0% 0%

O2 gcc 10.0% 6.5% 5.4%
clang 26.7% 16.0% 2.1%

O1 gcc 30.0% 25.8% 21.4%
clang 26.7% 16.0% 3.7%

O0 gcc 78.9% 67.7% 211.4%
clang 93.3% 80.0% 170.0%

All-ub gcc 53.3% - 17.7%
clang 55.0% - 7.2%

All-cisb gcc 75.0% 61.3% 23.8%
clang 53.3% 48.0% 8.1%

UBSan gcc 30.0% - 186.8%
clang 40.0% - 227.7%

Wall gcc 20.0% - -
clang 26.7% - -

7.3 Automatic Prevention

Compared with educating developers to follow all the rules to
avoid CISB, a more attractive choice is automatically handling
them. There are mainly three kinds of automatic CISB pre-
vention. We investigate them with our taxonomy; see Table 7.
Runtime sanitizer. Sanitizers add checks during compilation
to catch security problems at runtime. UBSanitizer [21]
detects common undefined behaviors such as signed in-
teger overflow, pointer overflow, or missing return state-
ments. Some sanitizers are designed to detect other undefined
behaviors: ThreadSanitizer [92] can detect data races;
TypeSanitizer [32] can detect strict aliasing violations. In
addition, Song et al. [96] conduct a survey of sanitizers for
security. Fuzzing tools often leverage runtime sanitizers to
detect faults [11, 18, 33, 34, 48, 84]. Sanitizers, in general,
should not have FP, but FN are unavoidable. To find a bug, it
must be executed (i.e., covered) and the sanitizer instrumenta-
tion must detect it. The overhead is the leading factor limiting
their widespread use.
Formal secure compilation. This class of fundamental solu-
tions enables compilers to preserve security properties during
optimizations. Some works develop compilers that preserve
given security properties, such as confidentiality [9] and in-
tegrity of values, constant execution time [3, 7, 15, 93, 111],
or micro-architecture side-effects [82]. Some works pro-
vide a formal verifier to guarantee confidentiality [94] or
constant-time security [4]. In addition, fully abstract compi-
lation [1, 81, 105, 106] aims at ensuring observational equiv-
alence during compilation and thus is a general solution for
secure compilation. Patrignani et al. [80] survey that. The
performance and complicated use are factors limiting their
widespread use. However, the efficiency of securely compiled
code is rarely considered [80].
Dedicated security analysis. Many works provide a specific
abstract model or focus on semantic patterns to identify cer-
tain security problems. A few of them are specially designed
for CISB: STACK [109, 110] detects CISB in the scope of
ISpec 1(§4.1) related to UB; Yang et al. [119] and Sprun-
del [103] identify CISB of OSpec 1(§5.1) related to the elimi-
nation of secret scrubbing by semantic patterns. Most of them
focus on broader security problems such as cryptographic key
misuse [55], information leak bugs [65], Undefined Behavior
bugs [60, 114], Spectre gadgets [79, 86]. Certain kinds of
CISB are included but not the direct target, e.g., Unisan [65]
can prevent information leak bugs including CISB of unini-
tialized structure padding (§5.2). All such detection works
suffer from FN and FP issues.

8 RQ4: Challenges for Future Research

User study. The ability of a developer to avoid CISB situ-
ations (especially UB-CISB) when writing code should be

USENIX Association 32nd USENIX Security Symposium 3665

Table 7: Automatic Prevention works. For types, "SD": "Static De-
tection"; "DD": "Dynamic Detection"; "RP": "Runtime Prevention";
"C": New Compiler; "V": "Verifier"; "F": "Formal Foundation". For
Target CISB, bug classes are like in Table 2, circles like (100%)
mean the maximum percentage of CISB in our dataset that can the-
oretically be prevented. For FP&FN, ✓: YES, ✗: NO, (100%):
the known ratio. For PO(performance overhead), : < 1%; :
< 20%; : < 100% : < 500% ; : >= 500%. Works with ★

means it is specific to CISB.

Automatic Prevention Year Type Target
CISB

Analysis
FP FN PO

Runtime
sanitizer

UBSan [21] 2012- DD&RP ISpec 1,2,3 ✗ ✓

ThreadSan [92] 2009- DD&RP ISpec 1,2,3 ✗ ✓

TySan [32] 2017- DD&RP ISpec 1,2,3 ✗ ✓ n/a

Formal
Secure
Compila-
tion

Ct-verif [4] 2016 V OSpec 2 - - -
Jasmin [3] 2017 C&V OSpec 2 - -
FaCT [15] 2017 C OSpec 2 - - n/a
Besson et al. [9] 2018 C OSpec 1 - - n/a
CT-wasm [111] 2019 C&V OSpec 2 - -
Simon et al. [93] 2019 C OSpec 2 - -
Barthe et al. [7] 2020 C&V OSpec 2 - -
Patrignani et al. [82] 2021 F OSpec 3 - - -

Dedicated
security
analysis

★ STACK [109] 2013 SD ISpec 1 ✓ ✓ -
Unisan [65] 2016 SD&RP OSpec 1 ✓ -
★ Yang et al. [119] 2017 RP OSpec 1 - -
K-Hunt [55] 2018 DD OSpec 2 ✓ ✓ -
★ Sprundel [103] 2018 SD OSpec 1 ✓ ✓ -
Wu et al. [114] 2020 SD ISpec 1,2,3 ✓ ✓ -
SpecFuzz [79] 2020 DD OSpec 3 ✓ ✓ -
SpecTaint [86] 2021 DD OSpec 3 ✓ ✓ -
KUBO [60] 2021 SD ISpec 1,2,3 -

measured quantitatively. However, our user study(§6) is not
enough to give a precise quantitative estimate of it. Such a
statistic would guide future work in secure compilation and
programmer education. We therefore call for a user study
to measure this. The challenge lies in providing an objec-
tive, comprehensive, and representative criterion to evaluate
programmers.

