
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Back to School: On the (In)Security
of Academic VPNs

Ka Lok Wu, The Chinese University of Hong Kong; Man Hong Hue,
The Chinese University of Hong Kong and Georgia Institute of Technology;
Ngai Man Poon, The Chinese University of Hong Kong; Kin Man Leung,

The University of British Columbia; Wai Yin Po, Kin Ting Wong,
Sze Ho Hui, and Sze Yiu Chau, The Chinese University of Hong Kong
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-ka-lok

Back to School: On the (In)Security of Academic VPNs

Ka Lok Wu† Man Hong Hue†,‡,1 Ngai Man Poon† Kin Man Leung§

Wai Yin Po† Kin Ting Wong† Sze Ho Hui† Sze Yiu Chau†,2

† The Chinese University of Hong Kong
‡ Georgia Institute of Technology

§ The University of British Columbia

Abstract

In this paper, we investigate the security of academic VPNs
around the globe, covering various protocols that are used
to realize VPN services. Our study considers 3 aspects that
can go wrong in a VPN setup, which include (i) the design
and implementation of VPN front-ends, (ii) the client-side
configurations, and (iii) the back-end configurations. For (i),
we tested more than 140 front-ends, and discovered numer-
ous design and implementation issues that enable stealthy but
severe attacks, including credential theft and remote code ex-
ecution. For (ii), we collected and evaluated 2097 VPN setup
guides from universities, and discovered many instances of
secret key leakage and lack of consideration to potential at-
tacks, leaving many client-side setups vulnerable. Finally, for
(iii), we probed more than 2000 VPN back-ends to evaluate
their overall health, and uncovered some concerning configu-
ration and maintenance issues on many of them. Our findings
suggest that severe cracks exist in the VPN setups of many
organizations, making them profitable targets for criminals.

1 Introduction

Institutions and companies often use Virtual Private Net-
works (VPNs) to facilitate remote access to internal services
and resources. In recent years, reliance on VPNs has soared
worldwide in part due to social distancing policies during the
COVID pandemic [6]. Unfortunately, despite a connotation of
security, not all VPN implementations and deployments are
adequately secure. In fact, industry-led research suggests that
leaked VPN credentials are often sold by Initial Access Bro-
kers (IABs) to criminals for launching further attacks [7,9], for
example, the infamous Colonial Pipeline ransomware attack
that led to a temporary fuel shortage in several U.S. states [8].

The aforementioned attacks motivate a systematic review
of the security of organizational VPNs. Since the practices

1Work done while at The Chinese University of Hong Kong.
2Corresponding author.

of most companies are opaque to researchers, we focus in-
stead on VPNs deployed at academic institutions (hereafter
academic VPNs) which typically disclose more information
on their deployments. We believe many of the findings and
lessons learned from academic VPNs can also transfer to orga-
nizational VPNs. Moreover, report suggests academic VPNs
are also being targeted by IABs [10], thus they warrant a thor-
ough investigation in their own merit. Despite an expectation
of enabling secure remote access to internal resources, un-
fortunately, as will be explained later, many academic VPNs
actually enable trivial compromise of user credentials as well
as the client machines.

Although previous studies covered different types and as-
pects of VPNs [19,28,36,50,57,58], they do not paint a com-
prehensive picture of the current landscape of academic VPNs.
Under the typical “bring your own device” (BYOD) model,
VPN users configure front-ends following setup guides pre-
scribed by their IT admins, who in turn maintain and configure
the VPN back-ends, also known as gateways, purchased from
and implemented by vendors of networking equipment. Ad-
ditionally, front-ends are either part of the operating systems
(OSes), or implemented and released as standalone apps by
the same vendor of the VPN back-end, in which case the apps
might incorporate proprietary designs. More importantly, or-
ganizational VPNs often reuse existing Single Sign-On (SSO)
credentials, making them ideal targets for IABs.

