
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Efficient Unbalanced Private Set Intersection
Cardinality and User-friendly Privacy-preserving

Contact Tracing
Mingli Wu and Tsz Hon Yuen, The University of Hong Kong

https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingli

Efficient Unbalanced Private Set Intersection Cardinality
and User-friendly Privacy-preserving Contact Tracing

Mingli Wu
The University of Hong Kong

Tsz Hon Yuen
The University of Hong Kong

Abstract
An unbalanced private set intersection cardinality (PSI-

CA) protocol is a protocol to securely get the intersection
cardinality of two sets X and Y without disclosing anything
else, in which |Y | ≪ |X |. In this paper, we propose efficient
unbalanced PSI-CA protocols based on fully homomorphic
encryption (FHE). To handle the long item issue in PSI-CA
protocols, we invent two techniques: virtual Bloom filter and
polynomial links. The former can encode a long item into
several independent shorter ones. The latter fragments each
long item into shorter slices and builds links between them.

Our FHE-based unbalanced PSI-CA protocols have the
lowest communication complexity O(|Y | log(|X |)), which
is much cheaper than the existing balanced PSI-CA pro-
tocols with O(|Y |+ |X |). When |X | = 228 and |Y | = 2048,
our protocols are 172× ∼ 412× cheaper than the best bal-
anced PSI-CA protocol. Our protocols can be easily modi-
fied into unbalanced PSI protocols. Compared with Cong et
al. (CCS’21), one of our unbalanced PSI protocols can save
42.04% ∼ 58.85% communication costs and accelerate the
receiver querying time.

We apply our lightweight unbalanced PSI-CA protocols
to design a privacy-preserving contact tracing system. We
demonstrate that our system outperforms existing schemes in
terms of security and performance.

1 Introduction

Private set intersection cardinality (PSI-CA) allows two par-
ties (i.e., a receiver who has a set Y and a sender who has
a set X) to securely compute the intersection cardinality of
their sets. Specifically, the receiver learns only the cardinal-
ity |X ∩Y | without disclosing any item of Y to the sender;
the sender gets no output and discloses only |X ∩Y | to the
receiver. When |Y |≪ |X |, we have unbalanced PSI-CA (uPSI-
CA). Unbalanced PSI-CA has many applications (e.g., data
mining [54], genome test [5]), in which COVID-19 contact
tracing [20, 52] is a significant one to control the pandemic.

Users (i.e., the receivers) can secretly detect the number of
close contacts who are diagnosed with COVID-19. Then mea-
surements can be taken to protect themselves and their ac-
quaintances (e.g., their families, friends) in time.

Though many balanced PSI-CA protocols [16, 18, 22, 54]
have been proposed, they are not efficient when the set sizes
are unbalanced, especially in communication costs. Duong et
al. [20] designed a user-friendly uPSI-CA protocol but relied
on third parties. It is noted that a balanced PSI-CA protocol
can also be used in the unbalanced case. However, the per-
formance is poor, especially with expensive communication
costs. For example, when n = 228, the communication cost of
balanced PSI-CA protocol [16] can be as high as 2560 MB.

PSI-CA is closely related to private set intersection (PSI).
The difference is that the receiver learns X ∩Y in PSI rather
than |X ∩Y | in PSI-CA. Intuitively, designing PSI-CA is more
difficult than designing PSI. Knowing the intersection, the
receiver can easily know the intersection cardinality. However,
only knowing the cardinality, the receiver usually cannot know
the items in the intersection. Noticing this relation, to design a
lightweight uPSI-CA protocol, we first investigate the related
uPSI (i.e., unbalanced PSI) protocols and find uPSI protocols
based on fully homomorphic encryption (FHE) are the best.

1.1 Naive FHE-enabled uPSI

CLR’17 [13] proposed a uPSI protocol with low communi-
cation complexity (i.e., O(ny log(nx))) by FHE, where ny and
nx are respectively the set size of the receiver and sender. The
core idea is bin-wise matching. They first profile the smaller
set Y into a Cuckoo hash table and insert the larger set X into
a two-dimensional simple hash table by using the same hash
functions. For each item y in the Cuckoo hash table, one only
needs to compare it with the items x1,x2, · · · ,xb in the simple
hash table at the same bin location, where b is the bin size
(i.e., the number of items in the bin). Specifically, the sender
first constructs a normal polynomial P(·) using x1,x2, · · · ,xb:

USENIX Association 32nd USENIX Security Symposium 283

P(x) =
b

∏
i=1

(x− xi) = c0 + c1 · x+ · · ·+ cb · xb,

where ci (i= 0,1, · · · ,b) are the polynomial coefficients. Then
the receiver can send the FHE ciphertext JyK to the sender.
Upon receiving JyK, the sender can compute

P(JyK) = c0 + c1 · JyK+ · · ·+ cb · JybK,

and returns it back to the receiver. The receiver decrypts the
result ciphertext P(JyK) to get P(y). If P(y) is 0, then y is in
the intersection; otherwise not.

Although the performance of CLR’17 [13] is good, it can
only support items with bit length σ ≤ 32. When naively
increasing σ in their protocol, the related FHE parameters
have to be substantially increased on par, resulting in high
performance deterioration. Handling longer items in FHE-
based PSI is challenging. To solve this issue, their follow-
ing work [12] used general single instruction multiple data
(SIMD) encoding scheme, which is difficult to be imple-
mented in SEAL (an open-source FHE library). The latest
work [15] instead took a simple but highly effective strat-
egy: item slicing. To handle a long item, they simply slice
a long item y into shorter items, e.g., y(1)||y(2)||y(3), where
“||" is bit string concatenation. However, simple slicing has
an obvious drawback: false positives. For example, to match
an item y = y(1)||y(2)||y(3) of the receiver with three items
x1 = x(1)1 ||x(2)1 ||x(3)1 ,x2 = x(1)2 ||x(2)2 ||x(3)2 ,x3 = x(1)3 ||x(2)3 ||x(3)3 of
the sender after slicing, the receiver may mistakenly take y
as a matched item if y(1) = x(1)1 , y(2) = x(2)2 , and y(3) = x(3)3 .
More details will be given in section 6.3.

In addition to the drawback, all the above FHE-based works
[12, 13, 15] are prone to the deception attack, in which the
sender deceives the receiver to accept an item not in X ∩Y
as a matched one without being noticed by the receiver. This
attack is practical in real-world PSI applications. For example,
in private contact discovery [29], a social service provider
(e.g., Facebook, Signal) can deceive a user that he/she has
many common friends who are using the same application;
then the user will be motivated to choose this application too.
The details are given in section 3.1.

1.2 Overview of Our Solutions
To overcome the above drawbacks, we propose three uPSI-CA
protocols by using a cryptographic primitive shuffled oblivi-
ous pseudorandom function (shuffled OPRF) and inventing
two techniques: virtual bloom filter (VBF) and polynomial
links. In general, our protocols have two parts: shuffled OPRF
preprocessing and securely getting the intersection.

Shuffled OPRF. A shuffled OPRF allows the receiver with
inputs Y = ⟨y1,y2, · · · ,yny⟩ to learn shuffled outputs Y o =
⟨OPRFk(yπ(1)), OPRFk(yπ(2)), · · · ,OPRFk(yπ(ny))⟩ , where k
is the sender’s input key and π(·) is the sender’s random

input permutation. The sender learns nothing from this
functionality. The receiver cannot find the corresponding
OPRF value for a specific input. Since the sender knows
the key k, he/she can trivially compute the OPRF outputs
Xo = ⟨OPRFk(x1),OPRFk(x2), · · · , OPRFk(xnx)⟩ by inputting
his/her items. Then the receiver can only know |Xo ∩Y o|=
|X ∩Y | after implementing PSI with Xo and Y o. It is noted that
the receiver does not know the corresponding OPRF value of
any item in his/her set after shuffling, and thus knows nothing
about the items in X ∩Y even when they know Xo ∩Y o. After
preprocessing X and Y by the shuffled OPRF, we can focus
on the techniques for handling the long item issue.

VBF Encoding. Virtual Bloom Filter (VBF) can encode
a long item into several shorter ones. Bloom Filter is a data
structure that can map each item of a set into kv bins of a hash
table with size m by using kv uniform hash functions. We
propose VBF based on Bloom Filter. For a long item y, we
encode it into kv shorter one. Specifically, we represent y as its
kv bin indices, which have shorter bit lengths (i.e., ⌈log2(m)⌉).
For example, if y with bit length σ = 128 is mapped to bin #
2, 5, 9 out of a total of 16 bins, we encode it as y := (2,5,9).
Now we can represent a 128-bit item y as 3× log2 16 bits.
After VBF encoding, one can do the above bin-wise matching
by FHE. If all the kv VBF sub-items (e.g., the table indices
2,5,9) of an item are matched, then this item is in the inter-
section with desired probability. More details can be found in
subsection 4.1.

Polynomial Links. In polynomial links (PoL), for each
item x, we first slice it as x = x(1)||x(2)|| · · · ||x(ks). To make
bin-wise matching, we then build links by using ks poly-
nomials Pi(·) (i = 1,2, · · · ,ks), which are built by the cor-
responding slices in the sender’s bin. We construct the
first polynomial P1(·) by utilizing the first slices of items
in the sender’s bin x(1)1 ,x(1)2 , · · · ,x(1)b , such that P1(x

(1)
j) =

0 for all j. Then we construct the other polynomials
Pi(x

(1)
j) = x(i)j (i = 2,3, · · · ,ks) by using interpolation over the

points (x(1)1 ,x(i)1),(x(1)2 ,x(i)2), · · · ,(x(1)b ,x(i)b). To make bin-wise
matching, for an item y = y(1)||y(2)|| · · · ||y(ks), the receiver
can simply check whether P1(y(1)) = 0 and Pi(y(1)) = y(i)

(i = 2,3, · · · ,ks). If all slices y(i) (i = 1,2, · · · ,ks) are matched,
then y is in the intersection. It is noted that Pi(y(1)) can be
securely computed by the sender using FHE. Here we neglect
the FHE computation steps for simplicity. Since the slices can
be much shorter than the original item, the long item issue
can be resolved. Refer to subsection 4.2 for more details.

1.3 Our Contributions

In summary, we have the following contributions in this paper:

• We propose efficient uPSI-CA protocols without re-
lying on any third party. Compared with the existing
PSI-CA protocols, our protocols have many strengths.

284 32nd USENIX Security Symposium USENIX Association

Our FHE-based protocols have the lowest communica-
tion complexity O(ny log(nx)). Most of previous two-
party PSI-CA protocols only consider the balanced case
and their best communication complexity is O(ny +nx).
However, when the set size nx of the sender is large in
the unbalanced case, their communication costs can be
much larger than ours. For example, when nx = 228 and
ny = 2048, the communication costs of our three proto-
cols are respectively 14.82 MB, 6.21 MB, and 7.66 MB;
however, Cristofaro et al. [16] needs 2560.13 MB, which
is 172×∼ 412× as expensive as ours.

• Our uPSI-CA protocols can be easily modified to uPSI
protocols. Compared with the state-of-the-art uPSI pro-
tocol [15], our first PoL based protocol eliminates false
positives and has the lowest communication costs in all
settings. It can save 42.04% ∼ 58.85% communication
costs compared with Cong et al. [15]. Also, the receiver
in our PoL based protocol can get the intersection more
quickly. Our second VBF+slicing based protocol has
slightly better performances than [15] and can greatly
alleviate the deception attack. Our third protocol com-
bines both the PoL and VBF to get balanced perfor-
mances between our first two protocols. Our PoL-based
and VBF+PoL based protocols can inherently thwart the
deception attack, while none of the previous FHE-based
uPSI protocols [12, 13, 15] can.