Automatic Prevention. (1) Dedicated security analysis. The
key challenge is that there are not many works specially de-
signed for CISB and many CISB remain unsolved. The hardest
part of identifying a CISB by program analysis is giving a suit-
able oracle to help discern if the bug is security-related and
compiler-introduced. Another challenge is that source-level
analysis should be optimization-aware to help the prevention,
due to the nature of CISB. In addition, for detection works,
both False Positives and False Negatives are hard to avoid.
One way to reduce the effects of False Positive is to automati-
cally fix the reported bug sites through instrumentation like
Unisan [65]. Then the performance should be considered. An-
other possible direction is to provide warnings for all potential
security problems and filter potential CISB via the behavior of
related optimizations or their exploitability such as whether

the potential bug can be triggered through user-controlled
data. (2) Runtime sanitization. More tailored sanitizers are
needed for other CISB (especially those unrelated to UB) and
code coverage is the main challenge. The challenge for a
new sanitizer for security is to ensure that the False Positive
ratio is negligible (and ideally zero). (3) Formal Secure Com-
pilation. Although existing secure compilation approaches
show promising results for particular security models, the
application of secure compilation techniques to mainstream
programming languages has not yet been achieved. In addi-
tion, as shown in Table 7, formal works for UB-CISB are rare.
The challenge is UB is piecemeal and hard to model, which
is one of the reasons why UB is introduced to ease compilers.
We call for work focusing directly on security boundaries that
is compatible with commonly used languages like C/C++.

9 Discussion and Limitations

9.1 Related Security Issues

Compilers can also indirectly cause other security issues.
Simplification of Attacks. Compilers may make the code
risk-prone and easier to be attacked when breaking defen-
sive properties. For example, not inlining a function in
SMAP-disabled regions of OS kernels may introduce security
holes [45]; omitting function frame pointer can help attackers
to bypass a check [23]. Compilers can also introduce extra
ROP gadgets [13] and facilitate code reuse attacks.
Influence on Security Mechanisms. As security mecha-
nisms are unaware of and orthogonal to compiler optimiza-
tion, they may become ineffective [57].. For example, the
security of binary level CFI implementations [75, 83, 102] is
weakened if function signature recovery is incomplete [117].
Moreover, security checks of code reuse defense such as CFI
can be bypassed via TOCTTOU attacks when compilers in-
troduce double fetch of those checked values through opti-
mizations such as register spilling [22]. Stack protections like
LLVM SafeStack [61] can also be rendered ineffective due to
register spilling [16].

9.2 Limitations

False negatives. The results still have false negatives due to
the imprecise keyword-based searching and manual analysis.
To reduce this threat, three authors analyzed potential bugs
separately and discussed inconsistent issues until an agree-
ment was reached. In addition, our data sources cannot cover
all CISB; OS kernels can not represent all code bases. Finally,
as an empirical study, we will certainly miss some unknown
cases, which is expected because compilers evolve, and there
will always be new threats in the future. However, we be-
lieve that our taxonomy remains helpful when programmers
encounter new CISB cases.

3666 32nd USENIX Security Symposium USENIX Association

False positives. In this project, we first tried to confirm each
case we met by reproducing the compiler behaviors across
various versions of GCC/Clang. Moreover, for the complex
cases in the Linux kernel that we cannot confirm, our results
are based on the evidence provided by compiler users, such as
binary code snippets and running traces. Therefore, we believe
the false-positive rate of our result should be meager. But there
may still be some false positives when programmers give us
incorrect hints of the bug’s existence or security impacts.
Other threats to validity. Our dataset may be biased. First,
the data source can not represent all styles of code. In addition
to the Bugzilla pages, we investigate bugs from Linux kernel
commits. The Linux kernel is a huge program with rich code
diversity. However, it is just a representative codebase for
operating systems. Second, the manual efforts required to an-
alyze the bugs were large. Unlike other bugs, due to the lack
of an accepted definition and the piecemeal nature of CISB,
CISB cases can only be filtered manually from a large number
of potential reports. We have spent 1,500 person-hours to get
the dataset. In addition, our dataset only targets the C pro-
gramming language. This is also the choice of many related
works [30, 65, 108] in this field. CISB in C are fundamental
and they are shared with C++. Note that CISB can also exist
in other programming languages.

10 Related Work

CISB Studies. D’Silva et al. [30] defined the concept of
correctness-security gap and studied compiler-introduced se-
curity challenges qualitatively. They classified the bugs into
three classes: information leaks through persistent state, elim-
ination of security-relevant code due to undefined behavior,
and introduction of side channels. Our study shows that these
three classes collected in their research are incomplete in rep-
resenting the correctness-security gap (theoretically covering
63% bugs in our dataset), and each class of their bugs is il-
lustrated with limited cases. As far as we know, it is the only
previous work that studies CISB broadly. Wang et al. [108]
collected a subset of CISB related to undefined behaviors and
developed a static checker called STACK [109, 110] to detect
bugs caused by the elimination of security-relevant code due
to undefined behaviors. While STACK finds some bugs, not
all CISB types are covered, leaving some classes undetected.
Wu et al. [114] listed several optimizations that rely on the
No-UB assumption in LLVM, hooking LLVM code to detect
potential UB during compilation time. Such a list of optimiza-
tions is obtained from expert knowledge, focusing on a few
CISB types. Some works also talk about a certain kind of CISB
of OSpec. Lu et al. [65], Yang et al. [119] and Sprundel [103]
separately discuss a certain type of CISB of sensitive data
leakage and survey the existing mitigation. Simon et al. [93]
study some CISB of side channel risks. Table 7 shows the
target CISB of these works. In comparison, our quantitative

study is designed to draw a comprehensive picture of CISB.
We collected different CISB types from real bug reports rather
than expert knowledge, and also qualitatively investigate the
knowledge and views of programmers.
Detection of CISB. As discussed in §7.3, these works [60,
65, 103, 109, 114] aim to detect certain kinds of CISB, while
our study aims to collect various CISB types. Note that we do
not pursue more CISB but more CISB types.
Formal Secure Compilation. As discussed in §7.3, these
works [1, 3, 4, 7, 9, 15, 81, 82, 105, 106, 111] are mitigations
designed to enable compilers to formally preserve security
properties. In comparison, our study focuses on concrete se-
curity violations and their mitigations.
Works on compiler correctness bugs. There have been
many studies [89, 98] or testing tools [19, 20, 24, 49, 50, 56,
76, 88, 97, 118] on compiler correctness bugs. More compiler
testing works can be found in the survey [17] of Chen et al..
Lee et al. [51] study some conflicting compiler assumptions
regarding UB in LLVM IR and provide a solution to ensure
the compiler generates correct code. In addition, many works
[27, 31, 52–54, 63, 67] formally verify the functionality or
correctness of compilers. However, unlike these works focus-
ing on broken compiler correctness, our study investigates
security issues where compilers act correctly (but in ways
unexpected to the developer).
Empirical Studies on Software Defects. Much research ef-
fort has been made to study fault-related characteristics of
software systems other than compilers, e.g., Tan et al. [99]
inspect bug root causes, impacts and components to find char-
acteristics within open-source projects, Zhang et al. [120]
study deep learning application bugs. In comparison, we fo-
cus on software bugs unexpectedly introduced by compilers.

