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Abstract
Prior researchers show that existing automatic speech recog-
nition (ASR) systems are vulnerable to adversarial examples.
Most existing adversarial attacks against ASR systems are
either white- or gray-box, limiting their practical usage in the
real world. Some black-box attacks also assume the knowl-
edge of output probability vectors to infer output distribution.
Other black-box attacks leverage inefficient heavyweight pro-
cesses, i.e., training auxiliary models or estimating gradients.
Moreover, they require input-specific and manual hyperpa-
rameter tuning to improve the attack success rate against a
specific ASR system. Despite such a heavyweight tuning
process, nearly or even more than half of the generated adver-
sarial examples are perceptible to humans.

This paper designs KENKU, an efficient and stealthy black-
box adversarial attack framework against ASRs, supporting
hidden voice command and integrated command attacks. It
optimizes the novel acoustic feature loss and perturbation
loss, based on Mel-frequency Cepstral Coefficients (MFCC).
Both loss values can be calculated locally, avoiding training
auxiliary models or estimating gradients, making the attack
efficient. Furthermore, we introduce a hyperparameter in opti-
mization that balances the attack effectiveness and impercepti-
bility automatically. KENKU uses the binary search algorithm
to find its optimal value. We evaluated our prototype on eight
real-world systems (including five digital and three physi-
cal attacks) and compared KENKU with five state-of-the-art
works. Results show that KENKU can outperform existing
works in the attack performance.

1 Introduction

Fueled by massive amounts of training data, deep neural net-
works (DNNs) have achieved state-of-the-art results in auto-
matic speech recognition (ASR) systems that translate human
voices into transcriptions in natural languages. In recent
years, commercial services using ASRs are becoming more
popular. The core of Apple Siri includes an ASR to translate

human voices into transcriptions and then process the com-
mands [7]. Similarly, Google Assistant contains a DNN em-
powered ASR [6]. Amazon also releases Alexa devices which
ship a built-in ASR system to accept human commands [4].
Till now, these devices and services have attracted billions
of users. Together with other intelligent home devices, these
ASRs have significantly changed our lives and work.

Prior work shows that DNN based ASRs are vulnerable to
two types of audio adversarial examples [15]. 1) Hidden voice
command attacks generate audio that sounds like random
noise but can fool ASRs into predicting a target command [13,
18, 60]. 2) Integrated command attacks add perturbation to a
given carrier audio, e.g., a song clip, so that the adversarial
example can trigger the target ASR to output the desired
command [19, 21, 24, 24, 49, 54, 69, 75].

Generating audio adversarial examples is challenging, and
as such, most current works focus on analyzing individual
ASRs and designing white-box [18,19,49,54,69] or gray-box
attacks [44, 64]. In such attack settings, the adversary has
full or partial knowledge of the target systems, making strong
assumptions. In the real world, ASRs used in commercial
products are all black-box models. Consequently, white-box
attacks have limited practical values. Some existing black-
box attacks [21] also require the output probability vector
or the output distribution, which is not practical. This paper
aims to design a black-box attack that assumes the minimum
information, i.e., only the output text from target ASRs.

Traditional black-box attacks have two main streams. The
first one is to train an auxiliary model locally to mimic the
behaviors of the specific black-box ASR, by using the train-
ing corpus labeled by the target system [21]. Leveraging the
transferability of adversarial examples, the adversary can gen-
erate attack samples on the auxiliary model and test if they can
transfer to the target system. This approach involves collecting
datasets and training auxiliary models, which are heavyweight
processes. The second one is to estimate gradient information
used in white-box attacks [75]. For example, the adversary
can add small perturbations to a given input and observe the
output changes to estimate gradients. The adversary also has
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to query the model multiple times to increase its confidence to
get accurate estimations. In short, this is also time-consuming.
Existing works [19, 21, 69] confirm that using modern GPU
hardware as accelerators, their attacks still spend more than
half an hour to generate a single adversarial example.

It is also hard for existing works to automatically balance
the two most important goals for adversarial examples: effec-
tiveness and stealthiness. Adding more significant perturba-
tions can increase the attack success rate, improving effec-
tiveness, but it will worsen the stealthiness and vice versa.
It is challenging to optimize these two contradictory goals.
Existing works [13, 18] require input-specific hyperparame-
ter tuning to achieve high attack success rates. Despite so,
more than half of their generated adversarial examples are
still perceptible to humans (see §6.3).

To resolve these problems, we design KENKU1, a general
and unified audio adversarial attack framework, supporting
both hidden voice command and integrated command attacks.
The core of KENKU is a novel optimization engine that si-
multaneously optimizes two losses: the acoustic feature loss
and the perturbation loss. The acoustic feature loss directly
measures the quality of acoustic features in given audio and
affects the attack success rate. The perturbation loss accesses
the size of the perturbation and controls the stealthiness. One
key feature of this optimization problem is that it focuses on
acoustic features that can be measured locally without query-
ing the remote target ASR system. By doing so, we avoid
heavyweight auxiliary model training or gradient estimation
processes, achieving efficiency. We also introduce a new hy-
perparameter λ in optimization, balancing attack effectiveness
and imperceptibility. To avoid manually tuning such hyperpa-
rameters, KENKU uses a binary search algorithm to find the
optimal value of λ. Notice that this hyperparameter is target
ASR specific, i.e., for one target ASR, we only need to search
for its optimal value once.

We evaluated KENKU on five different digital platforms,
i.e., Google [10], Microsoft [11], Alibaba [1], Tencent [2] and
iFLYTEK [3], and three different physical applications, i.e.,
Apple Siri [7], Google Assistant [6] and Amazon Alexa [4].
Compared with existing optimization based attacks, KENKU
only uses 1/60 or less time to generate an integrated command.
The two modes of KENKU both achieve a 100% success rate
in the digital settings. We evaluated the physical attacks by
placing the speaker and microphone at different distances and
KENKU outperformed state-of-the-art attacks. According to
the SNR and user study results, KENKU shows promising
performance of imperceptibility. Also, KENKU can bypass
four state-of-the-art defense strategies, including audio com-
pression [69], temporal dependency [68], MVP-EARS [70]
and WaveGuard [31].

In summary, we make the following contributions:

1KENKU are a fictional race of bird-like humanoid creatures in the Dun-
geons & Dragons. They are most recognizable for the lack of a voice but
communicating by perfectly mimicking voices they have heard.

Table 1: Notations and their corresponding descriptions.

Notation Description

A Short-Time Fourier Transform matrix
B Mel filter transform matrix
C Discrete Fourier Transform matrix
X acoustic feature of the audio sample
W word sequence of the audio sample
yt target command transcription
y target command audio
x clean carrier
δ0 random uniform distribution vector
α scaling factor of hidden voice command initialization
β scaling factor of integrated command initialization
δ adversarial perturbation
x′ audio adversarial example
L f acoustic feature loss
Lp perturbation loss
Lh

p perturbation loss of hidden voice commands
L i

p perturbation loss of integrated commands
λ weight factor
L final loss function

Nmax upper bound of λ for binary search
Nmin lower bound of λ for binary search

Psignal average power of the signal
Pnoise average power of the noise

• We propose a black-box attack framework against ASRs,
requiring minimal feedback information with novel de-
signs and supporting both hidden voice command and
integrated command attacks. It features efficiency and
automatic balancing between attack effectiveness and
imperceptibility. It is transferable across different ASRs
and robust in over-the-air environments and can bypass
existing defense countermeasures.

• We implement a prototype based on the proposed idea
and it is 60 times faster in generating integrated com-
mands than existing works. KENKU can achieve a 100%
success rate against five digital platforms. We evaluate
the physical attacks under different device distance set-
tings and KENKU outperforms state-of-the-art attacks.
The SNR and user study results demonstrate that KENKU
can achieve better balance between effectiveness and im-
perceptibility than existing works. Moreover, KENKU
shows better robustness in the presence of four state-of-
the-art defenses than baseline attacks.