• By utilizing our uPSI-CA protocol, we develop a user-
friendly privacy-preserving contact tracing system. Our
system can satisfy all the security and performance re-
quirements while none of the existing designs can. For
example, compared with the well-known contact tracing
schemes Google&Apple [2] and DP-3T [53], we can pro-
vide strong privacy protection for the users by thwarting
the linkage attacks. Compared with Catalic [20], we do
not need non-colluded third parties when utilizing our
PoL-based uPSI-CA protocol.

2 Related Work

In this section, we introduce the works mostly related with
ours in PSI-CA, unbalanced-PSI, and contact tracing. Due to
the page limit, we put other related works in Appendix A.

PSI-CA. Kacsmar et al. [28] exploited differential pri-
vacy to design their uPSI and uPSI-CA protocols, which
have the communication complexity O(ny log(nx)). However,
their concrete communication costs are very expensive. When
nx = 220, both their uPSI and uPSI-CA protocols have the
communication costs > 100 MB [25]1, which is > 10× more

1Kacsmar et al. [28] did not show the communication costs for their uPSI-
CA protocol. He et al. [25] also used differential privacy to design their PSI
and PSI-CA protocols and made comparisons with [28]. However, their com-
munication complexity is O(ny +nx). When nx = 220, their communication
costs are larger than [28].

expensive than our uPSI and uPSI-CA protocols. The other
existing PSI-CA protocols (e.g., [16, 23, 33, 54]) and circuit-
based PSI protocols (e.g., [11, 43, 44, 47]) that can be used
to compute the cardinality are balanced ones with at least
O(ny +nx) communication cost and it is not appropriate to be
used in unbalanced cases, especially when nx is large. It is
noted that in unbalanced PSI-CA, the focus is on achieving
low communication costs.

Cristofaro et al. [16] designed the first PSI-CA proto-
col with linear complexity O(ny + nx) based on Decisional
DH (DDH) assumption in the random oracle model (ROM)
[27]. Suppose that β and k are respectively the receiver’s
key and the sender’s key. The receiver first sends H(yi)

β

(∀i ∈ [ny]) to the sender. The sender computes (H(yi)
β)k and

sends them to the receiver after shuffling. Then the receiver
can exploit the commutative property of DH to compute
((H(yi)

β)k)1/β = ((H(yi)
k)β)1/β = H(yi)

k. The sender also
sends H(xi)

k to enable the receiver to compute the intersec-
tion cardinality. For the computation cost, both the sender
and the receiver need to compute two exponentiation for each
item. The communication cost of their protocol is small. For
example, when the set size n = 220, their protocol takes 74
MB. Similarly, Lv et al. [33] exploited commutative encryp-
tion to design their PSI-CA protocol. In their protocol, it takes
135.25 MB in communication when n= 220, which is 1.8× as
expensive as [16]. Vaidya et al. [54] utilized the commutative
hash functions but with their focus on multi-party PSI-CA
rather than two-party.

Miao et al. [34] targeted computing the intersection sum,
though they could also get the cardinality. In addition to us-
ing DH related assumption (q-DHI assumption), they also
used other primitives (e.g., Zero-Knowledge Argument of
Knowledge, ElGamal encryption), which made it much less
efficient than Cristofaro et al. [16]. Circuit-based PSI can be
used to realize PSI-CA [43, 44]2. The notion of circuit-based
PSI was proposed by Huang et. al. [26], in which each party
gets the correct shares for the intersection items rather than
the intersection. Then computation can be done to realize
the targeted functionality (e.g., PSI-CA) by using the specific
circuit. Pinkas et. al. [43] proposed a circuit-based protocol by
using their Oblivious Programmable Pseudorandom Function
(OPPRF). To realize PSI-CA, in their previous work [44], they
mentioned that Hamming weight circuit [8] could be used.
Chandran et al. [11] achieved better performance than [43].
The latest circuit-based PSI protocol [47] only needed 115
MB (i.e., the lowest one), but still about 1.6× as expensive
as [16]. For the computation cost, it was 1.53× as fast as [11].
With a similar idea, Garimella et al. [23] combined the OP-
PRF in [43] with oblivious switching in [36] to designed a
PSI-CA protocol. The communication cost of their protocol is

2In [43, 44], the authors showed the performance of PSI-CAT protocols
by using their circuit-based PSI protocols. In PSI-CAT, the receiver knows
whether the cardinality is over a threshold. The costs of their PSI-CA proto-
cols are slightly cheaper than their PSI-CAT protocols.

USENIX Association 32nd USENIX Security Symposium 285

1155 MB when n = 220, which is 15.6× as expensive as [16].
All the above protocols are secure in the semi-honest model

except that [34] is secure in the malicious model. Cristofaro
et al. [16] achieves the lowest communication cost. Circuit-
based PSI can be very fast (e.g., 15s in 1Gbps LAN setting
when n = 220 [47]). By exploiting the circuit-based PSI pro-
tocol in [47], one can design a PSI-CA protocol that runs the
fastest when the bandwidth is high (e.g., 1Gbps).

Unbalanced PSI. In above mentioned FHE-based uPSI
protocols [12, 13, 15], the communication complexity is
O(ny log(nx)), which is cheap. However, the sender needs
to compute mα normal polynomials, thus the computation
complexity is O(n2

x
mα

). Here m is the Cuckoo hash table size,
and α is the partition number to partition a large bin into
several smaller ones. The computation cost for the sender is
large, especially when nx is large. Except for the FHE-based
ones, Kales et al. [29] presented two optimized uPSI protocols
LowMC-GC and ECC-NR based on the Cuckoo filter, garbled
circuit, and Oblivious Transfer extension (OTe) [4, 30]. Their
protocols required an offline preprocessing phase in which the
sender sends a compressed Cuckoo filter to the receiver and
the receiver needs to prepare the storage. For performance,
their LowMC-GC achieves the lowest sender offline compu-
tation cost. For example, when nx = 224 and ny = 5535, it
only takes 87.85s for their LowMC-GC, which is about 8.8×
as fast as the state-of-the-art [15]. Their ECC-NR protocol
achieves lower communication costs than LowMC-GC. In
the same set size, ECC-NR is 3.9× as cheap as LowMC-GC.
However, compared with [15] that achieved the lowest com-
munication cost, ECC-NR is about 2.9× more expensive. For
security, both Kales et al. [29] and [15] can thwart a malicious
receiver and are secure for a semi-honest sender.

Contact tracing. In contact tracing, a user has an identifier
set Y and wants to know whether he/she is a close contact
by comparing Y with the identifier set X of the Public Health
Authority (PHA). For contact tracing, the designed protocol
should be unbalanced because |Y |≪ |X |. Users usually utilize
their cellphones to finish contact tracing. Since the cellphone
is resource-constrained, a good contact tracing protocol is
supposed to focus on the performance on the user-end. Also,
to attract users’ participation, the protocol should be strongly
privacy-preserving. Apple and Google [2] jointly provided
a contract tracing framework, which was adopted by many
contact tracing apps, such as COVID Alert NY in New York
and COVID Alert in Canada. However, the framework can
only ensure limited privacy protection by relying on temporal
identifiers. DP-3T [53] also designed the protocol relying on
ephemeral identifiers. In their protocol, users need to down-
load a Cuckoo filter that stores the ephemeral identifiers of
the positive diagnosis, which is expensive in communication.
Trieu et al. [52] designed three PSI-CA protocols to realize
privacy-preserving contact tracing. Their first PSI-CA pro-
tocol used the DH-OPRF that is exactly the same as [16].
The other two protocols utilized multi-query Keyword pri-

vate information retrieval [1] by respectively using one back-
end server or two non-colluded backend servers to reduce
the communication costs. In addition to the above two-party
protocols, Duong et al. [20] designed a delegated uPSI-CA
protocol by using an oblivious distributed key pseudorandom
function (Odk-PRF). Their design is prone to the collusion
attack because of using multiple intermediate delegates. By
using delegates, their protocol can achieve very low communi-
cation cost (i.e., 0.094MB) and computation cost (i.e., 0.002s)
when ny = 211 and nx ≈ 226, which are the lowest compared
with the above protocols. However, the communication cost
of the backend server on the PHA is very high (i.e.,≥ 1036.83
MB), which is very expensive in the real-world application.
More details can be found in section 7.

3 Preliminaries

The receiver has a set Y with size ny. The sender has a set
X with size nx. In addition, [n] denotes a set {1, · · · ,n}. We
also denote {xi}n as a set {x1, · · · ,xn}. In FHE, a ciphertext
is denoted as JbK, in which b is the corresponding batched
plaintext. A batched plaintext is a vector containing many
single plaintexts. All arithmetic operations in the protocols
are in the finite field Ft , where t is the FHE plaintext modulus.

3.1 Security Model
As previous FHE-based protocols (i.e., [12,15]), in this paper,
we consider security against malicious adversaries under a
relaxed definition where one corruption case is simulatable
and for the other only privacy (formalized through indistin-
guishability) is guaranteed [24]. In addition, we consider the
deception attack. In the deception attack, the sender deceives
the receiver to accept an item not in the intersection as a
matched one without being noticed by the receiver. In prior
FHE-based uPSI protocols [12,13,15], the receiver will accept
an item if its matching result is ‘0’; then the malicious sender
can deliberately return J0K to the receiver even y /∈ X ∩Y . The
receiver can only passively accept y as a matched one. In a
special case, the malicious sender can simply return ‘0’ re-
sults for all bins. Then the receiver has to accept his/her own
set Y as the intersection. To measure the protocol’s ability to
counter the deception attack, we have attacking success prob-
ability which shows the probability of the sender deceiving
the receiver, and the detecting probability which shows the
probability of the receiver detecting that he/she is deceived.

3.2 Bloom Filter
Bloom Filter [7] is a probabilistic data structure that can
profile a set. It maps each item of a set to a hash table with
size mv by using kv hash functions h1(·),h2(·), · · · ,hkv(·) :
{0,1}∗ 7→ [mv]. The Bloom Filter is initialized by setting all
the bins as ‘0’. To insert an item e, one should map it to kv

286 32nd USENIX Security Symposium USENIX Association

positions h1(e),h2(e), · · · ,hkv(e) and set the corresponding
bins as ‘1’. To query an item e, one only needs to check all
its kv hashed locations. If they are all ‘1’s, then e is in the set;
otherwise not. Though there is no false negative in Bloom
Filter, false positives are possible. To insert n items, the false
positive probability (FPP) is

ε = (1− (1− 1
mv

)kvn)kv . (1)

There are two differences between Bloom Filter and Cuckoo
hashing (in Appendix B). Firstly, the bins in Bloom Filter
contain bits instead of items. Secondly, each item in Bloom
Filter is mapped to all the kv bins rather than only one bin.

3.3 Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) allows the evaluation
of arbitrary functions on encrypted data [21]. Under FHE, one
can easily outsource his/her private data to another party with
powerful computation capability (e.g., the cloud) by encrypt-
ing the data. After computing on the encrypted data by the
other party, only the one with the decryption key can decrypt
and get the computation result. However, the computation cost
for executing homomorphic operations is generally expensive,
which makes FHE only practical in limited applications.