11 Conclusion

“Correct” compiler optimizations may introduce security bugs.
Here, we study the compiler-introduced security bugs. We
comprehensively collect a diverse set of bugs from two
sources, with 120 bugs and 68 unique bug types. We propose a
three-level classification for the taxonomy of the bugs and per-
form an empirical study against them, including their causes,
impacts, and mitigation. Through this study, we summarize
many important findings and lessons learned. For example, the
“no-undefined-behavior” assumption has become a nightmare
for compiler users, and compiler optimizations may further
disable patches for these compiler-introduced bugs. We also
perform a user study to understand the awareness, knowledge,
and views of users on the compiler rules and assumptions.
We found that users often lack knowledge of such security
bugs and consider these bugs to be hard for them to under-
stand, debug, and avoid. Most of our survey participants tend
to agree that compilers should take some responsibility and
call for research work. Instead of relying on compiler users to

USENIX Association 32nd USENIX Security Symposium 3667

fully understand compiler behaviors and properly use them, a
more effective solution is to enforce advanced and automated
techniques on the compiler side. We hope the study motivates
future research on secure compilation.

Acknowledgment

We thank the anonymous reviewers for their feedback. This
work was supported, in part, by grants from the Chinese Na-
tional Key R&D Program (2022YFF0604503), the Chinese
National Natural Science Foundation (62032010,62172201),
China Scholarship Council, Postgraduate Research&Practice
Innovation Program of Jiangsu Province, NSF awards CNS-
1931208, CNS-2045478, CNS-2106771, and CNS-2154989,
SNSF PCEGP2_186974, DARPA HR001119S0089-AMP-
FP-034, AFRL FA8655-20-1-7048, and ERC StG 850868.
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References
[1] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. 2012.

Secure compilation to modern processors. In 2012 IEEE 25th Com-
puter Security Foundations Symposium. IEEE, 171–185.

[2] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel
Lustig, Luc Maranget, Paul E. McKenney, Andrea Parri, Nicholas
Piggin, Alan Stern, Akira Yokosawa, and Peter Zijlstra. 2020. Who’s
afraid of a big bad optimizing compiler? https://lwn.net/
Articles/793253/.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-
assurance and high-speed cryptography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
1807–1823.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. 2016. Verifying {Constant-Time} Imple-
mentations. In 25th USENIX Security Symposium (USENIX Security
16). 53–70.

[5] Liran Alon and Paolo Bonzini. 2018. KVM: x86: Fix
kernel info-leak in KVM_HC_CLOCK_PAIRING hyper-
call. https://github.com/torvalds/linux/commit/
bcbfbd8ec21096027f1ee13ce6c185e8175166f6.

[6] Cesar Eduardo Barros and Herbert Xu. 2013. crypto: more ro-
bust crypto_memneq. https://github.com/torvalds/linux/
commit/fe8c8a126806fea4465c43d62a1f9d273a572bf5.

[7] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vin-
cent Laporte, David Pichardie, and Alix Trieu. 2020. Formal verifi-
cation of a constant-time preserving C compiler. Proceedings of the
ACM on Programming Languages 4, POPL (2020), 1–30.

[8] Arnd Bergmann and Dmitry Torokhov. 2019. In-
put: input_event - fix struct padding on sparc64.
https://github.com/torvalds/linux/commit/
f729a1b0f8df7091cea3729fc0e414f5326e1163.

[9] Frédéric Besson, Alexandre Dang, and Thomas Jensen. 2018. Se-
curing compilation against memory probing. In Proceedings of the
13th Workshop on Programming Languages and Analysis for Security.
29–40.

[10] Federico Biancuzzi. 2007. Embedded problems: exploiting NULL
pointer dereferences. https://www.theregister.com/2007/
06/13/null_exploit_interview/.

[11] Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos,
Moritz Schlögel, Nadia Korshun, Ali Abbasi, Marco Schweighauser,
Sebastian Schinzel, Sergej Schumilo, et al. 2019. {GRIMOIRE}:
Synthesizing structure while fuzzing. In 28th {USENIX} Security
Symposium ({USENIX} Security 19). 1985–2002.

[12] David S. Miller Bob Breuer. 2007. [SPARC32]:
Fix over-optimization by GCC near ip_fast_csum.
https://github.com/torvalds/linux/commit/
51bcf092917bfaa88d762879d0bbfe7619e8c16c.

[13] Michael D Brown, Matthew Pruett, Robert Bigelow, Girish Mururu,
and Santosh Pande. 2021. Not so fast: understanding and mitigating
negative impacts of compiler optimizations on code reuse gadget sets.
Proceedings of the ACM on Programming Languages 5, OOPSLA
(2021), 1–30.

[14] Dan Carpenter and Bartlomiej Zolnierkiewicz. 2020.
fbdev: potential information leak in do_fb_ioctl().
https://github.com/torvalds/linux/commit/
d3d19d6fc5736a798b118971935ce274f7deaa82.

[15] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,
Yunlu Huang, Ranjit Jhala, and Deian Stefan. 2017. Fact: A flexible,
constant-time programming language. In 2017 IEEE Cybersecurity
Development (SecDev). IEEE, 69–76.

[16] CERT Coordination Center. 2020. LLVMs Arm stack protection
feature can be rendered ineffective. https://kb.cert.org/vuls/
id/129209/.

[17] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu
Zhang, Dan Hao, and Lu Zhang. 2020. A survey of compiler testing.
ACM Computing Surveys (CSUR) 53, 1 (2020), 1–36.