2 Background & Related Work

To facilitate our discussion, we summarize used notations and
their descriptions in Table 1 for reference.

2.1 ASR Systems
ASR systems accept audio signals as input and output cor-
responding text transcriptions. Figure 1 shows the typical
workflow of an ASR. The system first preprocesses the sig-
nals by extracting features. Then, a machine learning model,
known as the translation model, will take such signals as in-
puts and predict corresponding texts. Deep Neural Networks
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Data
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Translation
Model "Open the door."

ASR SystemRecorded Audio Transcription

Figure 1: General architecture of ASR systems.

(DNNs) have shown state-of-the-art performance, and are
widely used in modern ASR systems [7, 33, 36, 37, 40, 74].
Data Preprocessing. It is challenging to train transla-
tion models on raw digital audio files representing the high-
dimensional waveform data. Therefore, preprocessing audio
signals is essential in ASRs, which usually involves the acous-
tic feature extraction procedure. There are many prepro-
cessing algorithms, including signal processing methods, e.g.,
Mel-frequency Cepstral Coefficient (MFCC) [12, 42, 43, 47,
48], FBank [50], Power Spectrum [16], and machine learning
methods, e.g., CNN [17]. Among all, MFCC extracts the most
accurate and robust acoustic features and is the de facto stan-
dard used by the majority of ASR systems including CMU
Sphinx [42], Julius [43], Kaldi [47], Wav2Letter++ [48] and
Mozilla DeepSpeech [12].

MFCC first applies Short-Time Fourier Transform (STFT)
in the time domain for the raw waveform of an audio file and
converts frequency-domain signals to logarithm scale by us-
ing Mel filters. Then, it leverages Discrete Cosine Transform
(DCT) to compress the audio feature and keep the first set
of elements as output. We can simplify the whole process
into a single equation: MFCC(x) = C log

(
B||Ax||2

)
, where

A, B and C are correspondingly STFT, Mel filters, and DCT
transform matrices [18]. Other algorithms either perform part
of the operations (e.g., FBank does not perform DCT while
Power Spectrum does not involve both Mel filters and DCT)
or simulate the MFCC process (e.g., CNN-based methods).
Translation Model. In ASRs, a translation model converts
acoustic observations to word sequences. Formally, we use
X to represent the input acoustic features from preprocessing
and W = (w1,w2, . . . ,wm) to denote word sequences. The
translation model aims to find a word sequence W that has
the highest probability given the observed audio signal X :

W ∗ = argmax
W

P(W |X) (1)

= argmax
W

P(X |W )P(W )/P(X) (2)

= argmax
W

P(X |W )P(W ) (3)

Here, P calculates the probabilities. Equation 1 describes
the discriminative translation model while Equation 3 reflects
training the generative model. Using discriminative architec-
ture produces one modelwith an end-to-end training proce-
dure. Popular model architectures in this kind [26–28, 35, 61,
66] uses Recurrent Neural Networks (RNNs) or transform-
ers. Generative translation models consist of two models: an

acoustic model P(X |W ) and a language model P(W ). The
acoustic model describes the phonemes for a given sequence
of words, and the language model represents the likelihood
of word sequences. ASR systems like Kaldi [47] family are
using such methods.

2.2 Attacks against ASRs

ASRs are vulnerable to various attacks [23,34,39,51,56,57,71,
72]. In this paper, we focus on adversarial examples against
ASR systems, which exploit the vulnerabilities of DNNs. The
threat model and the adversary knowledge can categorize
adversarial attacks into white-box, gray-box, and black-box
attacks. White-box attacks [18–20, 49, 53, 54, 67, 69] refer to
the threat model where the attacker knows everything about
the target system, including the used model, its architecture,
and trained weights, and can perform desired computation
using the target system, such as gathering gradients. In other
words, the adversary has complete knowledge of the target
system. Gray-box attack [58, 64] refers to cases where the
adversary has limited access to the system. In contrast, black-
box attacks [13,14,18,21,24,44,60,75] have no direct access
to the system internals, which is the most practical setting for
the attack design. Here we discuss a few representative ones.
Carlini et al. [19] design a white-box audio adversarial at-
tack against Mozilla DeepSpeech. The formulated optimiza-
tion problem uses the Connectionist Temporal Classification
(CTC) loss function [26] to measure the distance between
the target audio label yt and adversarial example label f (x′)
where f is Mozilla DeepSpeech. It uses the gradient descent
to solve this problem.
Chen et al. [21] propose Devil’ Whisper, a transferability
based black-box attack. It trains a local substitute Kaldi model
to simulate the target commercial ASR and then generates ad-
versarial examples for the local substitute model using white-
box attack methods [69]. It needs to train different models
for different targets, and training such models can be time-
consuming, taking around hours.
Zheng et al. [75] proposed NI-Occam, a non-interactive phys-
ical attack against voice control devices, which improves
Devil’s Whisper attacks from a few aspects. First, it intro-
duces a randomization strategy at the beginning of each op-
timization iteration. Second, it leverages the AdaBelief [76]
optimizer rather than Adam [38] or SGD [52] optimizer. Third,
it is independent of any specific target ASRs. By doing so,
NI-Occam saves the potentially large query cost and makes it
easier to attack black-box ASRs.
Carlini et al. [18] reverse-engineer audio files that have de-
sired acoustic features to attack the target ASR system. The
core component of the attack leverages the extracted acoustic
features of the target command audio as inputs. The adversary
reverses the feature extraction procedure and manually ad-
justs the four MFCC parameters iteratively until a candidate
obfuscated audio is found.
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Abdullah et al. [13] share the same idea with Carlini et
al. [18] but leverage the domain knowledge of signal process-
ing to generate adversarial examples. To create unintelligible
audios, they propose four perturbation strategies, i.e., time-
domain inversion, random phase generation, high-frequency
addition, and time scaling. These perturbation strategies peri-
odically improve the attack performance, but the generated
adversarial examples also rely on hyperparameter tuning.

2.3 Existing Defenses

Previous studies have looked into the defense strategies
against audio adversarial attacks [15, 18, 21, 58, 59, 62, 63,
65, 68–70, 75]. The heavyweight adversarial training applied
in the image space [45] has two main drawbacks in the audio
domain. First, it requires too much computation cost. Sec-
ond, it will worsen the performance on normal samples sig-
nificantly [41], which affects the user experience with the
commercial products. Therefore, existing effective defenses
either happen in the data preprocessing stage or incorporate
an audio adversarial example detector.

Yuan et al. [69] propose audio squeezing to defend against
CommanderSongs. They use either the down-sampling algo-
rithms or audio compression to squeeze audio, and these lossy
transformations will compromise the carefully crafted tiny
adversarial perturbation. Adversarial example detection is
another type of defense, which distinguishes between benign
and malicious samples. Yang et al. [68] utilize the inherent
temporal dependency to detect audio adversarial examples.
The basic idea is to select the first k portion of an audio se-
quence to obtain the partially transcribed result from ASR
systems as Sk. Compare Sk with the first k portion of the
entire transcription of the whole audio sequence to detect
those abnormal samples. Based on the observation that audio
adversarial examples have poor transferability and inspired
by multi-version programming, MVP-EARS [70] utilize the
diverse off-the-shelf ASRs to determine whether audio is ad-
versarial. WaveGuard [31] incorporates audio transformation
functions and analyzes the ASR transcriptions of the original
and transformed audio to detect adversarial inputs. As for all
these detection techniques, an input is classified as adversarial
if the difference between the multiple transcriptions exceeds
a particular threshold.

3 Threat Model & Challenges

3.1 Threat Model

This paper aims to design a black-box adversarial attack
framework against ASR systems. The adversary has no ac-
cess to the ASR system but can query the target ASR and
get corresponding text transcriptions (without the numeri-
cal vectors). The adversary does not know the preprocessing

algorithm, translation model design (i.e., architectures, dis-
criminative/generative model) and weights, or the training
settings (i.e., training data and hyperparameters). Black-box
assumes minimal knowledge of the target ASR, and our attack
is more potent than some existing black-box attacks because
it does not require the numerical output of the model.