To enable cheaper computation, Chen et.al [13] and [12]
utilized leveled FHE, which is bound by a pre-determined cir-
cuit depth. They used a leveled FHE library SEAL [51]. SEAL
allows four basic homomorphic operations over integers:

Add: Jp1 +p2K = Jp1K+ Jp2K,
Add Plain: Jp1 +p2K = Jp1K+p2,
Multiply: Jp1 ×p2K = Jp1K× Jp2K,
Multiply Plain: Jp1 ×p2K = Jp1K×p2,

where p1 and p2 are two plaintexts. There are three important
parameters in SEAL: the plaintext modulus t, the ring dimen-
sion n′, and the ciphertext modulus q. A freshly generated
ciphertext gains some noise budget log(2|µ|) to execute FHE
operations, where µ is the invariant noise [31]. When the noise
grows over the noise budget of a ciphertext, the correctness
of the decrypted plaintext is not guaranteed. In addition to
the four basic operations, employing modulus switching [9]
to a ciphertext can effectively reduce the ciphertext modulus
q to a smaller q′. Therefore, the size of a resulting ciphertext
can be reduced. For more details, the readers are suggested to
refer to the work [31] and the source codes [51].

Batching, also known as Single Instruction Multiple Data
(SIMD), is a technique that enables operations on two vectors
rather than two integers. Batching is integrated into many FHE
schemes, such as SEAL [51]. Taking addition operation as an
example, given p1 = ⟨x1,x2, · · · ,xn⟩ and p2 = ⟨y1,y2, · · · ,yn⟩,
one can get p1 + p2 = ⟨x1 + y1,x2 + y2, · · · ,xn + yn⟩ rather
than computing xi + yi for n times. By utilizing batching, one
can have the above basic operations on vectors in FHE, thus
greatly saving the computation and communication costs.

Since FHE operations are noise bounded, the receiver
cannot simply multiply JyK to get JyiK (∀i ∈ {2,3, · · · ,nx}).
Windowing is a technique proposed in CLR’17 [13] to find
the minimum window set W , such that all ciphertexts JyiK
(∀i ∈ {1,2, · · · ,nx}\W) can be recovered by computing on
the windowing ciphertexts JyiK for ∀i∈W within given circuit
depth ℓ. Windowing is used to reduce the number of cipher-
texts from the receiver to the sender in PSI. For example, to
enable the sender get JyK,Jy2K,Jy3K, the receiver only needs
to send JyK,Jy2K to the sender. The sender then can compute
Jy3K = JyK× Jy2K. Cong et al. [15] reduced the windowing as
a problem of finding extremal postage-stamp bases [10] and
exploited Paterson-Stockmeyer algorithm [40] to save com-
munication costs. It is noted that additive HE cannot be used
in windowing because there are ciphertexts multiplications.

3.4 Shuffled DH-OPRF
Oblivious Pseudorandom Function (OPRF) enables the re-
ceiver to get the OPRFk(y) secretly, in which k is the secret
key of the sender and y is the input of the receiver. Shuffled
Diffie-Hellman-based OPRF (DH-OPRF) [16] enables an ad-
ditional shuffled feather for the OPRF values. One advantage
of the DH-OPRF is that the communication cost can be O(ny)
(i.e., linear with the smaller set size). Specifically, assuming
H1(·) and H2(·) are random oracles, there are three steps:

1. The receiver generates a random secret β for all items in
Y and sends H1(yi)

β (∀i ∈ [ny]) to the sender.
2. The sender generates a random key k. Upon receiving

H1(yi)
β, he/she computes H1(yi)

βk (∀i ∈ [ny]) and shuf-
fles them to get H1(yπ(i))

βk (∀i ∈ [ny]), where π(·) is a
random permutation. The sender sends the shuffled val-
ues to the receiver.

3. The receiver gets its outputs OPRFk(yi) =
H2((H1(yπ(i))

βk)(1/β)) = H2(H1(yπ(i))
k) (∀i ∈ [ny]).

Since the sender knows the OPRF key k, he/she can have
the OPRF output for any input. To achieve an uPSI-CA proto-
col, the sender directly computes U = {H2((H1(xi)

k)}nx and
sends it to the receiver. Then the receiver gets the intersection
cardinality |X ∩Y |= |U ∩V |, where V = {H2((H1(yπ(i))

k)}ny .
The drawback is that the sender needs to send nx OPRF-
processed items to the receiver, which is expensive in commu-
nication when nx is large. In this paper, we utilize the shuffled
DH-OPRF to preprocess the items to design our protocols.
In [12, 15], the authors also utilized the DH-OPRF [27] to
preprocess their items. There are two differences between
their used DH-OPRF and the above shuffled DH-OPRF. First,
in step 1, the receiver samples ny random secrets {βi}ny . In
step 2, the sender does not shuffle the returned values.

By using ny secrets {βi}ny , the protocol is perfectly
receiver-private [27]. By using one secret β, one needs DDH
assumption to ensure the receiver’s privacy [16] in the semi-
honest model (i.e., against a semi-honest sender). In [27], to

USENIX Association 32nd USENIX Security Symposium 287

be secure against a malicious sender, zero-knowledge proof
is used to ensure the sender does the computation by using
the same k for all {H1(yi)

β}ny . In the preprocessing phase of
our uPSI(-CA) protocols, we only need the OPRF protocol
to be secure against a semi-honest sender. Therefore, zero-
knowledge proof is not needed as [12, 15]. The difference be-
tween ny secrets and one secret only affects the privacy of the
receiver. For the sender’s privacy, in [16], the authors claimed
their protocol was secure against a semi-honest receiver under
the DDH assumption in ROM. However, the authors in [27]
proved that the protocol was secure against a malicious re-
ceiver under the One-More Gap DH assumption in ROM. We
also observe a slight difference between [27] and [16] to com-
pute the OPRF value by using H2(·). In [27], the receiver com-
putes H2(H1(yi),H1(yi)

k) for yi ∈ Y rather than H2(H1(yi)
k)

in [16]. Here we do not consider the shuffling for simplic-
ity. Also, the receiver receives H2(H1(xi),H1(xi)

k) for xi ∈ X
from the sender to finish PSI after DH-OPRF. The authors
in [27] explained that they did so simply for better security
reduction and it was also secure to compute H2(H1(yi)

k) and
H2(H1(xi)

k), which was adopted in [12, 15]. In this paper, we
follow [12, 15] to compute H2(H1(yi)

k) and H2(H1(xi)
k).

4 Our Approaches

In this section, we present our techniques to tackle the long
item issue and improve performance. Since the item bit length
σ has a great impact on the performance, we propose two
techniques to turn a long item into several shorter ones.

4.1 Virtual Bloom Filter

To turn a long item into a short one, the existing protocols
[12,42,45] naively hash it to get a shorter representation with
length log(nx)+ log(ny)+λ. In this paper, we take a different
method by utilizing Bloom Filter. Bloom Filter can store each
item in its kv corresponding hashed bit bins. Noticing that the
hash table size mv is much smaller than 2σ, we can represent
a long item as the kv shorter indices. Since we do not need a
physical hash table to store the bits, we call it Virtual Bloom
Filter (VBF). Having VBF, we can encode a long item x as kv
short VBF sub-items (i.e., x := (h1(x),h2(x), · · · ,hkv(x))). It
is noted that the order of these sub-items does not matter, since
all the kv hash indices are independent. In equation 1, setting
n = nx +ny = 224 +5535, λ = 40, and the FPP ε ≤ 2−λ, we
can get different values of mv for different kv. The length of
the short VBF sub-item σ1 = log(mv) is shown as Table 1.

Table 1: The bit length σ1 of short VBF sub-items with differ-
ent kv, when n = nx +ny = 224 +5535, λ = 40.

kv 2 3 4 5 6 7
σ1 46 39 36 35 34 33

From table 1, with the increase of kv, σ1 decreases as ex-
pected; however, the decreasing trend of σ1 becomes dimin-
ishing. For example, to encode an item with σ = 128, we need
2× 46 = 92 bits for kv = 2 and 3× 39 = 117 > 92 bits for
kv = 3. When kv ≥ 4, we need at least 4× 37 = 148 > 128,
which is expensive. In this paper, we choose kv = 2 to achieve
better performance. When setting kv = 1, we simply use the
naive hashing strategy as [12, 42, 45].

Both VBF encoding and naive hashing can be combined
with permutation-based hashing [3] to further save about
log2(m) bits per item, where m is the table size. Specifically,
to store an item x = x(1)||x(2) into the hash table, one just
needs to store x(2) with bit length σ− log2(m) at bin with
index x(1)⊕ h(x(2)), where h(·) is a uniform hash function,
x(1) is with bit length log2(m). To check whether y = x, one
only needs to find bin y(1)⊕ h(y(2)) and compares whether
y(2) = x(2). If yes, they are equal; otherwise not. For more
discussion about permutation-based hashing, one can refer to
[13,42]. In the above example, by setting kv = 2, one needs to
handle 2×46 = 92 bits per item. By using naive hashing, one
only needs to handle 80 bits per item. However, when com-
bined with permutation-based hashing, VBF encoding can
save about kv × log2(kv × 8192) = 2× log2(2× 8192) = 28
bits; naive hashing can only save log2(8192) = 13 bits. It is
noted that the table size needs to be increased by kv× as the
number of the VBF sub-items is kv× as the number of original
items. Therefore, after permutation-based hashing, one only
needs to handle 92−28 = 64 bits per item in VBF encoding.
In naive hashing, one needs to handle 80−13 = 67 > 64 bits.
The main advantage of VBF encoding over the naive hash-
ing is the security benefit by encoding an item into several
independent shorter ones. More details can be found in the
discussion of the deception attack in subsection 5.4 and 6.3.

4.2 Polynomial Links
Though VBF can turn a long item to kv short VBF sub-items
with bit length σ1, it is still expensive for FHE operations. For
example, when setting kv = 2, the VBF item bit length can be
σ1 = 46 from Table 1. However, t ≥ 2σ1 = 246 is still expen-
sive for FHE. In Chen et al. [13], the item bit length is only
limited in σ ≤ 32 for performance considerations. Here we
propose another optimization method called polynomial links
(PoL). There are two steps in the PoL: slicing and building
links. The general flow is shown in Figure 1.

In the first step, we simply slice a long item x into ks
(default ≥ 2) short slices x(i) with equal bit length σ2 (i.e.,
x = x(1)||x(2)|| · · · ||x(ks)). After simple slicing, we only need
to handle ks shorter slices than the long item x with bit length
σ. However, it brings false positives. For example, by us-
ing normal polynomial, to match y = y(1)||y(2)|| · · · ||y(ks) with
xi = x(1)i ||x(2)i || · · · ||x(ks)

i (i = 1,2 . . . ,b), it is possible for the
receiver to accept y as a common item by receiving a match-
ing result y(1) = x(1)2 , y(2) = x(2)1 , y(3) = x(3)1 , · · · , y(ks) = x(ks)

1

288 32nd USENIX Security Symposium USENIX Association

x(ks)
1

...

x(3)1

x(2)1

x(1)1

x(ks)
2

...

x(3)2

x(2)2

x(1)2

· · ·

...

· · ·
· · ·
· · ·

x(ks)
b

...

x(3)b

x(2)b

x(1)b

Q

Q
Q

Pks (x
(1)
j) = x(ks)

j

P3(x
(1)
j) = x(3)j

P2(x
(1)
j) = x(2)j

P1(x
(1)
j) = 0

...

x1 x2 · · · xb

Figure 1: The general flow of the polynomial links.

but y(1) ̸= x(1)1 . In this example, it is obvious that y ̸= x1, nor
does it match any of the other items.