[18] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by princi-
pled search. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 711–725.

[19] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli
Fern, Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. In
Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation. 197–208.

[20] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun
Zhao. 2016. Coverage-directed differential testing of JVM implemen-
tations. In proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 85–99.

[21] Clang. 2020. UndefinedBehaviorSanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html.

[22] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. 2015. Losing control: On the effectiveness of control-
flow integrity under stack attacks. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 952–
963.

[23] Kees Cook. 2019. x86/asm: Pin sensitive CR4
bits. https://github.com/torvalds/linux/commit/
873d50d58f67ef15d2777b5e7f7a5268bb1fbae2.

[24] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John
Regehr, Boris Yakobowski, and Xuejun Yang. 2012. Testing static an-
alyzers with randomly generated programs. In NASA Formal Methods
Symposium. Springer, 120–125.

[25] Tim Northover Dan W. 2017. Hardfault when dereferencing unaligned
float. https://bugs.llvm.org/show_bug.cgi?id=34143.

[26] Herbert Xu Daniel Borkmann. 2015. lib: make
memzero_explicit more robust against dead store elimina-
tion. https://github.com/torvalds/linux/commit/
7829fb09a2b4268b30dd9bc782fa5ebee278b137.

[27] Maulik A Dave. 2003. Compiler verification: a bibliography. ACM
SIGSOFT Software Engineering Notes 28, 6 (2003), 2–2.

3668 32nd USENIX Security Symposium USENIX Association

https://lwn.net/Articles/793253/
https://lwn.net/Articles/793253/
https://github.com/torvalds/linux/commit/bcbfbd8ec21096027f1ee13ce6c185e8175166f6
https://github.com/torvalds/linux/commit/bcbfbd8ec21096027f1ee13ce6c185e8175166f6
https://github.com/torvalds/linux/commit/fe8c8a126806fea4465c43d62a1f9d273a572bf5
https://github.com/torvalds/linux/commit/fe8c8a126806fea4465c43d62a1f9d273a572bf5
https://github.com/torvalds/linux/commit/f729a1b0f8df7091cea3729fc0e414f5326e1163
https://github.com/torvalds/linux/commit/f729a1b0f8df7091cea3729fc0e414f5326e1163
https://www.theregister.com/2007/06/13/null_exploit_interview/
https://www.theregister.com/2007/06/13/null_exploit_interview/
https://github.com/torvalds/linux/commit/51bcf092917bfaa88d762879d0bbfe7619e8c16c
https://github.com/torvalds/linux/commit/51bcf092917bfaa88d762879d0bbfe7619e8c16c
https://github.com/torvalds/linux/commit/d3d19d6fc5736a798b118971935ce274f7deaa82
https://github.com/torvalds/linux/commit/d3d19d6fc5736a798b118971935ce274f7deaa82
https://kb.cert.org/vuls/id/129209/
https://kb.cert.org/vuls/id/129209/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/torvalds/linux/commit/873d50d58f67ef15d2777b5e7f7a5268bb1fbae2
https://github.com/torvalds/linux/commit/873d50d58f67ef15d2777b5e7f7a5268bb1fbae2
https://bugs.llvm.org/show_bug.cgi?id=34143
https://github.com/torvalds/linux/commit/7829fb09a2b4268b30dd9bc782fa5ebee278b137
https://github.com/torvalds/linux/commit/7829fb09a2b4268b30dd9bc782fa5ebee278b137

[28] Maya Erez Dedy Lansky and Kalle Valo. 2019. wil6210:
make sure DR bit is read before rest of the status mes-
sage. https://github.com/torvalds/linux/commit/
f4519fd9375d310c608f9a47e4f3a0579bc94998.

[29] Nick Desaulniers and Paul Burton. 2019. mips:
avoid explicit UB in assignment of mips_io_port_-
base. https://github.com/torvalds/linux/commit/
12051b318bc3ce5b42d6d786191008284b067d83.

[30] Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The Correctness-
Security Gap in Compiler Optimization. In 2015 IEEE Security
and Privacy Workshops. IEEE. https://doi.org/10.1109/spw.
2015.33

[31] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2014.
Incremental verification of compiler optimizations. In NASA Formal
Methods Symposium. Springer, 300–306.

[32] Hal Finkel. 2017. The Type Sanitizer: Free yourself from -fno-strict-
aliasing.

[33] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. 2020. {GREYONE}: Data Flow Sen-
sitive Fuzzing. In 29th {USENIX} Security Symposium ({USENIX}
Security 20). 2577–2594.

[34] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 679–696.

[35] GCC. 2002. GCC Bug 90267. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=90267.

[36] GCC. 2020. GCC Bugzilla Main Page. https://gcc.gnu.org/
bugzilla/.

[37] GCC. 2022. 6.47.2 Extended Asm - Assembler Instructions with C
Expression Operands. https://gcc.gnu.org/onlinedocs/gcc/
Extended-Asm.html.

[38] Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How many inter-
views are enough? An experiment with data saturation and variability.
Field methods 18, 1 (2006), 59–82.

[39] Eli Friedman halayli. 2013. incorrect loop optimization at O2. https:
//bugs.llvm.org/show_bug.cgi?id=16602.

[40] David Howells, Paul E. McKenney, Will Deacon, and Peter Zijlstra.
2020. LINUX KERNEL MEMORY BARRIERS. https://www.
kernel.org/doc/Documentation/memory-barriers.txt.

[41] Intel. 2018. Analyzing Potential Bounds Check Bypass Vulnera-
bilities. https://software.intel.com/security-software-
guidance/deep-dives/deep-dive-analyzing-potential-
bounds-check-bypass-vulnerabilities.

[42] Intel. 2018. Intel Analysis of Speculative Execution Side Chan-
nels. https://software.intel.com/security-software-
guidance/api-app/sites/default/files/336983-Intel-
Analysis-of-Speculative-Execution-Side-Channels-
White-Paper.pdf.

[43] Daniel Borkmann James Yonan. 2013. crypto: crypto_mem-
neq - add equality testing of memory regions w/o timing
leaks. https://github.com/torvalds/linux/commit/
6bf37e5aa90f18baf5acf4874bca505dd667c37f.