Researchers [15] categorize audio adversarial attacks into
hidden voice commands and integrated commands attacks.
The former produces noise-like audios that ASRs can rec-
ognize. The latter integrates small perturbations into benign
audios like songs, known as the carriers, to fool ASRs. Both
attacks are targeted, meaning that the adversary attempts to
force the ASRs to transcribe the input audio to specific texts.
Our framework aims to support both attacks.

3.2 Challenges

This paper assumes minimal knowledge of the target ASRs
and tries to have a unified framework for all attack scenarios,
making it harder to generate adversarial examples. Compared
with white- and gray-box attacks, black-box attacks are more
practical and challenging because of the lack of knowledge
of the target ASRs. Compared with other black-box attacks,
we do not require even the output probability vector, mak-
ing it harder to attack. In [75], researchers show that service
providers can mitigate existing black-box attacks by limiting
QPS (query per second) or exposing no output distribution.
Moreover, current work focuses on either the hidden voice
command or integrated command attacks, while ours has a
general framework designed for both types.

Traditional audio adversarial attacks require heavyweight
optimization computation, limiting their wide use. Carlini
et al. [19] spend at least one hour generating a single ad-
versarial example on a NVIDIA 1080Ti GPU server. Other
attacks [21, 75] take similar time. Moreover, Devil’s Whis-
per [21] trains a substitute model, requiring around five hours
of training (about 1500 queries) to ensure the successful con-
version of 10 target commands into workable adversarial
examples. The most time-consuming for black-box methods
is to query the model and get feedback to substitute models or
estimate gradients. An accurate substitute model or gradient
estimation requires numerous queries to the model. Effi-
cient attacks reduce attack time and cost, enable attacks in
time-constraint scenarios, and enlarge attack scales [15].

It is challenging to balance the attack effectiveness and the
stealthiness automatically without significant manual efforts.
Devil’s Whisper [21] is limited to train specific substitute mod-
els for specific black-box systems and overfit a ten-command
set to achieve good results, limiting its wide use [75]. Car-
lini et al. [18] and Abdullah et al. [13] both have to require
significant manual effort in adjusting and fine-tuning signal
processing related hyperparameters per sample and per target
ASR to obtain successful hidden voice commands. Despite
the heavyweight manual efforts, the reported human recogni-
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tion rate is around 50% in average and up to 94% in the worst
case [18]. These results show the difficulty of automatically
achieving both the attack effectiveness and imperceptibility.

4 Methodology

4.1 Attack Overview
The overreaching idea of KENKU is to generate audios that
share similar acoustic features with the target command as
adversarial audio examples. Figure 2 shows the workflow
of KENKU. For a given target command yt , we first get a
target command audio y by using the existing Google Text-to-
Speech service. For the integrated command attack, KENKU
also requires a carrier x (e.g., a song clip). The core of KENKU
is an optimization process. First, KENKU initializes the per-
turbation δ. Then, it optimizes δ by using two loss functions:
the acoustic features loss and the perturbation loss.

The acoustic features loss L f measures the acoustic feature
similarity between the target command audio and perturbed
audio. For the hidden voice command attack, the perturbed
input is the optimized perturbation itself (i.e., x′ = δ), while
for the integrated command attack, the perturbed input is the
carrier with the optimized perturbation (i.e., x′ = x+δ). L f
determines if the attack will be successful or not. If its value
is small, the generated adversarial example x′ shares similar
acoustic feature with the target command audio y, and the
probability of the attack being successful is high, and vice
versa. The perturbation loss Lp controls the quality of the
generated adversarial example, and it is specific to attack
types. For the hidden voice command attack, we want the
adversarial example to sound like random noise and design
the loss Lh

p . In contrast, for the integrated command attack, we
create another loss L i

p, aiming to make sure the adversarial
example x′ is close to the carrier x. To balance the losses,
we introduce another hyperparameter λ and design a binary
search method to automatically search for an optimal value
for λ. After solving the optimization problem, we then test if
the generated example can fool target ASRs.

The optimization process works on local perturbations and
target command audios. Through the whole process, KENKU
only requires querying the model to test if the generated ad-
versarial example can successfully fool the target ASR. The
λ controls the importance of two losses during the optimiza-
tion, and automatically determining its value can balance the
two attack goals: generating effective (L f loss) and stealthy
(Lp loss) attack samples. Based on the current attack perfor-
mance of pre-generated adversarial examples, we leverage
binary search to narrow down the range and finally determine
the value of λ. Once λ is set properly, KENKU calculates the
designed loss locally, using the same λ value for all target
commands, and does not interact with the ASR.

In summary, KENKU is the first unified framework that sup-
ports both hidden voice command and integrated command

attack, assuming minimal knowledge about the black-box tar-
get ASRs compared to existing practice [19, 21]. Compared
to existing integrated command attacks [19, 21, 75] that query
the model during the optimization iterations, KENKU applies
the optimization technique to generate adversarial examples
based on MFCC features, making it lightweight, independent
of specific machine learning models, more transferable and
universal. Compared to existing hidden voice command at-
tacks [13, 18] that also aim at the acoustic feature space but
require significant manual effort in fine-tuning hyperparame-
ters, KENKU can better balance the attack effectiveness and
imperceptibility automatically by using the binary searchable
λ in the optimization engine.

4.2 Attack Initialization
4.2.1 Obtaining Target Command Audio

In KENKU, users can provide a target command audio y to
start the attack or a target command text yt . For a given target
command text yt , KENKU can automatically get the corre-
sponding target command audio y as a vector representing the
audio waveform by using the Google Text-to-Speech service
that takes a text as input and produces an audio file reading
the given text with minimal background noises.

4.2.2 Perturbation Initialization

We draw a random value from the uniform distribution
U(−1, 1) as our initial perturbation vector δ0. Notice that
the audio data is normally distributed between -1 and 1. Af-
ter initialization, δ0 is a random noise clip. Hidden voice
commands are generated without carriers, unlike integrated
commands, which account for the two different initializations
in Figure 2. For the hidden voice command attack, the per-
turbation δ is used as the perturbed adversarial example x′,
i.e., x′ = δ. We can directly optimize this noise to get an ad-
versarial example. In practice, to speed up the optimization,
we embed the target command audio so that the initialized
command has all the needed acoustic features. Specifically,
we initialize the performance with x′0 = y+α · δ0, where a
typical value of α is 0.5. We want to keep the needed acoustic
features and enlarge the noises as much as possible during
optimization. For the integrated command attack, we have
a similar practical approach to initialize, i.e., x′0 = x+β ·δ0,
where β is small, e.g., 10−4.

4.3 Perturbation Optimization
The optimization problem KENKU uses to generate adversar-
ial examples can be written as the following:

L = L f +λ×Lp (4)

, where the loss L consists of two terms: L f , the acoustic fea-
ture loss, and Lp perturbation loss. By minimizing Equation 4,
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Figure 2: KENKU Framework.

KENKU can eventually obtain the adversarial perturbation
output to synthesize an adversarial example.

As discussed in §4.1, L f affects the attack success rate and
Lp controls the stealthiness. They can be contradictory goals
to optimize. The generated adversarial example can be similar
to target command audio if only optimizing L f , making it less
stealthy. Similarly, only optimizing the Lp can lead to low
effective attacks. We use the hyperparameter λ to balance
these two goals and use binary search to find optimal values
for λ. Specifically, we first set λ to extremely small and large
values (e.g.,10 and 100). Then, we leverage a small dataset
to generate adversarial examples under different λ values and
measure the quality of the attack. Detailed metrics used in
KENKU are discussed in §5.3. If the adversarial examples
have a high attack success rate but are not stealthy, we enlarge
the λ value using binary search and vice versa. This search
process is for per target ASR instead of per sample.