The reason why simple slicing causes false positives is that
it cuts down the connections between the slices of an item.
From the above example, we only know that all slices of y
are matched, but not sure if these slices are matched to the
same x1. Therefore, we need to establish such a connection.
We utilize interpolation polynomials to accomplish this goal.
To build the connections, we take the first slices as roots and
the other slices as their corresponding tags to build interpola-
tion polynomials. Specifically, we take (x(1)1 ,x(j)

1), (x(1)2 ,x(j)
2),

· · · , (x(1)b ,x(j)
b) (j = 2,3, · · · ,ks) as points to build ks − 1 in-

terpolation polynomials Pj(·) (j = 2,3, · · · ,ks). Then taking
y(1) as input, the receiver can get Pj(y(1)) (j = 2,3, · · · ,ks). If
y(1) is equal to x(1)i ∈ {x(1)1 ,x(1)2 , · · · ,x(1)b }, we can easily know

Pj(y(1)) = x(j)
i (j = 2,3, · · · ,ks). Then the receiver can simply

check y(j) = Pj(y(1)) (j = 2,3, · · · ,ks). If the first slice is still
equal, then y = xi. To check whether y(1) is in the root set,
the receiver still needs to build another normal polynomial
P1(·) by using {x(1)i }b. If y(1) does not match, obviously, y
also does not match either.

5 Our uPSI(-CA) Protocols

We classify our protocols into two phases: the preparation
phase and the online phase. In the preparation phase in Figure
2, the sender can do the computation without interactions with
the receiver. Therefore, the online time can be reduced. In the
online phase in Figure 3, the receiver and the sender interact
to securely get the intersection cardinality.

In the protocols, different steps play different functions.
There are two functions for the shuffled DH-OPRF step. First,
it can hide the final matched items of the receiver such that the
receiver can only get the intersection cardinality rather than
the intersection. Second, it hides the sender’s input set. After
DH-OPRF, all items in Xo\Y o of the sender are pseudorandom
to the receiver. VBF and PoL are used to handle the long item
issue in FHE. Cuckoo hashing and simple hashing are used
to store the processed items to make bin-wise matching. FHE
can ensure the receiver discloses nothing to the sender.

5.1 Construction Details
In addition to the general protocol in Figure 2 and 3, we add
some details in the construction, such as permutation-based
hashing, the partitioning of the simple hashing table for the
sender, and inserting spies.

Permutation-based hashing. In step I.(c) and step II.(c),
permutation-based hashing can be used to further reduce
about ⌊log2(m)⌋ bits for each VBF sub-item or naively hashed
item in both simple hashing and Cuckoo hashing.

Partitioning. In step I.(c), the sender partitions each bin
into α sub-bins. There are two functions. First, in PoL, the
sender needs to implement polynomial interpolation by taking
the first slices as roots, which are supposed to be distinct.
When the slice number ks is large or the number of VBF sub-
items in a bin is large, the collision probability for the first
slices will be high. To handle this issue, we partition each
bin into α sub-bins and assign the VBF sub-item with the
same first slice into different sub-bins. The second function is
for performance. After partitioning, the highest windowing
power is b = ⌈B

α
⌉ for the α sub-bins rather than the largest bin

size B. The α sub-bins can share the same ciphertexts (i.e.,
J(y(1))1K, · · · ,J(y(1))bK) after windowing in step II.(d).

Inserting spies. To avoid the deception attack, the receiver
can put random dummy items (in the hash output domain) as
spies in non-occupied bins of the Cuckoo hashing table in step
II.(c). Then in step II.(f), the receiver can first check the results
corresponding to the spies. If there is a ‘0’ in these results, the
receiver aborts the protocol and refuses to accept the intersec-
tion cardinality. It is noted that the number of non-occupied
bins in the Cuckoo hashing table is small (i.e., m− ny) and
the probability that the inserted spies are in the sender’s set
is negligible. For example, to ensure negligible collisions,
the output bit length of naive hashing should be respectively
log2(nynx)+λ and log2(mnx)+λ without and with dummies.
In concrete settings, we have ⌈log2(m)⌉= ⌈log2(ny)⌉ (when
ny = 5535,11041) and ⌈log2(m)⌉ = ⌈log2(ny)⌉+ 1 (when
ny = 1024,2048). All our output bit length settings can cover
the bit increase for inserting dummies. Also, inserting dum-
mies is not unusual in uPSI (e.g., [13]).

5.2 Variants and Extensions
The depicted protocol is a general version that uses both VBF
and PoL. We define three variants of our uPSI-CA protocols:

1. VBF+slicing. In this variant, we combine VBF and sim-
ple slicing. We do not build links in I.(d) in this variant
and simply compute normal polynomials for all slices.
In II.(d), the receiver needs to send the windowing ci-
phertexts for all slices to the sender. In II.(e), we check
the normal polynomial results for all slices. In this vari-
ant, the sender has relatively low offline computation
costs because of using normal polynomials. However,
the communication costs are relatively high. In security,

USENIX Association 32nd USENIX Security Symposium 289

Input: The receiver and the sender input the set Y ⊂ {0,1}σ and X ⊂ {0,1}σ respectively. The size ny (resp. nx) of Y (resp. X) is
known to the sender (resp. the receiver). The common inputs are the computational security parameter κ and the statistical security
parameter λ.
Output: The receiver outputs |Y ∩X |. The sender outputs ⊥.
Protocol:

I. Preparation phase.

(a) [OPRF] The sender samples a key k and preprocesses each item xi as OPRFk(xi). We denote Xo = {OPRFk(xi)}nx .

(b) [VBF encoding] The sender and the receiver agree upon the number of uniform hash functions kv and the virtual hash
table size 2σ1 in VBF, making the failure probability in equation (1) negligible (i.e., 2−λ). Then they agree upon the
uniform hash functions h1(·), · · · ,hkv(·) : [2σ] 7→ [2σ1]. After that, the sender applies VBF encoding to all elements Xo to
get the VBF sub-item set Xv. The encoding details go in subsection 4.1.

(c) [Simple hashing] The sender and the receiver agree upon the appropriate Cuckoo hash table size m and the number of
hash functions (by default as 3) for inserting kvny VBF sub-items with negligible failure probability (i.e., ≤ 2−λ). The
uniform hash functions are g1(·),g2(·),g3(·) : {0,1}σ1 7→ [m]. The sender hashes his/her |Xv| = kvnx VBF sub-items
into the 2D simple hash table T with size m and bin size B. Then the sender partitions each bin Ti (i ∈ [m]) into α

sub-bins Ti, j (i ∈ [m], j ∈ [α]) and ensures that there are no duplicated first slices in all sub-bins. Here α is no less than
the maximum number of VBF sub-items with duplicated first slices in all bins.

(d) [PoL] The sender divides each stored VBF sub-item into ks slices. For each sub-bin Ti, j, the sender constructs the normal
polynomial P(1)

i, j (x) = c(1)i, j,0 + c(1)i, j,1x+ · · ·+ c(1)i, j,bxb by using the first slices T (1)
i, j s. Also, the sender constructs the other

interpolation polynomials P(u)
i, j (x) = c(u)i, j,0 + c(u)i, j,1x+ · · ·+ c(u)i, j,b−1xb−1 (u = 2,3, · · · ,ks) by using points {(T (1)

i, j ,T (u)
i, j)}b.

(e) [FHE parameters] The sender and the receiver agree upon the secure FHE parameters including the plain modulus t,
the ring dimension n′, and the ciphertext modulus q while ensuing κ ≥ 128. The receiver can also generate a secret key
for encryption and decryption in advance.

Figure 2: The preparation phase of our uPSI-CA protocol.

the sender is difficult to deceive the receiver; and even
though, the receiver is possible to detect the attack. (see
subsection 5.4 and Table 4 for more details).

2. PoL. In this variant, we take the naive hashing to turn
each OPRF value after I.(a) and II.(a) to a shorter bit
length (e.g., 80) rather than VBF encoding in I.(b) and
II.(b). In this variant, the sender has the highest offline
computation costs because of using interpolation polyno-
mials. However, the communication costs are the lowest.
In security, this variant can thwart the deception attack
(see analysis in subsection 5.4).

3. VBF+PoL. In this variant, we keep both VBF (i.e., I.(b),
II.(b)) and PoL (i.e., I.(d)) to get a performance balance
of the above two variants. In security, this variant also
can thwart the deception attack (see subsection 5.4).

To facilitate understanding, we also provide a compact
overview of the three variants in Table 2. Our uPSI-CA pro-
tocols can be easily modified to their corresponding uPSI
protocols. In the shuffled DH-OPRF, the sender can simply
not shuffle the returned values to the receiver in step 2.

5.3 Correctness
The core idea of the protocol is bin-wise matching. We sim-
ply prove the correctness of our protocols by showing the

correctness of VBF and PoL. For a specific bin index, the
receiver stores y and the sender stores {x1,x2, · · · ,xB}. Here
we assume all stored items are distinct. To begin with, for
the naive normal polynomial based matching, the collision
probability is B

2σ .
The correctness of matching based on VBF and normal

polynomial is obvious. First, the FPP of VBF is the same as
the traditional Bloom Filter, which is negligible (i.e., ≤ 2−λ).
Second, to match a VBF sub-item of y with B random VBF
sub-items, the collision probability is B

2σ1 . Then for y, the

collision probability is (B
2σ1)

kv = Bkv

2σ1kv , which is negligible in

our settings. From Table 1, by setting kv = 2 and Bkv

2σ1kv < 2−40,
we can get B < 226, which is far sufficient for all settings. For
other kv in Table 1, we can get similar high bounds (i.e., B <
225). In the above analysis, we do not take partition into the
consideration. Partitioning can lower the FPP by constraining
b ≤ B. A similar analysis can be found in subsection 6.3 when
we compare our protocols with Cong et al. [15].

For PoL-based matching, the collision probability of the
first slice is B

2σ2 , where σ2 is the bit length of the slice. Noting
that the interpolation polynomial outputs a specific output for
y’s root, the collision probability for any other slice is 1

2σ2 .
Then the collision probability for y is B

2σ2 × (1
2σ2)

ks−1 = B
2σ ,

which is the same as the naive normal polynomial. Hence
the matching by combining both VBF and PoL has the same

290 32nd USENIX Security Symposium USENIX Association

II. Online phase.

(a) [Shuffled DH-OPRF] The receiver can get OPRFk(yπ(i)) (∀i ∈ [ny]) after the interaction with the sender, where π(·) is
the sender’s secret permutation function. The details are in 3.4. For simplicity, we denote Y o = {OPRFk(yπ(i))}ny .

(b) [VBF encoding] The receiver applies VBF encoding to all elements in Y o to get the VBF sub-item set Y v.

(c) [Cuckoo hashing] The receiver inserts the VBF sub-item set YV in a Cuckoo hashing table H by uniform hash functions
g1(·),g2(·),g3(·) : {0,1}σ1 7→ [m].

(d) [FHE with windowing] The receiver divides each stored VBF sub-item into ks slices. Denote the stored VBF sub-item
Hi as H (1)

i ∥H (2)
i ∥· · ·∥H (ks)

i . The receiver first gets the window set W by inputting the circuit depth ℓ and the sub-bin
size b. The windowing details are in 3.3. Then the receiver does windowing to compute the batched first slices H (1)

i s
with powers in W and get the corresponding ciphertexts (i.e., J(y(1)) jK, ∀ j ∈W). Here we denote y as the batched H (1)

i
(∀i ∈ [m]). The receiver sends all the |W | windowing ciphertexts for the roots (i.e., J(y(1)) jK, ∀ j ∈W) to the sender.

(e) [Intersect] Upon receiving J(y(1)) jK (∀ j ∈W), the sender computes on these ciphertexts and gets all the ciphertexts
J(y(1)) jK (∀ j ∈ [b]). Now, the sender starts to compute the encrypted inner product as the result ciphertexts. For the first
slice, the sender computes the normal polynomial result:

P(1)
j (J(y(1)K) =

b

∑
v=0

J(y(1))vK× c(1)j,v .