[44] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. 2012. Understanding and detecting real-world performance bugs.
ACM SIGPLAN Notices 47, 6 (2012), 77–88.

[45] Linus Torvalds Josh Poimboeuf. 2020. bitops: always inline sign
extension helpers. https://github.com/torvalds/linux/
commit/f80ac98a641a03097cbc9fdfd4b6a41a8dd3b7ae.

[46] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. 2019. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[47] Ingo Molnar Krzysztof Helt. 2008. x86: do not
allow to optimize flag_is_changeable_p() (rev. 2).

https://github.com/torvalds/linux/commit/
94f6bac1058fd59a8bd472d18c4b77f220d930b0.

[48] lcamtuf. 2020. american fuzzy lop. https://lcamtuf.coredump.
cx/afl/.

[49] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation
via equivalence modulo inputs. ACM SIGPLAN Notices 49, 6 (2014),
216–226.

[50] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized stress-
testing of link-time optimizers. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis. 327–337.

[51] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, San-
joy Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017.
Taming undefined behavior in LLVM. ACM SIGPLAN Notices
52, 6 (2017), 633–647. https://doi.org/10.1145/3140587.
3062343

[52] Xavier Leroy. 2007. Formal verification of an optimizing compiler.
Lecture Notes in Computer Science 4533, 1 (2007).

[53] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107–115.

[54] Xavier Leroy et al. 2012. The CompCert verified compiler.
[55] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu

Gu. 2018. K-Hunt: Pinpointing insecure cryptographic keys from ex-
ecution traces. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 412–425.

[56] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F
Donaldson. 2015. Many-core compiler fuzzing. ACM SIGPLAN
Notices 50, 6 (2015), 65–76.

[57] Jay P Lim, Vinod Ganapathy, and Santosh Nagarakatte. 2017. Com-
piler optimizations with retrofitting transformations: Is there a seman-
tic mismatch?. In Proceedings of the 2017 Workshop on Programming
Languages and Analysis for Security. 37–42.

[58] Linux. 2020. PROPER CARE AND FEEDING OF RETURN VAL-
UES FROM rcu_dereference(). https://www.kernel.org/doc/
Documentation/RCU/rcu_dereference.rst.

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, et al. 2018. Meltdown: Reading kernel memory from
user space. In 27th {USENIX} Security Symposium ({USENIX} Secu-
rity 18). 973–990.

[60] Changming Liu, Yaohui Chen, and Long Lu. 2021. KUBO: Precise
and Scalable Detection of User-triggerable Undefined Behavior Bugs
in OS Kernel. In Proceedings of the 2021 Network and Distributed
System Security Symposium (NDSS’21).

[61] LLVM. 2020. Clang 12 documentation: SafeStack. https://clang.
llvm.org/docs/SafeStack.html.

[62] LLVM. 2020. LLVM Bugzilla Main Page. https://bugs.llvm.
org/.

[63] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: bounded translation validation for LLVM.
In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. 65–79.

[64] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting
missing-check bugs via semantic-and context-aware criticalness
and constraints inferences. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 1769–1786.

[65] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016.
Unisan: Proactive kernel memory initialization to eliminate data leak-
ages. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. 920–932.

[66] Daniel Borkmann mancha security and Herbert Xu. 2015. lib:
memzero_explicit: use barrier instead of OPTIMIZER_HIDE_-
VAR. https://github.com/torvalds/linux/commit/
0b053c9518292705736329a8fe20ef4686ffc8e9.

USENIX Association 32nd USENIX Security Symposium 3669

https://github.com/torvalds/linux/commit/f4519fd9375d310c608f9a47e4f3a0579bc94998
https://github.com/torvalds/linux/commit/f4519fd9375d310c608f9a47e4f3a0579bc94998
https://github.com/torvalds/linux/commit/12051b318bc3ce5b42d6d786191008284b067d83
https://github.com/torvalds/linux/commit/12051b318bc3ce5b42d6d786191008284b067d83
https://doi.org/10.1109/spw.2015.33
https://doi.org/10.1109/spw.2015.33
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90267
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90267
https://gcc.gnu.org/bugzilla/
https://gcc.gnu.org/bugzilla/
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://bugs.llvm.org/show_bug.cgi?id=16602
https://bugs.llvm.org/show_bug.cgi?id=16602
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://github.com/torvalds/linux/commit/6bf37e5aa90f18baf5acf4874bca505dd667c37f
https://github.com/torvalds/linux/commit/6bf37e5aa90f18baf5acf4874bca505dd667c37f
https://github.com/torvalds/linux/commit/f80ac98a641a03097cbc9fdfd4b6a41a8dd3b7ae
https://github.com/torvalds/linux/commit/f80ac98a641a03097cbc9fdfd4b6a41a8dd3b7ae
https://github.com/torvalds/linux/commit/94f6bac1058fd59a8bd472d18c4b77f220d930b0
https://github.com/torvalds/linux/commit/94f6bac1058fd59a8bd472d18c4b77f220d930b0
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1145/3140587.3062343
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.rst
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.rst
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://bugs.llvm.org/
https://bugs.llvm.org/
https://github.com/torvalds/linux/commit/0b053c9518292705736329a8fe20ef4686ffc8e9
https://github.com/torvalds/linux/commit/0b053c9518292705736329a8fe20ef4686ffc8e9

[67] William Mansky and Elsa Gunter. 2010. A framework for formal
verification of compiler optimizations. In International Conference
on Interactive Theorem Proving. Springer, 371–386.

[68] last modified by David Svoboda Martin Sebor. 2018. Undefined
Behavior. https://wiki.sei.cmu.edu/confluence/display/
c/CC.+Undefined+Behavior.

[69] John McCarthy and James Painter. 1967. Correctness of a compiler for
arithmetic expressions. Mathematical Aspects of Computer Science 1
(1967).

[70] David S. Miller and Linus Torvalds. 2007. [PATCH]
video/aty/mach64_ct.c: fix bogus delay loop.
https://github.com/torvalds/linux/commit/
8690ba446defe2e2b81803756c099d2943dfd5fd.

[71] MITRE. 2008. CVE-2008-1685. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=2008-1685.

[72] MITRE. 2019. CVE-2019-1010006. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=2019-1010006.