Notice that optimizing Equation 4 does not require query-
ing the target ASR model. KENKU only needs to test the target
ASR to find a proper λ value and examine if the generated
adversarial example can successfully fool the target system
or not. Once we get an optimal λ value, it will be applied
for all the target commands. We will discuss the feasibility of
binary search for this configurable parameter in §5.4.

4.4 Acoustics Feature Loss

The acoustic feature loss L f measures the acoustic feature
similarity between the adversarial example x′ and target com-
mand audio y. To calculate the similarity of two values, we
can use existing metrics like ℓ2-norm. The critical challenge
in designing this loss is how to measure the quality of acoustic
features, which is essential to model and distinguish different
audio signals. One should understand how the human brain
recognizes sound signals and the digital signal processing
principle to generate a ground truth for acoustic features. In
practice, we can only measure this based on empirical results.

Observing that data processing in ASRs is trying to extract
high-quality acoustic features, KENKU can adapt existing pro-
cedures as a measurement. As discussed in §2.1, MFCC is the
de facto standard in modern ASRs. MFCC is a linear cosine
transform of a log power spectrum on a nonlinear Mel-scale
of frequency. It approximates the human auditory system’s re-
sponse more closely than the linearly-spaced frequency bands
used in normal spectrums and is robust to background noise.
In practice, it achieves the best results, as demonstrated by ex-
isting works [22,25,30,32]. In Appendix A, we also show the
effectiveness of using MFCC to work across various systems.
Therefore, KENKU uses MFCC as the function to measure
acoustic features. Thus, our final acoustic features loss is:

L f (x′,y) = ||MFCC(x′)−MFCC(y)||2 (5)

This acoustic feature loss design is critical to realizing
black-box attacks in the physical world. Optimizing our loss
does not require information from the target ASR, making it
feasible to perform black-box attacks. Compared with tradi-
tional black-box attacks that train auxiliary models or estimate
gradients, the computation is lightweight. Moreover, MFCC
is robust against physical noises. Using this loss makes sure
that our generated noises can bypass functions like MFCC and
hence the data preprocessing in modern ASRs, making the
attack more robust in physical settings. Notice that KENKU
does not assume the use of MFCC in target ASRs. The suc-
cess of KENKU comes from the fact that MFCC has the best
empirical results for measuring the quality of acoustic fea-
tures, which has been shown by existing works [22,25,30,32]
and also our evaluation in Appendix A.

4.5 Perturbation Loss

4.5.1 Hidden Voice Command Attacks

Recall that a hidden voice command attack aims to generate
noises that ASRs can recognize. For this attack, we design
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the following loss to guarantee the adversarial example is
obfuscated and different from the target command audio:

Lh
p =−||x′− y||2 (6)

The loss measures the difference between the adversarial
example and target command audio with ℓ2 distance. When
minimizing the loss L, we are trying to generate an adversarial
example x′ that is very different from the target command y.

4.5.2 Integrated Command Attacks

As discussed earlier, we want the perturbation λ in integrated
command attacks to be small so that the adversarial example
sounds similar to the carrier. Thus, our perturbation loss in
the integrated command attacks is:

L i
p = ||δ||2 (7)

4.6 Testing
After optimizing the loss, we can obtain adversarial examples
and test them by querying the target ASR system via provided
APIs or other mechanisms. This procedure is standard, and
we omit the details in this paper.

5 Experiments

In this section, we discuss the experimental settings for our
hidden voice command and integrated command attacks.
There are distinct attack-specific settings for the two types of
scenarios, which we will discuss in §6 and §7 respectively.

5.1 General Experiment Setup
Implementation and Parameter Settings. As for KENKU,
we leverage PyTorch [9] to solve the optimization problems
with the advanced Adam optimizer [38]. Since open-source
MFCC parameters share uniform values, we can alleviate
the issue of tuning them in KENKU, and our results demon-
strate the feasibility of bypassing the need to adjust these
parameters. The key hyperparameter of KENKU is the weight
factor λ. Our observation shows that the optimal value of λ

can be found by binary search to balance the attack effective-
ness and the attack imperceptibility, which will be discussed
in §5.4. Notice that fine-tuning attack hyperparameters, in-
cluding λ, the number of iterations, and learning rate, is a
one-time process as preliminary experiments on a small test
set. And once fixed, subsequent large-scale experiments all
use the same setting combination. Our results show that one
hyperparameter set can work well for almost all cases (see
Appendix B), which saves much manual effort and thus makes
KENKU more efficient.
Hardware and Software. The experiments were performed
on a GPU server equipped with Intel Xeon Silver 4210R CPU,

188 GB main memory, and an NVIDIA GeForce RTX 3090
graphics card running Ubuntu 20.04 and PyTorch 1.7.1.
State-of-the-art Methods. To validate the performance of
KENKU, we use several state-of-the-art attacks as baselines
under the same experimental settings for a fair comparison.
For hidden voice command attacks, we compare KENKU
with [18] and [13], and for integrated command attack, we
compare KENKU with [19], [21] and [75]. We have made the
evaluation comprehensive in various aspects by directly using
their open-source code or re-implementing the corresponding
existing attacks.

Carlini et al. [18] manually fine-tuned four hyperparam-
eters of MFCC to find audio adversarial examples. As they
did not report the recommended experimental settings, we
re-implemented their method based on the Griffin-Lim algo-
rithm [29, 46] in the Librosa [8] library. We selected typical
values of the corresponding hyperparameters widely used
in open-source platforms [12, 42, 47, 50] and the values in
their neighborhoods. Devil’s Whisper [21] initially utilized
confidence scores to filter the synthetic audio data. However,
recent ASR APIs begin to hide the confidence score infor-
mation from the users. Thus, following the same setting as
Zheng et al. [75], we omitted this step to adapt Devil’s Whis-
per to the decision-based attack as well. Finally, we trained
substitute models for our target ASR APIs separately. For
other comparison attacks [13, 19, 75], we used the default set-
tings in their published codes or followed the reported rules
of thumb. For example, Carlini et al. [19] required 20,000
iterations for music-like carriers for a 100% success rate, and
we followed the same setting. Abdullah et al. [13] claimed
that Time Domain Inversion (TDI) performs the best among
their proposed four perturbation techniques. We believe that
we have tried our best to reproduce the reported results in
their papers.
Target Commands and Carriers. Due to the limitations
of existing attacks, such as the high computation cost and
heavyweight manual effort to fine-tune hyperparameters, they
typically evaluated 10 commonly used voice commands and
fine-tuned each adversarial example against each target ASR.
In this paper, for comparison purposes, we used the same
setting for all baselines and ours. Specifically, we directly
followed the ten choices of target commands in [75], which
were also the typical choices of other previous studies [13,
21, 69]. However, we further evaluated KENKU with a large-
scale set in both over-the-APIs and over-the-air settings as
well as in the presence of defenses (see Appendix B).

As for integrated command attacks, CommanderSong [69]
and Devil’s Whisper [21] carefully investigated the effects
of different carrier materials, and they found that music-like
carriers can be most conducive to attacks. Therefore, We
reused carriers from [21] that were demonstrated effective
for a fair comparison (totally 5 music clips), consistent with
subsequent practice [75]. The CW attack [19] was reported
to be adaptive to such music-like carriers as well. Therefore,
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the carrier choices in our experiments do not confuse any of
the baseline attacks.

5.2 Attack Specific Setup
Digital Domain Targets. Several big companies provide an
interface to their ASR systems powered on cloud computing
platforms. In most experiments, we target the black-box com-
mercial ASR systems including the cloud services provided
by Google [10], Microsoft [11], Alibaba [1], Tencent [2] and
iFLYTEK [3]. Such systems provide APIs that accept and
transfer the local audio file and return the text transcription
from the remote server. During this process, there is no data
loss or extra noise introduced.