For the other slices, the sender computes the interpolation polynomial results:

P(u)
j (J(y(1)K) =

b−1

∑
v=0

J(y(1))vK× c(u)j,v ,

for u = 2, · · · ,ks. Finally, the sender optionally does modulus switching to these result ciphertexts to reduce their sizes
and returns them to the receiver.

(f) [Decrypt and get results] Finally, the receiver decrypts and unbatches the result ciphertexts P(1)
j (J(y(1)K) (∀ j ∈ [α]) to

get the result plaintexts
z(u)i, j = P(u)

i, j (H
(1)

i), ∀i ∈ [m], j ∈ [α],u ∈ [ks].

To check whether an item y ∈Y o is in the intersection Xo∩Y o or not, the receiver needs to check all its kv VBF sub-items.
If all of them are in Xv ∩Y v, then it is in the intersection. To check whether a VBF sub-item y′ of y is in Xv ∩Y v, the
receiver first finds its stored bin Hg∗(y′), where g∗(·) is the hash function that maps y′ to its stored bin. Then he/she

checks whether there exists a j ∈ [α], all the conditions meets: z(1)g∗(y′), j
= 0, z(u)g∗(y′), j

= y′(u) (u = 2, · · · ,ks). If yes, then
y′ ∈ Xv ∩Y v; otherwise not. Finally, the receiver gets the intersection cardinality |X ∩Y |= |Xo ∩Y o|.

Figure 3: The online phase of our uPSI-CA protocol.

Table 2: An overview of the three uPSI-CA variants.
Variant Sender offline computation cost Communication cost Deception attack
VBF+slicing O(n2

x) O(kvks|W |+ kvksα) Difficult and detectable
PoL O(n2

x) or O(nx log(nx)) O(|W |+ ksα) Resistant
VBF+PoL O(n2

x) or O(nx log(nx)) O(kv|W |+ kvksα) Resistant

collision probability as the VBF-based one.

5.4 Security
The security of our protocol is guaranteed by FHE and shuf-
fled DH-OPRF. First, in the shuffled DH-OPRF, the sender
learns nothing about the receiver’s input set. Second, the re-

ceiver only sends FHE ciphertexts to the sender and the FHE
secret key is held by the receiver. Given the IND-CPA prop-
erty, the ciphertexts are pseudorandom to the sender. There-
fore, the sender cannot learn anything from the receiver.

As for the sender, he/she only returns the polynomial evalu-
ation over the FHE ciphertexts. The roots of the polynomials
are preprocessed by the OPRF and are pseudorandom to the

USENIX Association 32nd USENIX Security Symposium 291

receiver. Therefore, the receiver cannot learn anything about
Xo\Y o. Also, the receiver cannot inject more items into the
original set to know extra information of X because he/she
can only get the OPRF values Y o for items in Y . For matched
items in Y o, the receiver cannot link them with the items in Y
because of the shuffling. For security about the shuffled DH-
OPRF, one can refer to [16, 27]. Chen et al. [12] and Cong et
al. [15] also used DH-OPRF to preprocess their items. The dif-
ferences between theirs and ours are just in algorithm aspects.
Therefore, our security proof is similar to theirs.

Protection against Deception. Our protocols can inher-
ently thwart the deception attack. In our VBF+slicing based
protocol that only uses normal polynomials, to deceive the
receiver to accept an item y /∈ X ∩Y as a matched one, a mali-
cious sender needs to set y’s kv result ciphertexts as ‘0’s, each
of which corresponds to y’s one VBF sub-item. The attacking
success probability is

n
m
(

1
m
)kv−1 =

n
mkv

. (2)

Since the receiver has inserted random spies into the
Cuckoo hashing table, he/she can also detect whether the
sender is deceiving him/her by checking the spies’ correspond-
ing results. For a specific bin, the probability that a random
dummy is matched is B

2σ1 , which is quite low. If a receiver
finds a dummy item is matched, he/she has 1− B

2σ1 confidence
that he/she is deceived. Then the detecting probability is

1− (
n
m
)kv . (3)

For our PoL based protocol, the malicious sender can only
send ‘0’ results for the first slice and can only randomly set
results for other slices. The attacking success probability is

1
2(ks−1)σ2

, which is negligible. For our VBF+PoL based proto-
col, the malicious sender can only set the first slices of the kv
VBF sub-items as ‘0’, whose attacking success probability is

n
m

1
2(ks−1)σ2

(
1
m

1
2(ks−1)σ2

)kv−1 =
n

mkv2(ks−1)kvσ2
,

which is also negligible. Therefore, in both our PoL based
and VBF+PoL based protocols, the attacker will not choose
to deceive the receiver and inserting spies is not needed.

6 Experiments and Evaluations

We implement our protocols based on APSI 3, an open-
sourced library for designing uPSI by FHE. The bench-
mark machine has 16 cores Intel(R) Xeon(R) Gold 6226R
CPU@2.90GHz and 236G RAM. For communication, we
simulate the network via the localhost network as CLR’17
[13]. The bandwidth is controlled by wondershaper 4.

3https://github.com/microsoft/APSI
4https://github.com/magnific0/wondershaper

We respectively set the computational and statistical secu-
rity parameter as κ = 128 and λ = 40. For the polynomial
interpolation in the sender’s setup phase, after comparing the
computation costs of four representative interpolation algo-
rithms in Appendix D, we use Newton interpolation when
the sub-bin size is small (i.e., b < 500) and MB [35] when
the sub-bin size is large (i.e., b ≥ 500). Because of the page
limit, we only compare settings for nx = 224,228 in Table 3.
For nx = 220, one can refer to Table 6 in Appendix C.

6.1 VBF+slicing based vs PoL based

As is shown in Table 3, our PoL based protocol gains the
advantages of lower communication cost and shorter online
time compared with VBF+slicing based protocol. Specifically,
VBF+slicing based protocol is 1.60 ∼ 2.38× more expensive
than PoL based protocol in communication. With the increase
of set sizes (i.e., nx, ny), more communication costs can be
saved. The online time is the querying time of the receiver.
The shorter it is, the faster the receiver can get the result. When
the sender has a very large set (i.e., nx = 228), by using PoL
based protocol, a receiver with set size ny = 2048 can get the
result by taking 24.01s, which saved 70.47% more time than
using VBF-slicing based one. The strength of VBF-slicing
based protocol is the lower sender offline cost. When nx = 228

and ny = 2048, the sender in PoL based protocol needs to do
1.47× more offline computation than VBF-slicing based pro-
tocol. When nx = 224 and ny = 11041, the sender offline time
of PoL based protocol can be about 7× as expensive as the
VBF+slicing based one. Our third protocol (i.e., VBF+PoL
based) combines both VBF and PoL to balance the communi-
cation cost and sender offline computation cost.

6.2 Comparisons with PSI-CA protocols

Since there are no comparable two-party uPSI-CA protocols,
we compare our protocols with the balanced PSI-CA proto-
col (i.e., Cristofaro et al. [16]) that can achieve the lowest
communication cost in Table 3.

Generally, balanced PSI-CA protocols have a communica-
tion complexity at least O(nx +ny). Therefore, in the unbal-
anced case, with the increase of nx, the communication cost
also greatly increases. Their advantage is that they can have
lower computation costs. As is shown in Table 3, compared
with our uPSI-CA protocols, Cristofaro et al. [16] can have
faster online time when the bandwidth is high (e.g., ≥ 10
Gbps) and lower sender offline time. However, the commu-
nication cost is much higher than ours. When nx = 228 and
ny = 1024, the communication cost of Cristofaro et al. [16]
is over 172× as expensive as our protocols. In real-world
applications (e.g., contact tracing), a user (i.e., the receiver)
needs to pay about 2.5 GB data traffic to make one single
query by using their protocol, which is very expensive.

292 32nd USENIX Security Symposium USENIX Association

Table 3: The comparison results between our protocols and other protocols in different settings. The last metric “OC&RS” is the
offline communication and receiver storage. “-” indicates data unavailable due to long running time. The best results are marked
in bold. When nx = 228, all protocols are tested with 32 threads (each core runs 2 threads) except for LowMC-GC [29] with a
single thread. In all other settings, we run the experiments with a single thread. The network latency is 0.05 ms.

Cardinality Protocol Communication Online Time (s) Sender
offline (s)

OC&RS
nx ny Cost (MB) 10 Gbps 100 Mbps 10 Mbps 1 Mbps (MB)

228

2048

Cristofaro et al. [16] 2560.13 10.95 229.73 2220.88 - 186.614 0
LowMC-GC [29] 47.10 5.35 13.06 83.21 795.17 1426.39 1072.14

ECC-NR [29] - - - - - - -
Cong et al. [15] 15.09 8.42 8.55 11.14 83.48 1786.89 0

Ours (VBF+slicing) 14.82 8.69 8.44 10.51 81.30 1788.59 0
Ours (PoL) 6.21 8.27 8.39 8.49 24.01 3635.81 0

Ours (VBF+PoL) 7.66 8.52 8.75 8.80 39.43 2955.24 0

1024

Cristofaro et al. [16] 2560.06 11.06 229.64 2220.06 - 186.55 0
LowMC-GC [29] 23.57 4.64 8.37 43.49 396.39 1426.83 1072.14

ECC-NR [29] - - - - - - -
Cong et al. [15] 12.56 8.21 8.23 10.50 81.50 2032.99 0

Ours (VBF+slicing) 12.30 8.20 8.25 10.00 78.75 2067.89 0
Ours (PoL) 5.22 8.00 7.91 8.51 24.15 3297.69 0

Ours (VBF+PoL) 7.60 8.19 8.34 9.32 37.32 3248.64 0

224

11041

Cristofaro et al. [16] 160.67 3.12 16.34 140.89 1405.54 326.74 0
LowMC-GC [29] 253.75 12.43 53.46 413.13 4248.98 85.49 67.01

ECC-NR [29] 65.24 4.85 12.09 114.12 1154.91 2048.49 67.01
Cong et al. [15] 14.58 26.78 27.25 27.72 39.12 735.78 0

Ours (VBF+slicing) 11.76 21.35 21.42 22.01 34.58 660.13 0
Ours (PoL) 6.15 16.43 16.42 17.22 33.65 5143.96 0

Ours (VBF+PoL) 8.28 18.31 18.45 18.98 34.21 3034.08 0

5535

Cristofaro et al. [16] 160.17 2.69 16.34 140.89 1405.54 326.74 0
LowMC-GC [29] 127.22 5.13 25.82 215.32 2133.24 87.85 67.01

ECC-NR [29] 32.71 2.64 8.99 86.23 871.78 2418.46 67.01
Cong et al. [15] 8.49 20.87 20.75 21.11 28.35 769.05 0

Ours (VBF+slicing) 6.86 16.73 16.83 17.17 25.75 683.48 0
Ours (PoL) 4.29 14.51 14.55 15.00 22.16 4918.41 0

Ours (VBF+PoL) 5.04 14.97 15.00 15.29 22.59 2922.14 0

6.3 Comparisons with uPSI protocols

Our protocols can be easily modified to uPSI protocols. Here
we also compare our uPSI protocols with the state-of-the-art
uPSI protocols in Table 3.