[73] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing,
Bing Mao, and Gang Wang. 2018. Understanding the reproducibility
of crowd-reported security vulnerabilities. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 919–936.

[74] Stephan Mueller. 2015. lib: make memzero_ex-
plicit more robust against dead store elimination.
https://github.com/torvalds/linux/commit/
7829fb09a2b4268b30dd9bc782fa5ebee278b137.

[75] Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens
Grossklags, and Claudia Eckert. 2018. τCFI: Type-Assisted Con-
trol Flow Integrity for x86-64 Binaries. In International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 423–444.

[76] Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of
C compilers based on test program generation by equivalence trans-
formation. In 2016 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS). IEEE, 676–679.

[77] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns.
2012. What makes a good code example?: A study of programming
Q&A in StackOverflow. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE, 25–34.

[78] Russell King Nicolas Pitre. 2008. [ARM] 5196/1: fix inline asm
constraints for preload. https://github.com/torvalds/linux/
commit/16f719de62809e224e37c320760c3ce59098d862.

[79] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. 2020. SpecFuzz: Bringing Spectre-type vulnerabilities to the
surface. In 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, 1481–1498. https://www.usenix.org/
conference/usenixsecurity20/presentation/oleksenko

[80] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal
approaches to secure compilation: A survey of fully abstract compila-
tion and related work. ACM Computing Surveys (CSUR) 51, 6 (2019),
1–36.

[81] Marco Patrignani and Deepak Garg. 2017. Secure compilation and
hyperproperty preservation. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 392–404.

[82] Marco Patrignani and Marco Guarnieri. 2021. Exorcising spectres
with secure compilers. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 445–461.

[83] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2014.
Lockdown: Dynamic control-flow integrity. arXiv preprint
arXiv:1407.0549 (2014).

[84] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz:
fuzzing by program transformation. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 697–710.

[85] Richard Biener Peter Horton. 2007. gcc-4.2.2 generates bad code on
ARM. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
33949.

[86] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li,
Heng Yin, and Tao Wei. 2021. SpecTaint: Speculative Taint Analysis
for Discovering Spectre Gadgets.. In NDSS.

[87] Abhay Rathi. 2017. Integer Promotions in C. https://www.
geeksforgeeks.org/integer-promotions-in-c/.

[88] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. 2012. Test-case reduction for C compiler bugs. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation. 335–346.

[89] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021.
An Empirical Study of Bugs in WebAssembly Compilers. In 2021
36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 42–54.

[90] Guang Gong Rong Jian, Leecraso. 2021. Put in one bug and
pop out more: An effective way of bug hunting in Chrome.
https://i.blackhat.com/USA21/Wednesday-Handouts/us-
21-Leecraso-Put-In-One-Bug-And-Pop-Out-More-An-
Effective-Way-Of-Bug-Hunting-In-Chrome.pdf.

[91] Mancha security and Daniel Borkmann. 2015. lib: memzero_-
explicit: use barrier instead of OPTIMIZER_HIDE_-
VAR. https://github.com/torvalds/linux/commit/
0b053c9518292705736329a8fe20ef4686ffc8e9.

[92] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-
tizer: data race detection in practice. In Proceedings of the workshop
on binary instrumentation and applications. 62–71.

[93] Laurent Simon, David Chisnall, and Ross Anderson. 2018. What
You Get is What You C: Controlling Side Effects in Mainstream
C Compilers. In 2018 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE. https://doi.org/10.1109/eurosp.
2018.00009

[94] Rohit Sinha, Sriram Rajamani, and Sanjit A Seshia. 2017. A compiler
and verifier for page access oblivious computation. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering.
649–660.

[95] Yevheniy Soloshenko. 2018. Condition check is optimized out for
volatile unsigned char / short. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=87060.

[96] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn
Volckaert, Per Larsen, and Michael Franz. 2019. SoK: sanitizing
for security. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 1275–1295.

[97] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyz-
ing compiler warning defects. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 203–213.

[98] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward
understanding compiler bugs in GCC and LLVM. In Proceedings of
the 25th International Symposium on Software Testing and Analysis.
294–305.

[99] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and
Chengxiang Zhai. 2014. Bug characteristics in open source software.
Empirical software engineering 19, 6 (2014), 1665–1705.

[100] Mikko Tiihonen. 2004. GCC Bug 15685. https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=15685.

[101] Jean Tourrilhes. 2003. Invalid compilation without -fno-strict-aliasing.
https://lkml.org/lkml/2003/2/25/270.

[102] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giuffrida. 2016. A tough call: Mitigating
advanced code-reuse attacks at the binary level. In 2016 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 934–953.

[103] Ilja van Sprundel. 2018. Memsad: why clearing memory is hard.
https://media.ccc.de/v/35c3-9788-memsad.

[104] Daniel Votipka, Eric Zhang, and Michelle L. Mazurek. 2021. HackEd:
A Pedagogical Analysis of Online Vulnerability Discovery Exercises.

3670 32nd USENIX Security Symposium USENIX Association

https://wiki.sei.cmu.edu/confluence/display/c/CC.+Undefined+Behavior
https://wiki.sei.cmu.edu/confluence/display/c/CC.+Undefined+Behavior
https://github.com/torvalds/linux/commit/8690ba446defe2e2b81803756c099d2943dfd5fd
https://github.com/torvalds/linux/commit/8690ba446defe2e2b81803756c099d2943dfd5fd
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-1685
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-1685
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-1010006
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-1010006
https://github.com/torvalds/linux/commit/7829fb09a2b4268b30dd9bc782fa5ebee278b137
https://github.com/torvalds/linux/commit/7829fb09a2b4268b30dd9bc782fa5ebee278b137
https://github.com/torvalds/linux/commit/16f719de62809e224e37c320760c3ce59098d862
https://github.com/torvalds/linux/commit/16f719de62809e224e37c320760c3ce59098d862
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=33949
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=33949
https://www.geeksforgeeks.org/integer-promotions-in-c/
https://www.geeksforgeeks.org/integer-promotions-in-c/
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Leecraso-Put-In-One-Bug-And-Pop-Out-More-An-Effective-Way-Of-Bug-Hunting-In-Chrome.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Leecraso-Put-In-One-Bug-And-Pop-Out-More-An-Effective-Way-Of-Bug-Hunting-In-Chrome.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Leecraso-Put-In-One-Bug-And-Pop-Out-More-An-Effective-Way-Of-Bug-Hunting-In-Chrome.pdf
https://github.com/torvalds/linux/commit/0b053c9518292705736329a8fe20ef4686ffc8e9
https://github.com/torvalds/linux/commit/0b053c9518292705736329a8fe20ef4686ffc8e9
https://doi.org/10.1109/eurosp.2018.00009
https://doi.org/10.1109/eurosp.2018.00009
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87060
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87060
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=15685
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=15685
https://lkml.org/lkml/2003/2/25/270
https://media.ccc.de/v/35c3-9788-memsad