Physical Domain Targets. In order to further investigate the
robustness of audio adversarial attacks, we evaluate KENKU
on popular state-of-the-art voice recognition applications in
smartphones in an over-the-air environment, including Ap-
ple Siri [7], Google Assistant [6], and Amazon Alexa [4],
which have the largest market share and all have millions of
users all over the world. In such attack scenarios, there exists
signal loss, background noise and electrical noise that will
significantly affect the attack performance.

Specifically, we used a MacBook Pro running macOS 15.6
to play all the adversarial examples (the volume set to 75%) to
test the applications in an iPhone 12 running iOS 14.1. These
are commonly seen devices among users, representing usual
usage scenarios. The two devices were placed on a desk in
parallel as people usually do. We comprehensively evaluated
the physical attacks by placing the two devices at different
distances (i.e., 10cm, 30cm, 50cm, and 100cm) to measure
the effect of signal loss and distortion. The experiments were
conducted in a quite room of 10 square meters. Following
prior works [75], we manually triggered the voice assistants
for incoming voice by pressing the app buttons, as wake-
word detection subsystems usually examine the specific user
voiceprint. If one sample can be correctly recognized by the
devices as the target command within three attempts (play
the sample within three times), we considered this sample
successful, which was the same as [75].

All the experiments were conducted and the results were
confirmed in 2023. We promise that we attack the real-world
ASR systems with our adversarial examples only for academic
research purposes to study the security and reliability of the
modern ASR techniques. We have reported our results to
corresponding service providers and developers. The ethical
considerations will be discussed in details in §9.

5.3 Evaluation Metrics
5.3.1 Attack Efficiency

In this paper, we compare several attacks with a new metric,
computation efficiency, which is measured by the time used

to generate one single adversarial example. Note that we
record the average time for each attack method to generate an
adversarial example for a target command using our hardware
and software.

5.3.2 Attack Effectiveness

The most important metric to evaluate an adversarial attack
is the attack effectiveness. As for our targeted attack goal,
we would like the machine output to exactly match what we
have specified. Any word errors would be considered a fail-
ure. With regard to each target ASR system, we calculate
the corresponding attack success rate (SR) for the attack ef-
fectiveness, that is, the number of successful commands vs.
the total number of the commands. The number of total com-
mands equals to the size of the test set of target commands.
For each specific target command, if we can find at least one
adversarial example that can be correctly recognized as the
given transcription by the target ASR system, we take this
command as a success. We use SR to fairly compare KENKU
with existing works in the same settings afterwards.

5.3.3 Attack Imperceptibility

Besides the attack effectiveness to evaluate an adversarial
attack, it should also be imperceptible. For example, human
beings only consider an adversarial example as meaningless
noise or a normal song clip, rather than identify the malicious
command that the adversary wants to hide.

The imperceptibility of an attack sample is first evaluated
by the commonly used signal-to-noise ratio (SNR). SNR is
defined as the ratio of the power of a signal (meaningful input)
to the power of background noise (meaningless or unwanted
input) in the logarithm-scale, formalized in Equation 8, where
P is an average power.

SNR(dB) = 10log10(
Psignal

Pnoise
) (8)

As for hidden voice commands (including [18] and [13],
we expect them and the target commands to sound as different
as possible. In this context, the target command audio y is
regarded as the signal in Equation 8, while the difference
between the generated sample and the target command (i.e.,
x′−y) is regarded as the noise. Hence, the lower the SNR, the
better the quality of the malicious samples. As for integrated
commands (including [19], [21] and [75]), the original song
carrier x is regarded as the signal and the final perturbation δ

is taken as the noise. Hence, in this attack scenario, the higher
the SNR, the better the quality of the integrated commands.

However, using SNR to evaluate audio adversarial exam-
ples can be unreliable, since human’s perception of sound is
subjective. Sometimes, adversarial examples with good SNR
values may have poor quality or vice versa in reality. Thus,
following the same design as previous work [18, 21, 69, 75],
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we additionally carried out user surveys to evaluate the qual-
ity of the attack samples using Amazon Mechanical Turk
(MTurk) [5] to make comprehensive evaluation about the
attack imperceptibility. Note that all the participants were
native English speakers without hearing impairments and we
did not restrict the time volunteers were given.

Following existing work [21, 75], for each attack, we ran-
domly selected one adversarial example with the lowest word
error rate (most successful) for each target command. We
mixed the generated adversarial examples of baselines and
KENKU up and shuffled them to get evaluation sets for the
user studies. As for the user study of integrated commands,
we additionally selected normal song clips as the audio qual-
ity baseline, which had the equal share with each integrated
command attack. Depending on the nature of the two at-
tack scenarios (one generates noise-like samples, the other
generates song-like samples), we uploaded our audio sample
sets and designed two distinct questionnaires for participants,
which will be discussed in more details in §6.3 and §7.3.

Finally, Amazon MTurk would return us each participant’
answers to each sample. As the core was an open question
which was not provided with any choices, we had to manually
gather and analyze the results. Similar to [18], we decided
such answers that matched the target commands or even had
similar semantic ("turn off the computer" versus "turn off my
computer") as the participants recognized what we wanted to
hide in the malicious samples. Notice that human perception
of sound is subjective, so the user study feedback may be
inconsistent with the objective and quantitative SNR results.

5.4 Configurable Parameters

We have conducted preliminary experiments by generating
adversarial examples for ten target commands to prove the
feasibility of the binary search strategy to find adversarial
examples of good quality against the cloud API targets, with
regard to the attack success rate and SNR both.

Figure 3 shows the effects of different λ values. For both
hidden voice command attack and integrated command attack,
the results in Figure 3 indicates that smaller λ can contribute
to higher success rate, while larger λ can lead to better im-
perceptibility (lower SNR for hidden voice commands and
higher SNR for integrated commands).

Since the average attack success rate and SNR vary mono-
tonically with λ values, we can leverage binary search to con-
figure λ and the expected number of queries is O(log(Nmax −
Nmin)) where typically Nmax is 100 and Nmin is 10. Here,
Nmax and Nmin are the upper and lower bounds of λ for binary
search. Preliminary experiments show that λ larger than 100
usually incurs ineffective adversarial examples while λ less
than 10 results in unacceptable imperceptibility.

Towards a specific target ASR, the same λ found by binary
search on a ten-command set as preliminary tests can be used
for other arbitrary target commands (See Appendix B).
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Figure 3: Binary search of λ settings for KENKU.

6 Results of Hidden Voice Command Attacks

In this section, we compare KENKU with [18] and [13]. The
commonality of the three hidden voice command attacks is
that they all focus on the audio feature space rather than
the machine learning models to achieve adversarial attacks
against black-box systems, resulting in lightweight compu-
tation and negligible time to generate a candidate locally,
typically within two seconds.

6.1 Digital Domain Attack Effectiveness
Table 2 shows the attack effectiveness comparison of three
hidden voice command attacks against the five commercial
black-box systems. All the three methods achieved a 100%
attack success rate in the digital settings. However, we will
demonstrate in §6.3 that KENKU outperformed the existing
hidden voice command attacks with regard to the impercepti-
bility. Consequently, it is more difficult for people to notice
the abnormality of KENKU samples while the attack effective-
ness of KENKU is comparable to baselines, making KENKU
more practical.

6.2 Physical Domain Attack Effectiveness
We conducted over-the-air experiments to validate the robust-
ness of various hidden voice command attacks. Note that
KENKU can adjust the hyperparameter λ to balance the attack
effectiveness and imperceptibility automatically, which is an
improvement over existing hidden voice commands [13, 18].
In this subsection, we will comprehensively investigate such
a property of KENKU. Figure 4 shows the results.

The first finding of the over-the-air experiments was that as
the distance between two devices increased, the attack success
rate of audio adversarial examples tended to decrease. When
the distance was set to 10cm, the average success rates of these
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Table 2: Digital attack effectiveness and the average SNR results of various audio adversarial attacks.