Generally, our protocols outperform LowMC-GC and ECC-
NR [29] in all aspects except the sender offline time. In their
setup phase, the server (i.e., the sender) needs to profile its set
into a Cuckoo filter and send it to the client (i.e., the receiver).
This step makes their offline communication costs in linear
with the large set size nx. Also, the client needs to store the
received Cuckoo filter. This will put pressure on the clients
who are resource constrained, especially when nx is large.
For example, when nx = 228, the cost is as large as 1072 MB.
In terms of security, LowMC-GC and ECC-NR [29] can be
modified to be secure against a malicious client by exploiting
a malicious OTe [4, 30] in the offline communication phase.
Since a malicious sender can return an arbitrary result set
to the receiver, both protocols need to assume the sender is

semi-honest. Their LowMC-GC protocol can be prone to the
deception attack if the sender can arbitrarily craft the gar-
bled circuit. For their ECC-NR, it is non-trivial for the sender
to do the deception. In this paper, after the DH-OPRF pre-
processing, as previous FHE-based works [12, 15], our uPSI
protocols also guarantee security against a malicious receiver
and privacy against a malicious sender5 [24]. Additionally,
we consider the receiver deception attack.

Since our protocols are FHE-based, we put our focus on
comparing with Cong et. al [15], which has the best perfor-
mance among existing FHE-based uPSI protocols. We com-
pare our protocols with theirs in receiver performance and
security. Additionally, we make comparisons in the false posi-
tive in Appendix E. To get their performance data, we directly
use the parameters in their source code.

5In [12], in addition to showing their formal protocol, the authors also
made some discussions about extending their protocol into a fully malicious
case in which the sender is allowed to force the receiver to accept a subset of
X ∩Y by using circuit leakage.

USENIX Association 32nd USENIX Security Symposium 293

Table 4: The attacking success probability (SP) and detecting probability (DP) in the deception attack for previous uPSI protocols
and our VBF+slicing based uPSI protocol with different receiver set sizes.

SP/DP ny = 1024 ny = 2048 ny = 5535 ny = 11041
Previous FHE-based [12, 13, 15] 0.5/0.5 0.5/0.5 0.676/0.324 0.674/0.326

Ours (VBF+slicing) 2.441×10−4/0.75 1.22×10−4/0.75 2.062×10−5/0.543 1.028×10−5/0.546

Receiver performance. The naive slicing method in [15]
inherently decreases the load factor of the Cuckoo hashing
table by ks times. In another word, for inserting the same
number of items, the Cuckoo hashing table has to be increased
by ks×. In consequence, the number of ciphertexts from the
receiver to the sender is also increased by ks×, resulting in
worse communication and computation costs for the receiver.
Our VBF+slicing based protocol has the same deficiency by
enlarging the Cuckoo hashing table by kvks times. In our
PoL based protocol, the receiver only needs to encrypt the
first slices and send the ciphertexts, while the receiver in [15]
needs to encrypt all the ks slices and send all the ciphertexts.
Therefore, the communication costs from the receiver to the
sender of our PoL based protocol are generally only 1

ks
of

theirs. The encryption and decryption time for the receiver
also can be cut down by ks×.

As Table 3 shows, our VBF+slicing protocol has slightly
better performances than Cong et al. [15]. However, the se-
curity is greatly improved, which will be discussed later.
Our PoL based protocol (resp. VBF+PoL based) can save
42.04% ∼ 58.85% (resp. 28.70% ∼ 49.23%) communication
costs compared with theirs. Also, the receiver can get the
querying result more quickly. When the sender set size is
very large (i.e., nx = 228), the receiver set size is small (i.e.,
ny = 2048), and the bandwidth is low (i.e., 1 Mbps), the re-
ceiver in our PoL based protocol can get the result after 24.01s,
which is much faster (i.e., 3.48×) than theirs.

A deficiency of our PoL based protocol is high interpolation
costs for the sender when the sub-bin size is small compared
with using normal polynomials in [15]. However, it is worth-
while. In the following section 7, one can find the advantages
of our uPSI-CA protocols in real-world applications because
the sender offline computation only needs to be done once.
For interpolation polynomial, Cong et al. [15] also exploited
it. However, they used it to realize their labeled uPSI protocol,
which is different from uPSI. In labeled uPSI, the sender has
an item-label set and the receiver has an item set. If an item
is matched, its corresponding label will be returned to the
receiver; otherwise, a random label will be returned. In their
uPSI protocol, they did not use the interpolation polynomial.
In this paper, we only focus on uPSI.

Security. None of the previous FHE based uPSI protocols
can thwart the deception attack, and neither does Cong et.
al [15]. Our protocols can handle this attack almost at no
extra cost (see subsection 5.4). The detailed attacking success
probability and detecting probability can be calculated by

equations 2 and 3 and are listed in Table 4. From this table,
we can easily know that our VBF+slicing based protocol can
greatly improve the security compared with previous ones. For
example, when ny = 5535, the SP of our VBF+slicing based
uPSI is only 2.062× 10−5, while previous protocols have
0.676 (i.e., 32,784× large); the DP of our VBF+slicing based
uPSI is 0.543, while previous ones have 0.324 (i.e., 1.67×
small). We do not list our PoL based and VBF+PoL based
protocols because the SP in both protocols are negligible.

7 Application: Contact tracing

In our uPSI-CA based privacy-preserving contact tracing sys-
tem, there are two roles: users and the Public Health Authority
(PHA). Each user plays the role of a receiver. The PHA (who
owns the backend server) acts as the sender. Users open the
Bluetooth of their smartphones and exchange ephemeral iden-
tifiers with other users via Bluetooth beacons at a frequency
(e.g., 10 minutes) when they are in proximity. The identifiers
of infected users will be uploaded to the PHA’s backend server.
For COVID-19 exposure checking, a user simply makes a
query to the PHA by matching his/her contact set Y with the
set X of infected identifiers in the backend server.

In the contact tracing system, each user has 14 × 24 ×
60/10 = 2016 ephemeral identifiers and receives ny = 211

identifiers during the past 14 days. The daily positive diagno-
sis number is 215 and the backend server has a database with
size nx = 215 ×2016 ≈ 226. The settings follow Catalic [20].
In the above sections, we only discuss uPSI-CA between a
receiver and a sender. Therefore, we can set the naive hashing
output bit length as log(nx)+ log(ny)+λ in our PoL-based
uPSI-CA protocol, such that the hash collision is negligible
(i.e., < 2−λ). However, it is not enough for real-world deploy-
ment. To support real-world deployment, we assume there
are n1 = 107 users [6] and each user queries n2 = 100 times.
To ensure negligible false positives (i.e., a user is not a close
contact but detected as one), we set the hash output bit length
as log2(n1n2ny)+ log2(nx)+λ ≈ 107. Therefore, even with
109 queries, we can still guarantee negligible FPP (i.e. < 2−λ).
We compare our contact tracing design with four representa-
tive ones in Table 5 from users’ perspective. To motivate users
to use the application, security (i.e., linkage attack, collusion
attack) and user-end performance (i.e., querying time, com-
putation costs, communication costs) are two crucial factors.

A good contact tracing system first needs to guarantee
the privacy of users. However, most of the existing contact

294 32nd USENIX Security Symposium USENIX Association

Table 5: Comparing our contact tracing system with other representative ones in a single thread. In two party designs, the
bandwidth between the user and the backend server is 10 Mbps. In the delegated design Catalic [20], the bandwidth between
the delegates and the user (resp. the backend server) is set as 10 Mbps (resp. 100 Mbps). The network latency is 0.05ms. For
Epione [52], data in the left/right are respectively for the cases not using/using server caching.

Protocols Linkage attack Third parties Query time(s) User computation(s) User communication(MB)
Google&Apple [2] Yes No 6.640 24.322 7.00

DP-3T [53] Yes No 387.736 0.384 448.00
Epione [52] No No 268.5/140.14 2.088/2.217 226.13/65.65
Ours (PoL) No No 60.524 0.366 5.98
Catalic [20] No Yes 97.79 0.002 0.094

tracing protocols simply utilize dynamic or ephemeral iden-
tifiers to ensure security, such as Google&Apple [2] and
DP-3T [53]. However, the ephemeral identifiers in their de-
signs can be linked with specific persons. In the example of
Google&Apple, Alice has a conversation with Bob in a park
and records Bob’s identifier(s). Later, if Alice makes a query
to PHA and finds this identifier is matched, then she will know
Bob is infected, which results in the linkage attack. This also
explains why we cannot simply apply uPSI in contact trac-
ing because Alice will know the matched identifier(s). In our
uPSI-CA based protocol, Alice cannot distinguish Bob’s iden-
tifier from others’. Therefore, Bob’s privacy is preserved. In
Catalic [20], the authors designed their delegated uPSI-CA
protocol. However, they need to involve multiple delegates
(i.e., third parties), which brings potential privacy disclosure
risks (e.g., collusion attacks). Our uPSI-CA based system can
thwart the linkage attack and does not need any third parties,
thus providing strong user privacy protection.

A good contact tracing system also needs to have good per-
formance, especially on the user side. We measure the query-
ing time (same as the online time in Table 3), user computation
and communication costs in Table 5. In Google&Apple [2], a
user needs to download 215 ×14 diagnosis keys to generate
215 ×14×144 ephemeral identifiers. Each diagnosis key is
with bit length 128. Then he/she locally compares his con-
tact list with these derived identifiers. Google&Apple has the
shortest querying time compared with other protocols. For
DP-3T [53], a user needs to download a Cuckoo filter profil-
ing the backend identifier set and does the match. Therefore,
the communication cost of the user can be as high as 448 MB,
which is far larger than others. For the single server PSI-CA
based contact tracing in Epione [52], the author considered
two cases based on whether the backend server caches the
previous user queries or not. When the backend server does
the caching, a user who queried yesterday only needs to add
211/14 = 146 identifiers generated today into the cache, thus
saving communication costs.

Catalic [20] has very low user communication and compu-
tation costs by shifting the costs from the user to the delegates.
Specifically, after inserting the identifiers into a Cuckoo hash-
ing table, the user sends an XOR share of the Cuckoo hash

table to each delegate. Then the non-colluded delegates per-
form the Odk-PRF protocol with the backend server to get
result shares containing the intersection cardinality informa-
tion. One of the delegates combines the result shares and
sends the combined information to the user. Finally, the user
can get the intersection cardinality. In the above interactions,
the expensive cryptographic operations are done by the dele-
gates rather than the user. Therefore, the costs of the user can
be very low. From Table 5, the user computation and com-
munication costs of our two-party protocol are respectively
about 183× and 64× as expensive as Catalic. However, there
is one obvious drawback of Catalic. For a single query from
the user, both the delegates and the backend server need to
pay at least 1036.83 MB, which is very expensive in real-
world applications. To handle 109 queries, the communica-
tion cost of the backend server is 109 ×1036.83 MB, which
is 109 × (1036.83− 5.98) = 109 × 1030.85 MB larger than
ours. For the backend server offline computation cost, Catalic
takes 1.12 hours, which is 5.9× as cheap as ours.

Our PoL based system gets the lowest user computation and
communication costs compared with other two-party designs.
One drawback of our system is that PHA needs to pay large
offline pre-computation costs in the preparation phase. For a
single thread, it takes PHA about 6.6 hours to do the compu-
tation; for 32 threads, it takes about 0.49 hours. The sender’s
computation costs are much larger than Google&Apple [2]
(with < 1s), DP-3T [53] (with 1.5s), and Epione [52] (with
233s). However, the offline computation in our system only
needs to be done once. Also, compared with the performance
advantages, this cost is worthwhile. For example, compared
with Google&Apple [2], our PoL based system can save 1
MB per query. For n1n2 = 109 queries, PHA can save 109

MB. For each user, he/she can save n2 = 100 MB. Therefore,
our system benefits both the PHA and the users.