In 2021 IEEE Symposium on Security and Privacy (SP). 1268–1285.
https://doi.org/10.1109/SP40001.2021.00092

[105] Son Tuan Vu, Albert Cohen, Karine Heydemann, Arnaud de Grand-
maison, and Christophe Guillon. 2021. Secure Optimization Through
Opaque Observations. arXiv preprint arXiv:2101.06039 (2021).

[106] Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, and Al-
bert Cohen. 2020. Secure Delivery of Program Properties through
Optimizing Compilation. In Proceedings of the 29th International
Conference on Compiler Construction (San Diego, CA, USA) (CC
2020). Association for Computing Machinery, New York, NY, USA,
14–26. https://doi.org/10.1145/3377555.3377897

[107] Dmitriy Vyukov. 2013. Benign Data Races: What Could Possibly
Go Wrong? https://software.intel.com/content/www/
us/en/develop/blogs/benign-data-races-what-could-
possibly-go-wrong.html.

[108] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. 2012. Undefined behavior: What
Happened to My Code?. In Proceedings of the Asia-Pacific Work-
shop on Systems - APSYS ’12. ACM Press. https://doi.org/10.
1145/2349896.2349905

[109] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-
Lezama. 2013. Towards optimization-safe systems: Analyzing the
impact of undefined behavior. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. 260–275.

[110] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. 2016.
A Differential Approach to Undefined Behavior Detection. Commu-
nications of the Acm 59, 3 (2016), 99–106. https://doi.org/10.
1145/2885256

[111] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and
Deian Stefan. 2019. Ct-wasm: type-driven secure cryptography for the
web ecosystem. Proceedings of the ACM on Programming Languages
3, POPL (2019), 1–29.

[112] Jinpeng Wei and Calton Pu. 2005. TOCTTOU Vulnerabilities in
UNIX-style File Systems: An Anatomical Study. In Proceedings
of the 4th Conference on USENIX Conference on File and Storage
Technologies - Volume 4 (FAST’05).

[113] Nick Wilfahrt. 2016. Dirty COW (CVE-2016-5195) is a privilege
escalation vulnerability in the Linux Kernel. https://dirtycow.
ninja/.

[114] Zekai Wu, Wei Liu, Mingyue Liang, and Kai Song. 2020. Finding
Bugs Compiler Knows but Doesn’t Tell You: Dissecting Undefined
Behavior Optimizations in LLVM. https://i.blackhat.com/eu-
20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-
Knows-But-Does-Not-Tell-You-Dissecting-Undefined-
Behavior-Optimizations-In-LLVM.pdf.

[115] Song Liu Xiao Ni. 2021. md: Set prev_flush_start and flush_bio in an
atomic way. https://github.com/torvalds/linux/commit/
dc5d17a3c39b06aef866afca19245a9cfb533a79.

[116] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo
Kim. 2018. Precise and Scalable Detection of Double-Fetch Bugs in
OS Kernels. In Proceedings of the 39th IEEE Symposium on Security
and Privacy (Oakland). San Francisco, CA.

[117] Debin Gao Yan Lin. 2021. When Function Signature Recovery Meets
Compiler Optimization. In Proceedings of the 42nd IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA.

[118] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation. 283–294.

[119] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin
Lerner, and Kirill Levchenko. 2017. Dead store elimination (still)
considered harmful. In 26th {USENIX} Security Symposium. 1025–
1040.

[120] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu
Zhang. 2018. An empirical study on TensorFlow program bugs. In

Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 129–140.

[121] Peter Zijlstra and Tejun Heo. 2012. lockdep: fix oops in processing
workqueue. https://github.com/torvalds/linux/commit/
4d82a1debbffec129cc387aafa8f40b7bbab3297.

12 Appendix

12.1 User study materials
12.1.1 Recruitment Requirements

Participants who meet the following requirement are selected
to participate the user study:

• have C programming experience > 2 years OR knew
about Undefined Behavior.

For graduate students, in addition to the above requirements,
they also need to

• have a background in software security or programming
language;

• have participated in at least a C project as the main de-
veloper (contributing > 500 LoC).

12.1.2 Online Consent Form

We provide an online consent form for participants to
read before agreeing to be in the study. It includes the
purpose, the procedure of this study, and the risks and
benefits of taking part in this study. An anonymous copy of
it can be viewed at https://docs.google.com/forms/
d/e/1FAIpQLSexFB9lzcGK80JUFU_2xqKstNJXTz-
gWPH99OnODihw9ZF6NQ/viewform?usp=sf_link.

12.1.3 Background Survey

The background survey is used to record demographic in-
formation. It includes questions of the job and C language
experience (in years) of participants.

12.1.4 Online Questionnaire

An anonymous copy of our online question-
naire can be viewed at https://docs.google.
com/forms/d/e/1FAIpQLSc1EagB7LyiSfjdg-
nl1C4TBrpr5zVN9Z8P3VufBRQKO05_AQ/viewform?
usp=sf_link.

12.2 More details of the bug collection study
The keywords we used in our filtering policy (keyword search-
ing and intersection) of the bug collection study for Linux
patch history and their corresponding Regular Expression can
be viewed in Table 8.