Google Microsoft Alibaba Tencent iFLYTEK SNR(dB)

Carlini et al. [18] 10/10 10/10 10/10 10/10 10/10 -1.82
Abdullah et al. [13] 10/10 10/10 10/10 10/10 10/10 -3.30

KENKU (Hidden Voice Commands) 10/10 10/10 10/10 10/10 10/10 -4.04

Carlini et al. [19] 0/10 0/10 0/10 0/10 0/10 N/A
Chen et al. [21] 9/10 9/10 4/10 7/10 6/10 9.23
Zheng et al. [75] 4/10 2/10 0/10 3/10 3/10 9.65

KENKU (Integrated Commands) 10/10 10/10 10/10 10/10 10/10 12.04

Note that, (1) as for hidden voice commands, the lower the SNR value, the better; while as for integrated commands, the higher the SNR
value, the better. (2) We will omit the discussion of the white-box C&W attack [19] in §7.2, §7.3 and §8, because it did not work against
the black-box target ASRs when we tested it.
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Figure 4: Physical attack results of three hidden voice command
attacks under different distance settings.

three attacks ( [18], [13] and KENKU) were 100%, 63.3%, and
/100%, respectively. By contrast, when the distance was 1m,
the average success rates dropped to 30%, 20%, and 26.7%,
respectively. Usually, the greater distance means more signal
loss, which will worsen the adversarial attack performance.

Overall, KENKU achieved better results than [13] with re-
gard to the attack effectiveness under all distance settings. In
such cases, KENKU samples were almost as stealthy as [13],
which will be demonstrated in §6.3. Although the hidden
voice commands from [18] were the most effective and robust,
these successful samples were not that obfuscated. Therefore,
the machine had less difficulty in understanding such sam-
ples. As shown in Figure 4, KENKU achieved the same results
with [18] while attacking Apple Siri and Google Assistant.
Although KENKU had one less successful case for Amazon
Alexa when the distance exceeded 50cm, KENKU achieved
comparable effectiveness in average. We will further illustrate
in §6.3 that KENKU had better SNR and user study results
compared to [18] when the attack effectiveness results were
close, which proved better balance of KENKU.

6.3 Imperceptibility of Adversarial Examples

Table 2 shows the SNR comparison of various hidden voice
command attacks. While previous studies only achieved a
SNR of -1.82dB and -3.30dB respectively, our adversarial
examples had an average SNR of -4.04, which indicates that
KENKU introduced more distortion to make the target com-
mands obfuscated and difficult for people to understand.

Table 3: User study results of three hidden voice command attacks.

Once-recognize ↓ Twice-recognize ↓

Carlini et al. [18] 59.8% 80.4%
Abdullah et al. [13] 46.4% 71.0%

KENKU 46.0% 69.8%

Note that, the once-recognize and twice-recognize columns show the percentage
of participants who correctly recognized the target commands after playing the
samples for once and twice, respectively.

As for the user studies, we uploaded the three sets of hid-
den voice commands from KENKU and the two baselines.
Because some samples sounded obvious and might affect par-
ticipants’ judgment of other similar samples, we separated
three distinct questionnaires for different methods. Referenc-
ing the basic user study design of [18], we told the workers
that we were conducting an academic study that explored the
limits of how well humans could understand obfuscated audio
of human speech. We first asked the participants to offer their
best guess to what was being said in the recordings towards
each audio sample. We did not provide any choice for the par-
ticipants and they could answer anything in the blank. Next,
we further invited them to answer another choice question:
How many times do you listen to the recordings before you
can identify their content? For this question, we provided four
fixed choices (A. 1, B. 2, C. 3, D. 4 or more). Based on their
answers, we could analyze how obfuscated a sample was.

We got totally 50 pieces of feedback for each sample, and
we calculated the percentage of the participants who were
able to transcribe the obfuscated audio correctly within two
attempts of playing the audio samples. Table 3 shows the user
study results. There were 59.8% of the participants who could
recognize the hidden voice commands generated by Carlini
et al. [18] easily after hearing the samples for once, and that
portion raised to 80.4% if they were given another chance.
As for the attack proposed by Abdullah et al. [13], 46.4%
and 71.0% could identify the malicious contents after playing
the samples for once and twice, respectively. By contrast,
only 46.0% of the participants were not fooled by our hidden
voice commands immediately. Even if they could replay the
adversarial examples one more time, there were only 69.8%
could recognize the malicious commands for sure.
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Table 4: Overall comparison of four integrated command attacks.

Knowledge Model
Irrelevant

Model
Independent Efficiency

Carlini et al. [19] white-box % % 30 min
Chen et al. [21] black-box % % 60 min
Zheng et al. [75] black-box % ! 30 min

KENKU black-box ! ! 30 sec

Note that, (1) model-irrelevant attacks do not query machine learning models for
optimization. (2) Model-independent attacks generate transferable adversarial examples
across various ASRs.

Compared to [18], KENKU achieved comparable attack suc-
cess rates as shown in §6.1 and §6.2, but had much better SNR
and user study results. Compared to [13], the imperceptibility
evaluation results were similar, but KENKU was more effec-
tive when attacking the voice assistants. Therefore, KENKU
can achieve better balance between attack effectiveness and
imperceptibility than existing hidden voice command attacks.

7 Results of Integrated Command Attacks

Table 4 compares KENKU with three state-of-the-arts inte-
grated command attacks in the high-level. All these integrated
command attacks depend on solving the optimization prob-
lem, starting from a given song carrier and a target command
audio. However, the primary difference is that previous studies
design the loss function based on the machine learning mod-
els, whereas we propose the dual-objective model-irrelevant
loss function only related to the acoustic feature space. An-
other difference is that KENKU and NI-Occam are model-
independent, so the generated adversarial examples can be
transferable across different ASRs, while Devil’s Whisper
trains auxiliary models for different target ASRs separately.

Usually, it only takes 30 seconds in average to get one
KENKU sample on our GPU server. By contrast, previous
attacks require the forwarding step through the machine learn-
ing modeland take much more time to finish the iterations, up
to half to one hour. Devil’s Whisper requires to train a substi-
tute model, which is a mostly manual and time-consuming pro-
cedure additionally. Compared to state-of-the-art integrated
command attacks, in terms of computation time, we achieve
a huge speedup of at least 60 times. Therefore, it is the first
advantage of KENKU that it is much more lightweight and
does not need to query or interact with the target systems
during the optimization iterations.

7.1 Digital Domain Attack Effectiveness

Table 2 shows the attack effectiveness comparison of four
integrated command attacks against the digital domain targets,
that is, five commercial cloud APIs.

As an attack originally designed for a specific white-box
model, the adversarial examples generated by Carlini et
al. [19] achieved a 100% attack success rate against Mozilla
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Figure 5: Physical attack results of three integrated command attacks
under different distance settings.

DeepSpeech. However, none of them could be recognized
by any of our target cloud services, which indicates the poor
transferability of these white-box adversarial examples.

Devil’s Whisper performed well against the Google and Mi-
crosoft APIs, achieving a 9/10 success rate, which approached
the results reported in the original paper. As for three cloud
services provided by Chinese vendors, Devil’s Whisper had
a performance degradation, which suggests this attack has
affinity for some systems.

Zheng et al. [75] only used their NI-Occam method to in-
vestigate the vulnerabilities of commercial voice-controlled
systems in over-the-air settings. In this paper, we further sup-
plemented the evaluation of their physical attack against digi-
tal domain targets in the first place. However, the results show
that NI-Occam could only achieve an average success rate of
2.4/10, which suggests that NI-Occam designed for physical
settings has poor transferability to digital targets.

By contrast, KENKU could attack five cloud APIs with the
success rate being 100%. Therefore, the comparison shown
in Table 2 indicates that KENKU can outperform previous
studies when attacking the cloud services in the digital do-
main. Since there is no difference in generating integrated
commands for various systems, we have also achieved the
goal of improving the universality of audio adversarial attack.