8 Conclusion

In this paper, we design efficient uPSI-CA protocols without
relying on any third party. These uPSI-CA protocols can be
easily modified to uPSI protocols. The core techniques in
our protocols are VBF and PoL, which are used to resolve

USENIX Association 32nd USENIX Security Symposium 295

the long item issue. Not only can our protocols effectively
thwart the deception attack, but also have great performance,
especially in communication cost and online time. Our proto-
cols are user-friendly and can be used in many applications.
By applying our PoL based uPSI-CA protocol in the contact
tracing system, we can meet all the security requirements and
enable good user performance.

Acknowledgments

This research is supported by the HKU SCF Fintech Academy
under grant No. 260910193; by Huawei International Pte. Ltd.
under grant No. TC20210528016. We appreciate the construc-
tive reviews from the anonymous reviewers. Specially, we
thank the shepherd who proposes many useful suggestions
to improve this paper. We also thank Kim Laine for useful
discussions.

References

[1] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR.
In USENIX Security 2021, pages 1811–1828. USENIX
Association, 2021.

[2] Privacy-preserving contact tracing. https://covid19.
apple.com/contacttracing, 2020. Accessed: 2022-
8-16.

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard
cuckoo hashing: Constant worst-case operations with a
succinct representation. In FOCS 2010, pages 787–796.
IEEE Computer Society, 2010.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More efficient oblivious transfer ex-
tensions with security for malicious adversaries. In
Advances in Cryptology - EUROCRYPT 2015, volume
9056 of Lecture Notes in Computer Science, pages 673–
701. Springer, 2015.

[5] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro,
Paolo Gasti, and Gene Tsudik. Countering GATTACA:
efficient and secure testing of fully-sequenced human
genomes. In CCS 2011, pages 691–702. ACM, 2011.

[6] James Bell, David Butler, Chris Hicks, and Jon
Crowcroft. Tracesecure: Towards privacy preserving
contact tracing. CoRR, abs/2004.04059, 2020.

[7] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[8] Joan Boyar and René Peralta. Concrete multiplica-
tive complexity of symmetric functions. In Rastislav
Kralovic and Pawel Urzyczyn, editors, MFCS 2006, vol-
ume 4162 of Lecture Notes in Computer Science, pages
179–189. Springer, 2006.

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

[10] Michael F Challis and John P Robinson. Some extremal
postage stamp bases. Journal of Integer Sequences,
13(2):3, 2010.

[11] Nishanth Chandran, Divya Gupta, and Akash Shah.
Circuit-psi with linear complexity via relaxed batch OP-
PRF. Proc. Priv. Enhancing Technol., 2022(1):353–372,
2022.

[12] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from fully homomorphic encryption with
malicious security. In CCS 2018, pages 1223–1237.
ACM, 2018.

[13] Hao Chen, Kim Laine, and Peter Rindal. Fast private
set intersection from homomorphic encryption. In CCS
2017, pages 1243–1255. ACM, 2017.

[14] Michele Ciampi and Claudio Orlandi. Combining pri-
vate set-intersection with secure two-party computation.
In Dario Catalano and Roberto De Prisco, editors, SCN
2018, volume 11035 of Lecture Notes in Computer Sci-
ence, pages 464–482. Springer, 2018.

[15] Kelong Cong, Radames Cruz Moreno, Mariana Botelho
da Gama, Wei Dai, Ilia Iliashenko, Kim Laine, and
Michael Rosenberg. Labeled PSI from homomorphic en-
cryption with reduced computation and communication.
In CCS 2021, pages 1135–1150. ACM, 2021.

[16] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Fast and private computation of cardinality of set in-
tersection and union. In CANS 2012, pages 218–231.
Springer, 2012.

[17] Alex Davidson and Carlos Cid. An efficient toolkit for
computing private set operations. In ACISP 2017, pages
261–278. Springer, 2017.

[18] Sumit Kumar Debnath and Ratna Dutta. Secure and
efficient private set intersection cardinality using bloom
filter. In ISC 2015, pages 209–226. Springer, 2015.

[19] Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky,
Mohamed Elsabagh, Nikolaos Kiourtis, Brian Schulte,
and Angelos Stavrou. Function secret sharing for PSI-
CA: with applications to private contact tracing. CoRR,
abs/2012.13053, 2020.

296 32nd USENIX Security Symposium USENIX Association

https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing

[20] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic:
Delegated PSI cardinality with applications to contact
tracing. In Advances in Cryptology - ASIACRYPT 2020,
volume 12493 of Lecture Notes in Computer Science,
pages 870–899. Springer, 2020.

[21] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. IACR Cryptol.
ePrint Arch., 2012:144, 2012.

[22] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In Ad-
vances in Cryptology - EUROCRYPT 2004, pages 1–19.
Springer, 2004.

[23] Gayathri Garimella, Payman Mohassel, Mike Rosulek,
Saeed Sadeghian, and Jaspal Singh. Private set opera-
tions from oblivious switching. In Juan A. Garay, editor,
PKC 2021, volume 12711 of Lecture Notes in Computer
Science, pages 591–617. Springer, 2021.

[24] Carmit Hazay and Yehuda Lindell. Efficient protocols
for set intersection and pattern matching with security
against malicious and covert adversaries. In Theory
of Cryptography, TCC 2008, volume 4948 of Lecture
Notes in Computer Science, pages 155–175. Springer,
2008.

[25] Yuanyuan He, Xinyu Tan, Jianbing Ni, Laurence T.
Yang, and Xianjun Deng. Differentially private set inter-
section for asymmetrical ID alignment. IEEE Trans. Inf.
Forensics Secur., 17:3479–3494, 2022.

[26] Yan Huang, David Evans, and Jonathan Katz. Private
set intersection: Are garbled circuits better than custom
protocols? In NDSS 2012. The Internet Society, 2012.

[27] Stanislaw Jarecki and Xiaomin Liu. Fast secure com-
putation of set intersection. In SCN 2010, volume 6280
of Lecture Notes in Computer Science, pages 418–435.
Springer, 2010.

[28] Bailey Kacsmar, Basit Khurram, Nils Lukas, Alexander
Norton, Masoumeh Shafieinejad, Zhiwei Shang, Yaser
Baseri, Maryam Sepehri, Simon Oya, and Florian Ker-
schbaum. Differentially private two-party set operations.
In EuroS&P, 2020, pages 390–404. IEEE Computer So-
ciety, 2020.

[29] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In USENIX Security 2019,
pages 1447–1464. USENIX Association, 2019.

[30] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Ac-
tively secure OT extension with optimal overhead. In
Advances in Cryptology - CRYPTO 2015, volume 9215
of Lecture Notes in Computer Science, pages 724–741.
Springer, 2015.

[31] Kim Laine. Simple encrypted arithmetic library 2.3. 1.
Microsoft Research. https://www. microsoft. com/en-
us/research/uploads/prod/2017/11/sealmanual-2-3-1.
pdf, 2017.

[32] Joseph K. Liu, Man Ho Au, Tsz Hon Yuen, Cong Zuo,
Jiawei Wang, Amin Sakzad, Xiapu Luo, and Li Li.
Privacy-preserving COVID-19 contact tracing app: A
zero-knowledge proof approach. IACR Cryptol. ePrint
Arch., 2020:528, 2020.

[33] Siyi Lv, Jinhui Ye, Sijie Yin, Xiaochun Cheng, Chen
Feng, Xiaoyan Liu, Rui Li, Zhaohui Li, Zheli Liu, and
Li Zhou. Unbalanced private set intersection cardinality
protocol with low communication cost. Future Genera-
tion Computer Systems, 102:1054–1061, 2020.

[34] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth,
and Moti Yung. Two-sided malicious security for pri-
vate intersection-sum with cardinality. In Advances in
Cryptology - CRYPTO 2020, volume 12172 of Lecture
Notes in Computer Science, pages 3–33. Springer, 2020.

[35] R. Moenck and Allan Borodin. Fast modular transforms
via division. In SWAT 1972, pages 90–96. IEEE Com-
puter Society, 1972.

[36] Payman Mohassel and Seyed Saeed Sadeghian. How
to hide circuits in MPC an efficient framework for pri-
vate function evaluation. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 557–574. Springer, 2013.

[37] G. Sathya Narayanan, T. Aishwarya, Anugrah Agrawal,
Arpita Patra, Ashish Choudhary, and C. Pandu Rangan.
Multi party distributed private matching, set disjointness
and cardinality of set intersection with information the-
oretic security. In CANS 2009, pages 21–40. Springer,
2009.

[38] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122–144, 2004.

[39] Prashant Pandey, Michael A. Bender, Rob Johnson, and
Rob Patro. A general-purpose counting filter: Making
every bit count. In SIGMOD 2017, pages 775–787.
ACM, 2017.

[40] Mike Paterson and Larry J. Stockmeyer. On the num-
ber of nonscalar multiplications necessary to evaluate
polynomials. SIAM J. Comput., 2(1):60–66, 1973.

[41] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Spot-light: Lightweight private set intersection
from sparse OT extension. In Advances in Cryptology
- CRYPTO 2019, volume 11694 of Lecture Notes in
Computer Science, pages 401–431. Springer, 2019.

USENIX Association 32nd USENIX Security Symposium 297

[42] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security 2015,
pages 515–530. USENIX Association, 2015.

[43] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Advances
in Cryptology - EUROCRYPT 2019, pages 122–153.
Springer, 2019.

[44] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018,
volume 10822 of Lecture Notes in Computer Science,
pages 125–157. Springer, 2018.

[45] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension.
In USENIX Security 2014, pages 797–812. USENIX
Association, 2014.

[46] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on OT extension.
ACM Transactions on Privacy and Security (TOPS),
21(2):7:1–7:35, 2018.

[47] Srinivasan Raghuraman and Peter Rindal. Blazing fast
PSI from improved OKVS and subfield VOLE. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, edi-
tors, CCS 2022, pages 2505–2517. ACM, 2022.

[48] Amanda Cristina Davi Resende and Diego F. Aranha.
Faster unbalanced private set intersection. In FC 2018,
volume 10957 of Lecture Notes in Computer Science,
pages 203–221. Springer, 2018.

[49] Amanda Cristina Davi Resende and Diego de Fre-
itas Aranha. Faster unbalanced private set intersection in
the semi-honest setting. J. Cryptogr. Eng., 11(1):21–38,
2021.

[50] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast
OPRF and circuit-psi from vector-ole. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021, volume 12697 of
Lecture Notes in Computer Science, pages 901–930.
Springer, 2021.

[51] Microsoft SEAL (release 4.0). https://github.com/
Microsoft/SEAL, March 2022. Microsoft Research,
Redmond, WA.

[52] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri,
and Dawn Song. Epione: Lightweight contact tracing
with strong privacy. IEEE Data Eng. Bull., 43(2):95–
107, 2020.

[53] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux,
Marcel Salathé, James R. Larus, Wouter Lueks, Theresa
Stadler, Apostolos Pyrgelis, Daniele Antonioli, Ludovic
Barman, Sylvain Chatel, Kenneth G. Paterson, Srdjan
Capkun, David A. Basin, Jan Beutel, Dennis Jackson,
Marc Roeschlin, Patrick Leu, Bart Preneel, Nigel P.
Smart, Aysajan Abidin, Seda Gurses, Michael Veale,
Cas Cremers, Michael Backes, Nils Ole Tippenhauer,
Reuben Binns, Ciro Cattuto, Alain Barrat, Dario Fiore,
Manuel Barbosa, Rui Oliveira, and José Pereira. De-
centralized privacy-preserving proximity tracing. IEEE
Data Eng. Bull., 43(2):36–66, 2020.

[54] Jaideep Vaidya and Chris Clifton. Secure set intersection
cardinality with application to association rule mining.
J. Comput. Secur., 13(4):593–622, 2005.