USENIX Association 32nd USENIX Security Symposium 3671

https://doi.org/10.1109/SP40001.2021.00092
https://doi.org/10.1145/3377555.3377897
https://software.intel.com/content/www/us/en/develop/blogs/benign-data-races-what-could-possibly-go-wrong.html
https://software.intel.com/content/www/us/en/develop/blogs/benign-data-races-what-could-possibly-go-wrong.html
https://software.intel.com/content/www/us/en/develop/blogs/benign-data-races-what-could-possibly-go-wrong.html
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2885256
https://doi.org/10.1145/2885256
https://dirtycow.ninja/
https://dirtycow.ninja/
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://github.com/torvalds/linux/commit/dc5d17a3c39b06aef866afca19245a9cfb533a79
https://github.com/torvalds/linux/commit/dc5d17a3c39b06aef866afca19245a9cfb533a79
https://github.com/torvalds/linux/commit/4d82a1debbffec129cc387aafa8f40b7bbab3297
https://github.com/torvalds/linux/commit/4d82a1debbffec129cc387aafa8f40b7bbab3297
https://docs.google.com/forms/d/e/1FAIpQLSexFB9lzcGK80JUFU_2xqKstNJXTz-gWPH99OnODihw9ZF6NQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSexFB9lzcGK80JUFU_2xqKstNJXTz-gWPH99OnODihw9ZF6NQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSexFB9lzcGK80JUFU_2xqKstNJXTz-gWPH99OnODihw9ZF6NQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSc1EagB7LyiSfjdg-nl1C4TBrpr5zVN9Z8P3VufBRQKO05_AQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSc1EagB7LyiSfjdg-nl1C4TBrpr5zVN9Z8P3VufBRQKO05_AQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSc1EagB7LyiSfjdg-nl1C4TBrpr5zVN9Z8P3VufBRQKO05_AQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSc1EagB7LyiSfjdg-nl1C4TBrpr5zVN9Z8P3VufBRQKO05_AQ/viewform?usp=sf_link

Table 9: The compiler options of our selected prevention strategies.

Strategy Compiler options

O3 gcc -O3
clang -O3

O2 gcc -O2
clang -O2

O1 gcc -O1
clang -O1

O0 gcc -O0
clang -O0

All-UB gcc

-O3 -fno-strict-overflow -fwrapv
-fno-delete-null-pointer-checks
-fno-strict-aliasing
-fno-aggressive-loop-optimizations

clang
-O3 -fno-strict-overflow
-fno-delete-null-pointer-checks
-fno-strict-aliasing -fwrapv

All-CISB gcc

-O3 -fno-tree-dominator-opts
-fno-tree-vrp -fno-tree-fre
-fno-strict-overflow -fno-dce
-fno-tree-ccp -fno-tree-copy-prop
-fno-tree-forwprop -fno-tree-ter
-fno-tree-pre -fno-strict-aliasing
-fno-aggressive-loop-optimizations
-fno-builtin -fno-tree-dse
-fno-optimize-strlen -fno-tree-dce
-fno-cse-follow-jumps
-fno-unswitch-loops

clang
-O3 -fno-builtin -fno-strict-overflow
-fno-strict-aliasin -fwrapv
-fno-delete-null-pointer-checks

UBSan gcc -O3 -fsanitize=undefined
clang -O3 -fsanitize=undefined

Wall gcc -O3 -Wall
clang -O3 -Wall

Table 10: Some compiler options and the assumptions/optimizations
they can block.

Options Assumptions/Optimizations
-fno-builtin Optimization of builtin function
-ffreestanding Optimization of builtin function
-fno-delete-null-pointer-checks Used pointers cannot be NULL
-fwrapv No integer overflow
-fno-strict-overflow No integer overflow
-fwrapv-pointer No pointer overflow
-fno-strict-aliasing No violating strict aliasing
-fno-aggressive-loop-optimizations Aggressive loop optimization
-fno-allow-store-data-races Introduce data race on stores

Table 8: The short name of keywords we used in our study and their
corresponding Regular Expression.

Keyword Regular Expression
gcc [Gg]cc|GCC
clang [Cc]lang|CLANG
compiler [Cc]ompiler
optimi [Oo]ptimi[sz][ae]
security [Ss]ecurity|[Dd]anger
ub [Uu]ndefined behavior
side channel [Ss]ide channel
attack [Aa]ttack
race [Rr]ace condition

compiler assum
[Cc]ompiler assum|[Gg]cc assum|
GCC assum|[Cc]lang assum|CLANG assum

(cc+opti).*break
[Oo]ptimi[sz][ae].*break|[Gg]cc.*break|
GCC.*break|[Cc]lang.*break|CLANG.*break
[Oo]ptimi[sz][ae].*introduc|[Gg]cc.*introduc|

(cc+opti).*introduc GCC.*introduc|[Cc]lang.*introduc|
CLANG.*introduc

struct padding [Ss]truct [Pp]adding
information leak [Ii]nformation [Ll]eak
reorder [Rr]eorder

12.3 More details of current mitigations
The compiler has provided three general mitigations to pre-
vent CISB, namely optimization options for preventing bugs,
runtime sanitizers and compilation time warnings. We se-
lect different compiler mitigation strategies and study their
effectiveness and performance, as listed in Table 6. Here we
show the corresponding compiler options of these strategies
in Table 9.

We also present the compiler options and the No-UB as-
sumptions/optimizations they can block in Table 10.

3672 32nd USENIX Security Symposium USENIX Association

	Introduction
	The CISB Dataset
	Problem Scope and Attacker Model
	Methodology of Bug Collection
	The Bug Set

	RQ1: General Causes and Classifications
	Fundamental and General Causes
	Three-Layer Classification

	RQ1: Implicit-Specification
	Eliminating Security-related Code
	Reordering Order-sensitive Security Code
	Introducing Insecure Instructions

	RQ1: Orthogonal-Specification
	Moving Sensitive Data Out of Boundary
	Breaking Timing Guarantees
	Introducing Insecure Micro-architectural Side Effects

	RQ2: User Study and Survey
	RQ3: Current Mitigations
	Programmer/User Efforts
	Compiler Assistance
	Automatic Prevention

	RQ4: Challenges for Future Research
	Discussion and Limitations
	Related Security Issues
	Limitations

	Related Work
	Conclusion
	Appendix
	User study materials
	Recruitment Requirements
	Online Consent Form
	Background Survey
	Online Questionnaire

	More details of the bug collection study
	More details of current mitigations