7.2 Physical Domain Attack Effectiveness

Figure 5 shows the physical attack results of Devil’s Whis-
per [21], NI-Occam [75] and KENKU under different distance
settings. Similar as the discussion in §6.2, the attack suc-
cess rate of each method against each physical domain target
decreased when the distance between the speaker and the mi-
crophone increased. For example, when the distance between
the two devices was just 10cm, the average attack success
rate of KENKU was 60%. However, this result would drop to
16.7% if the distance became 1m away. This situation also
held for the other two integrated command attacks.

Another conclusion we can draw from Figure 5 is that
KENKU outperformed the two state-of-the-art black-box at-
tacks under all distance settings. Taking the experiments
where the distance was set to 30cm as an example, Devil’s
Whisper and NI-Occam achieved an average success rate of
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40% and 26.7%, respectively. By contrast, KENKU can im-
prove this result to 50%.

Note that the service providers may have taken countermea-
sures for the previous audio adversarial attacks in their newer
updates that we used for the evaluation. In addition, the de-
vices selected for over-the-air experiments (i.e. quality of the
speaker and the microphone) will affect the experimental re-
sults. These two factors could explain the attack performance
variation and degradation compared to the original reports
in [21] and [75]. However, under the same settings in our
evaluation, KENKU was proved to improve the adversarial
attack effectiveness.

7.3 Imperceptibility of Adversarial Examples

Table 5 shows the SNR comparison of various integrated
command attacks. Previous two state-of-the-art black-box
attacks could only achieve an average SNR of 9.23dB and
9.65dB respectively, while our samples had an average value
of 12.04dB. Therefore, the SNR metric comparison indicates
that we have outperformed the other black-box attacks.

Following the same settings of the user study for integrated
command attacks as [21] and [75], we first provided three
options for the participants to decide whether the audio sam-
ple was normal, noisy, or there was someone talking in the
background (Q1). Next, if the participants chose the "talking"
option, we asked them to write down their best guess of the
talking content in a blank (Q2). Then, we further invited them
to answer a similar choice question as we did in the user study
for hidden voice commands: How many times do you listen
to the song before you can answer Q2? For this last question,
we also provided the same four fixed options to record the
participants’ total attempts.

Finally, we received feedback from 50 volunteers for each
sample. Table 5 shows the comparison results of this user
study. As the overall baseline, 83.2% of the participants
thought the song carriers were normal, while 15.4% and 1.4%
of them mistakenly believed that the samples contained noise
or that someone was talking, respectively. As for two previous
black-box attacks, the majority of the participants thought the
audio samples were noisy, up to 75% or so. By contrast, with
regard to the performance of KENKU, even 44% did not no-
tice the abnormality of our adversarial examples, while only
39.6% of them chose the noise option. Although 16.4%
of the participants perceived that someone was talking, only
3.2% could actually recognize the embedded commands.

Supported by the comparison results of both SNR metric
and the user study, we believe that we have generated audio
adversarial examples of good quality, capable of fooling peo-
ple. Also, it is a great improvement that our samples sound
more natural and smooth and contain less noise than other
black-box methods.

8 Bypassing Existing Defenses

In this paper, we have further evaluated several state-of-the-art
defense countermeasures against KENKU and other existing
attacks to compare the robustness of various methods. Ta-
ble 6 shows the results of the average attack success rate
when existing attacks deal with various defense strategies in
digital settings, including audio compression [69], temporal
dependency [68], MVP-EARS [70] and WaveGuard [31].

As for audio compression [69], we processed all generated
adversarial examples with lossy MP3 encoding. Results show
that MP3 compression can compromise about one-third of
integrated commands generated by Devil’s Whisper and NI-
Occam. However, MFCC is designed to be robust to a small
change to the audio [55,73], and the results in Table 6 demon-
strate that there is little mitigation for the MFCC-based attack,
including KENKU and [18].

Temporal dependency [68] utilizes the consistency of cor-
relations in consecutive waveform segments. Following the
same settings, we re-implemented this approach. Note that
splitting a small piece of adversarial example audio corre-
sponding to a short command would not disrupt the tempo-
ral dependency significantly [75]. Devil’s Whisper and NI-
Occam optimize the pdf-id sequences that are the intermediate
outputs of Kaldi. Their crafted adversarial perturbation can
break the temporal consistency of original carrier signal, and
almost half of the malicious samples will be detected by [68].
However, KENKU optimizes the perturbation in the acoustic
feature domain that describes the characteristics of sequential
signals to remain strong correlations between the segments,
which results in the ineffectiveness of temporal dependency
against KENKU. Another two hidden voice command attacks
also work in the acoustic feature domain so that they are
robust to this defense mechanism as well.

MVP-EARS [70] proposes to compare transcription results
of diverse off-the-shelf ASRs to detect malicious inputs. In
our evaluation, we checked all the candidate adversarial exam-
ples generated by different attack methods. If one candidate
could fool at least four ASRs (including the target) simulta-
neously, we considered it successful against the target ASR.
Devil’ Whisper needs to train a specific auxiliary model for a
specific target ASR and the transferability is limited, so it suf-
fers from MVP-EARS defense. By contrast, audio adversarial
attacks that aim at the feature space ( [13,18] and KENKU) are
independent of specific systems and have better transferability
across different ASRs. Thus, they can bypass the detection of
such a multi-version programming based defense.

WaveGuard [31] incorporates an audio transformation func-
tion g to the input audio, which introduces significant distor-
tion. Similar to the analysis before, the two previous inte-
grated command attacks are not robust to such a distortion-
based defense. Two baseline hidden voice command attacks
reconstruct audio signals based on given acoustic features
while remaining the necessary information for ASRs. KENKU
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Table 5: Average SNR and user study results of the three integrated command attacks.

Digital SR SNR (dB) ↑ Normal ↑ Noise ↓ Talking ↓ Once-recognize ↓ Twice-recognize ↓

Chen et al. [21] 70% 9.23 13.8% 75.2% 11.0% 1.4% 3.0%
Zheng et al. [75] 24% 9.65 18.8% 75.8% 5.4% 0.2% 0.6%

KENKU 100% 12.04 44.0% 39.6% 16.4% 1.6% 3.2%

Normal Song Carriers - - 83.2% 15.4% 1.4% - -

Note that, (1) "Normal" means that the participants regarded the audio samples as normal music. (2) "Noise" means that the participants thought the music contains
lots of noises. (3) "Talking" means the participants could hear someone talking in the background. (4) "Once-recognize" and "Twice-recognize" show the percentage
of participants who correctly recognized our target commands after playing the audio samples for once and twice, respectively. (5) "Digital SR" shows the average
attack success rate in the digital setting.

Table 6: Average attack success rates of various audio adversarial attacks against the five digital target ASRs in the presence of defenses.

No Defenses Audio Compression [69] Temporal Dependency [68] MVP-EARS [70] WaveGuard [31]

Carlini et al. [18] 100% 96% 90% 100% 64%
Abdullah et al. [13] 100% 90% 86% 94% 60%

KENKU (Hidden Voice Commands) 100% 94% 90% 100% 66%

Chen et al. [21] 70% 46% 42% 30% 16%
Zheng et al. [75] 24% 18% 16% 20% 4%

KENKU (Integrated Commands) 100% 96% 88% 100% 64%

uses the optimization technique to do so. Note that transfor-
mation g also remains the important signal information. In ad-
dition, KENKU can be adjusted to the adaptive attack by intro-
ducing g to Equation 5 and optimizing the term MFCC(g(x′)),
while baseline attacks do not have such capacities. Adaptive
adversaries can incorporate the knowledge of possible de-
fenses to generate more candidates, which does not affect the
evaluation in §6 and §7. Finally, as shown in Table 6, [13,18]
and KENKU can better survive WaveGuard detection and still
have an average attack success rate of more than 60%.