[55] Haohuang Wen, Qingchuan Zhao, Zhiqiang Lin, Dong
Xuan, and Ness Shroff. A study of the privacy of covid-
19 contact tracing apps. In SecureComm 2020, pages
297–317. Springer, 2020.

[56] Åke Björck and Victor Pereyra. Solution of vander-
monde systems of equations. Mathematics of Computa-
tion, 24(112):893–903, 1970.

A Related Work (others)

In this section, we introduce the other related works about
PSI-CA, unbalanced PSI, and contact tracing schemes.

PSI-CA. Freeman et al. [22] showed a linear lower bound
for communication overhead for approximating the cardinal-
ity of the set intersection. They discussed the multi-party
case, which was realized in [37]. Debnath and Dutta [18]
also presented their protocol in linear complexity by using
Bloom Filter and Goldwasser-Micali (GM) Encryption based
on the Quadratic Residuosity (QR) assumption. Davidson and
Cid [17] presented a private set union protocol with linear
complexity by using Bloom Filter and addictive homomor-
phic encryption. They claimed their protocol can be adapted
to compute PSI-CA with minor changes. All the above pro-
tocols are expensive. For example, in [18], even by setting
nx = 220 and ny = 5535, the communication cost is already as
high as 7425.59 MB. For the circuit-based PSI, in addition to
the protocols [11, 26, 43, 47] we introduce in section 2, there
are also others [14, 42, 46, 50]. However, their performance is
worse than [47].

Unbalanced PSI. Kales et al. [29] proposed two optimized
uPSI protocols LowMC-GC and ECC-NR based on previous
protocols. In both of their protocols, there is a setup phase
in which the server (acting as the sender) needs to profile a
set into a Cuckoo filter and send it to the client (acting as the
receiver), which costs O(nx) in the offline communication and
the client needs to prepare the storage for the Cuckoo filter.
Pinkas et al. [46] designed a PSI protocol supporting both

298 32nd USENIX Security Symposium USENIX Association

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

balanced and unbalanced cases based on Cuckoo hashing and
OT extension. However, their protocol has a communication
cost O(nx + ny), which is expensive. Aranha and Resende
[48] also need the offline communication phase and used the
Cuckoo filter as Kales et al. [29]. Their work has an even
larger false positive probability. Their later work [49] used
another structure called Rank- and Select-based Quotient filter
[39] to get a larger compression rate. The expensive offline
phase is still needed. When the sender set size nx = 109, the
offline communication costs can be as large as 7186.19 MB.

Contact tracing. Wen et al. [55] investigated 41 contact
tracing Apps and found some of them were vulnerable to
fingerprinting and user identity tracking due to the adoption
of static identifiers. They suggested using dynamic or tem-
poral identifiers to enhance security. However, releasing per-
sonal identifiers brings potential privacy exposure risks, even
when the identifiers are dynamic. Because these identifiers
are linked with both users’ temporal and spatial information,
which can be private. Bell et al. [6] leveraged secret sharing
and additive homomorphic encryption to hide the infected
status of users. Though they claimed they guaranteed privacy
from contacts, they cannot because they do not protect the tem-
poral identifiers. Liu et al. [32] designed a privacy-preserving
protocol by using zero-knowledge proof to convince a doctor
that a user is a close contact but does not disclose his/her
information. One deficiency of their approach is that users
need to download all close contact information from a bul-
letin board and make comparisons by themselves. Dittmer et
al. [19] exploited Function Secret Sharing to realize PSI-CA.
In their design, they need two non-colluding backend servers
as Trieu et al. [52]. However, it is impractical to assume a
party has 2 non-colluded backend servers.

B Cuckoo Hashing

Cuckoo hashing [38] enables inserting each item e of a set
into a bin of a hash table with size m by using k > 1 hash
functions g1(·),g2(·), · · · ,gk(·) : {0,1}∗ 7→ [m]. Specifically,
to insert an item e into a bin, one first maps it to location
gi(e) where i is randomly drawn from [k]. If this location is
occupied by e′, then kick out e′ from the occupied bin and
insert e; otherwise, simply insert e. Denoting the hash index
of e′ in the evicted location is i′, then map e′ to location g j(e′)
where j ∈ [k]\{i′} and does the eviction again. The evicting
process is executed recursively until an empty bin is found to
insert the last evicted item. When there is an evicting loop (i.e.,
no empty bin can be found), the common practice is to put
an item in the loop into an extra data structure stash to break
the loop. In [13], the authors found Cuckoo hashing with
k = 3 performed very well with even no stash. To achieve
the statistical security level λ = 40, they claimed that one
could insert 5535 (resp. 11041) items into a hash table with
size 8192 (resp. 16384). The corresponding load factor of the
hash table is approximately 67%. To query an item e, one just

needs to check all the k bins g1(e),g2(e), . . . ,gk(e).

C Performance comparisons when nx = 220

The performance of different protocols when nx = 220 is as
shown in Table 6. From this table, one can find similar com-
parison results as nx = 224,228 in Table 3. Our PoL based
uPSI(-CA) protocol still gains the lowest communication
costs when ny = 5535,11041. When the bandwidth is low
(e.g., ≤ 10 Mbps), it runs the fastest online. Our VBF-based
protocol gains slight communication and online time advan-
tages over the Cong et. al. [15]. For the sender offline com-
putation, LowMC-GC is still the fastest one. Our VBF-based
protocol gains lower sender offline time than the PoL based
one. Our VBF+PoL based protocol can get a performance
balance between the PoL based one and VBF based one.

D Interpolation algorithms selection

In the setup phase of our protocols, the sender needs to do
polynomial interpolation for the sub-bins to get the corre-
sponding polynomial coefficients, which accounts for most of
his/her setup time. There are many algorithms for computing
the interpolation polynomials, such as the Newton polyno-
mial with computation complexity O(b2). In 1970, Björck
and Pereyra (BP) [56] developed an algorithm with O(b2).
Later in 1972, Moenck and Borodin (MB) [35] designed a
cheaper one with O(b log(b)), which is the one used in the
PSI protocol Spot-Light [41]. We also find another algorithm
with O(b2) in NTL6, a popular library for doing number the-
ory. We implement these algorithms and compare the running
time costs in Figure 4. From Figure 4, we have two find-

200 400 600 800 1000
The number of points: b

0

20

40

60

80

100

ru
nn

in
g

tim
e

(m
s)

Newton
BP
MB
NTL

Figure 4: The computation costs for interpolating b points by
using different algorithms.

6https://libntl.org/

USENIX Association 32nd USENIX Security Symposium 299

Table 6: The comparison results between our protocols and other protocols when nx = 220. The last metric “OC&RS” is the
offline communication and receiver storage. The best results are marked in bold. All protocols are tested with a single thread.
The network latency is 0.05 ms.

Cardinality Protocol Communication Online Time (s) Sender
offline (s)

OC&RS
nx ny Cost (MB) 10 Gbps 100 Mbps 10 Mbps 1 Mbps (MB)

220

11041

Cristofaro et al. [16] 10.67 1.05 1.98 10.24 98.70 20.31 0
LowMC-GC [29] 253.75 11.61 52.79 430.21 4359.08 5.48 4.19

ECC-NR [29] 65.24 4.52 6.77 60.20 609.01 151.05 4.19
Cong et al. [15] 8.95 4.96 5.06 5.61 26.33 26.53 0

Ours (VBF+slicing) 8.84 5.01 5.09 5.64 25.18 26.56 0
Ours (PoL) 4.50 3.85 3.99 4.66 24.46 88.04 0

Ours (VBF+PoL) 6.26 4.32 4.43 5.07 25.11 49.42 0

5535

Cristofaro et al. [16] 10.34 0.62 1.15 9.51 91.74 20.36 0
LowMC-GC [29] 127.22 4.89 25.56 215.23 2136.56 5.35 4.19

ECC-NR [29] 32.71 2.35 3.64 31.93 323.71 150.67 4.19
Cong et al. [15] 5.40 3.64 3.67 3.95 22.92 26.21 0

Ours (VBF+slicing) 5.30 3.63 3.68 3.94 18.68 26.27 0
Ours (PoL) 3.13 3.15 3.21 3.63 18.30 93.09 0

Ours (VBF+PoL) 3.85 3.25 3.28 3.64 18.45 50.25 0

0 5000 10000 15000 20000 25000 30000
The number of points: b

0

200

400

600

800

1000

ru
nn

in
g

tim
e

(m
s)

Normal
MB

Figure 5: The computation costs for building a normal poly-
nomial and an interpolation polynomial with b points.

ings. First, it is surprising that the BP [56] and Newton [56]
have highly similar performance, though they are different
algorithms. Second, no perfect interpolation algorithm can
outperform others in all numbers of point settings. When b is
small (e.g., b < 500), BP [56] and Newton [56] run the fastest.
When b is large (e.g., b≥ 500), MB [35] with better time com-
plexity runs the fastest. Therefore, for a protocol with small
sub-bin sizes, we suggest using BP [56] or Newton [56]; for
those with large sub-bin sizes, MB [35] is suggested.

In addition to comparing the interpolation polynomials, we
also compare MB [35] with the normal polynomial. When
building a normal polynomial, we only use the data in the
x-coordinate of the b points. As is shown in Figure 5, the inter-

polation cost can be lower than building a normal polynomial
after a threshold (e.g., b> 18000). Since MB [35] is with com-
putation complexity O(b log(b)) and a normal polynomial is
with O(b2), this result is not without expectation.

E False positive comparisons with [15]

To make the bin-wise comparison, Cong et. al. [15] has a false
positive probability (FPP) 1− (1− (b

2σ2)
ks)α. In their work,

they do not consider α and simply take (b
2σ2)

ks as the FPP,
which is inaccurate. A high FPP impairs the correctness of
the protocol. In their work, the parameters need to be selected
carefully. The basic idea of handling a long item is to make it
into shorter ones. Then ks is supposed to be large to make σ2
small. However, from their FPP, there is an interesting finding:
given parameters b, α, and a fixed FPP (e.g., 2−40), when we
increase ks, σ2 also needs to be increased. Therefore, it is
not suggested to simply select a large ks, which may result
in performance deterioration because the total number of
bits to be handled per item increases. Their work needs to
consider both the false positive and the performance issues.
Since there is no false positive concern in PoL based and
VBF+PoL based protocols, we can simply put our focus on
improving the performances. It is noted that the authors [15]
do not use permutation-based hashing because it only brings a
marginal gain in performance in their work. Same as [15], we
also do not use permutation-based hashing in our PoL based
protocol to show its strength. Without using permutation-
based hashing, we set ks = 4 in PoL to make the slice bit
length in the twenties (i.e., 20 ∼ 29) after naive hashing. If
using permutation-based hashing, the performance can be
improved.

300 32nd USENIX Security Symposium USENIX Association

	Introduction
	Naive FHE-enabled uPSI
	Overview of Our Solutions
	Our Contributions

	Related Work
	Preliminaries
	Security Model
	Bloom Filter
	Fully Homomorphic Encryption
	Shuffled DH-OPRF

	Our Approaches
	Virtual Bloom Filter
	Polynomial Links

	Our uPSI(-CA) Protocols
	Construction Details
	Variants and Extensions
	Correctness
	Security

	Experiments and Evaluations
	VBF+slicing based vs PoL based
	Comparisons with PSI-CA protocols
	Comparisons with uPSI protocols

	Application: Contact tracing
	Conclusion
	Related Work (others)
	Cuckoo Hashing
	Performance comparisons when nx=220
	Interpolation algorithms selection
	False positive comparisons with DBLP:conf/ccs/CongMGDILR21