According to results and analysis in this section, audio ad-
versarial attacks aiming at the acoustic feature space usually
show better robustness to existing defenses. The common
problem of these defenses is that they make strong assump-
tions about the existing audio adversarial examples (i.e., poor
robustness or poor transferability). Therefore, they will be-
come ineffective in facing attacks that overcome such limita-
tions. Overall, in the presence of existing defenses, KENKU
can achieve an average attack success rate of 87.5% and 88%
for the hidden voice command and integrated command attack
modes, respectively, which outperforms the baseline attacks.

9 Discussion

Demos and code release. We listed the selected target
commands and released a few audio adversarial examples
generated by KENKU and all baseline attacks we compared
in this paper. We have also attached the core implementation
of the prototype of KENKU to facilitate future work2.
Ethics. This paper presents an attack over existing ASR sys-
tems. Following the standard protocol, we have contacted
the vendors and reported our findings and analysis. The user

2The demos and code are available at https://github.com/Xinghui-
Wu/KENKU

study survey was performed under the guidance of experts
from our institutions. This user study conformed to ethical
rules, and the study was approved by our institution’s ethics
boards. It does not ask for confidential or private information
about the participants in the questionnaires. It will not cause
any potential psychological, social, legal, physical, or other
types of risks to the participants.

Potential mitigations. In this paper, KENKU presents the
vulnerability of ASR preprocessing. KENKU uses MFCC in
its acoustic feature loss based on empirical results that MFCC
extracts better acoustic features than other existing methods.
As a result, KENKU will not be robust if there exists a function
that extracts better acoustic features. Defenses that can break
the empirical observation can defend our attacks. MFCC has
been used for decades, and our evaluation also confirms the
quality of the MFCC. But we envision better functions will
be proposed by the researchers and practitioners with the
deeper understanding of human brains and hearing systems.
A possible new attack against such defense systems is to
leverage the newly discovered functions in the future.

10 Conclusion

In this paper, we propose KENKU, the first unified framework
to attack modern speech recognition systems under all set-
tings (i.e., supporting both hidden voice command attack and
integrated command attack in both over-the-API and over-the-
air scenarios). We design a novel MFCC-based loss function
in practical black-box settings featuring the balance among
effectiveness, imperceptibility, efficiency, transferability, and
robustness. The evaluation results confirm that KENKU out-
performs existing attacks and can bypass existing defenses.
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Appendix

A Transferability of MFCC-Based Attacks

In this paper, we do not make any assumptions about the
black-box ASR systems, neither their underlying machine
learning models nor the feature extraction algorithms. Al-
though MFCC is the most commonly used, there are still
other possible choices of feature extraction functions in mod-
ern ASRs, such as FBank and power spectrum [50], and even
CNNs in the newly published research [17].

However, MFCC-based KENKU framework should attack
not only the systems using MFCC, but also systems with
other techniques as well. In this section, we examine the
transferability of MFCC-based adversarial examples. We se-
lected several open-source ASR models with different feature
extraction methods, including DeepSpeech 2 [16] that uses
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Table 8: Large-scale evaluation results of the attack success rates of KENKU against three physical target ASRs under four distance settings.

10cm 30cm 50cm 100cm

Apple Siri 71.67% / 66.67% 58.33% / 53.33% 30.00% / 25.00% 18.33% / 16.67%
Google Assistant 73.33% / 61.67% 53.33% / 46.47% 31.67% / 23.33% 20.00% / 15.00%
Amazon Alexa 68.33% / 38.33% 51.67% / 30.00% 25.00% / 13.33% 15.00% / 8.33%

Average 71.11% / 55.56% 54.44% / 43.27% 28.89% / 20.55% 17.78% / 13.33%
Standard deviation 2.079% / 12.35% 2.831% / 9.790% 2.834% / 5.153% 2.078% / 3.603%

Note that, the two values in each cell show the results of hidden voice command and integrated command attack, respectively.

Table 9: Large-scale evaluation results of the average attack success
rates of KENKU against five digital target ASRs in the presence of
four existing defenses.

Defense Hidden Voice Commands Integrated Commands

No Defense 94.00% 98.67%
Audio Compression [69] 87.00% 92.67%

Temporal Dependency [68] 80.33% 84.33%
MVP-EARS [70] 90.00% 96.67%
WaveGuard [31] 60.33% 63.33%

power spectrum, SpeechBrain [50] that uses MFCC/FBank
and Wav2Vec2 [17] that uses CNN. We generated audio ad-
versarial examples for the ten-command set discussed in §5.1
and test them on the four open-source ASRs. Experimental
results show that KENKU can attack all the open-source ASRs
with a 100% success rate, which demonstrates the feasibility
and generality of KENKU attack framework.

B Large-Scale Evaluation

Existing attacks [13, 18, 21, 75] require significant manual
effort in adjusting parameters per sample and per target ASR.
For example, Carlini et al. [18] require fine-tuning four param-
eters, i.e., the window time (wintime), the hop time (hoptime),
the number of cepstral coefficients (numcep) and the number
of warped spectral bands (nbands), when reversing the MFCC
process. Abdullah et al. [13] need to manually adjust five dif-
ferent parameters, i.e., the inverted window size, the random
phase size, the frequency and the intensity of the sine wave,
as well as the tempo. Zheng et al. [75] examine the effects of
different values of the standard deviation, perturbation size
and learning rate as well as the number of iterations for the
AdaBelief optimizer for constructing the attacks. In particular,
Devil’s Whisper [21] trains a substitute model that is only
limited to overfit a ten-command set for each victim system
and can hardly be extended to a test set of arbitrary scale.

Therefore, they typically evaluated 10 commonly used
voice commands and fine-tuned each adversarial example
against each target ASR. For comparison purposes, we used
the same setting for all baselines and KENKU as discussed in
§6 and §7. However, as we discussed in §5.1, KENKU does not
require fine-tuning adversarial examples one by one, which
outperforms the existing attacks [13,18,21,75] and motivates
us to further evaluate KENKU with a larger command set in

both over-the-API and over-the-air settings as well as in the
presence of defenses.

In this paper, we reused the test set consisting of 60 com-
mon speech commands from preivious work [75] to evalu-
ate the KENKU framework. It was unpractical to fine-tune
the attack hyperparameters for these 60 commands one by
one. Therefore, we set fixed hyperparameter values for each
command, based on the experience of the evaluation on the
pre-selected small test set discussed in §6 and §7.

Table 7 shows the large-scale evaluation results in the digi-
tal settings. KENKU performed well on all the five ASR cloud
services. The lowest attack success rate was even greater than
90%. Overall, we can achieve 94.00% and 98.67% attack
success rate in average for our hidden voice command attack
and integrated command attack, respectively. Moreover, the
standard deviations were 2.496% and 1.247%, respectively.

Table 8 shows the large-scale evaluation results in the phys-
ical settings. As we fixed the λ value that was tuned for the
pre-selected 10-command set for all the 60 new target com-
mands, the physical attack success rate decreased compared
to the results in §6.2 and §7.2. As for hidden voice command
attack, the average success rates under four distance settings
were 71.11%, 54.44%, 28.89% , and 17.78%, respectively.
The standard deviations were 2.079%, 2.831%, 2.834%, and
2.078%, respectively. As for integrated command attack, the
average success rates were 55.56%, 43.27%, 20.55%, and
13.33%, respectively. The standard deviations were 12.351%,
9.790%, 5.153%, and 3.603%, respectively.

Table 9 shows the large-scale evaluation results in the
presence of existing defenses. Similar as the analysis in §8,
KENKU can bypass audio compression, temporal dependency
and MVP-EARS, with limited attack performance degrada-
tion. Although WaveGuard shows promising performance
against existing audio adversarial attacks, KENKU still have
a 61.83% chance to bypass its detection.

In summary, the evaluation results in this section further
demonstrate the effectiveness and generality of KENKU. Note
that these attack results only represent the worst case of our
attack, as we fixed the attack hyperparameter values. The
adversary can achieve higher success rate by fine-tuning hy-
perparameters for each target command.
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