As such, in this study, we consider security issues in aca-
demic VPNs that can arise from 3 different perspectives: 〈P1〉
poor designs and implementations of the front-end apps by
network equipment and OS vendors; 〈P2〉 poor front-end set-
tings prescribed to users by IT admins; and 〈P3〉 poor back-
end configurations adopted by IT admins. Partly motivated
by the proliferation of IABs, we are particularly interested in
understanding server authentication issues that can lead to
credential theft and other forms of access compromise. Our
study of the academic VPN ecosystem is thus structured as
follows. For studying 〈P1〉, we test the behaviors of front-end
implementations under a back-end impersonation attack. This
helps us to determine whether a front-end is inherently inse-

USENIX Association 32nd USENIX Security Symposium 5737

cure or requires user precautions to achieve secure outcomes.
The discovery of test subjects for 〈P1〉 is informed by our
efforts on studying 〈P2〉, in which we inspect and evaluate
the setup guides released by academic institutions worldwide.
Setup guides are evaluated based on the results of studying
〈P1〉, which allow us to determine the likely security out-
comes of VPN setup guides (e.g., whether user precautions
are explicitly mentioned). Finally, with the gateway addresses
discovered from studying 〈P2〉, we also measure and evaluate
configuration issues on VPN back-ends, thus covering 〈P3〉.

Concerning server authentication, VPN protocols can gen-
erally be classified into three types: 〈SA0〉 no server authenti-
cation; 〈SA1〉 server authentication based on pre-shared key
(PSK); and 〈SA2〉 server authentication based on public key
infrastructure (PKI). However, as we will explain later, due
to flaws in design, implementation and configuration, many
〈SA1〉 and 〈SA2〉 VPNs in practice are effectively as weak as
their 〈SA0〉 counterparts under impersonation attacks.
Finding summary. We found that a non-negligible number of
schools are vulnerable to VPN credential theft due to server
authentication issues. First, we discovered 44 〈SA0〉 VPNs
and 149 〈SA1〉 VPNs, 119 of which have their PSKs exposed.
We then uncovered numerous implementation issues in var-
ious 〈SA0〉 and 〈SA2〉 VPN front-ends that make them vul-
nerable to credential theft and in some cases remote code
execution (RCE). Additionally, we found that many setup
guides do not achieve the security promises of 〈SA2〉 VPNs,
effectively downgrading them to 〈SA0〉. Finally, we uncov-
ered several maintenance and configuration issues on VPN
gateways, including unpatched cryptographic vulnerabilities
and poor certificate management practices.
Contributions. To the best of our knowledge, we are the first
to present a comprehensive review of academic VPNs. The
fact that variants of known attacks worked well in this study
echoes with our belief that the academic VPN ecosystem has
not been thoroughly scrutinized before. To help practitioners
and future research, we demonstrate and document weakness
patterns in academic VPNs through the following exercises:

1. We test more than 142 VPN front-ends for various proto-
col stacks on 4 major OSes, and discovered numerous design
and implementation flaws that can lead to stealthy but severe
attacks, including credential theft and RCEs.

2. We present the first large scale evaluation of academic
VPN setup guides. 2097 setup guides were collected and
inspected, and we found many to ignore important precautions
and exception handling, leading to insecure client-side setups.

3. We probe more than 2000 VPN gateways to better un-
derstand their configurations and security hygiene. We also
discuss the implications of cryptographic weaknesses and
other management issues discovered by the probe.

4. We engage in responsible disclosure to help vendors and
schools fix their VPN setups. We also provide recommenda-
tions to better secure organizational VPNs in general.

2 Background and Scope of the Study

In this study we consider VPNs on major OSes, i.e., macOS,
Windows, Android, and iOS, as organizations typically only
support those four. Here we give a summary of the adversary
and protocols being considered.
Adversary Model. We primarily consider an active on-path
attacker, otherwise known as a man-in-the-middle (MITM),
which can observe, modify and redirect network traffic, but is
not a member of the target organization. We note that this is
a very realistic model, for instance, when a user connect to
VPN through a hotel Wi-Fi, the network admins and middle-
boxes at the hotel naturally have such adversarial capabilities.
Additionally, we also consider the threat of an insider (e.g., a
disgruntled student) colluding with the MITM.
Protocols Considered. For this study, we consider VPN pro-
tocols that (i) have native support on the 4 major OSes, or (ii)
are supported by front-end apps used by actual organizations.
As discussed before, they can be classified into 〈SA0〉, 〈SA1〉
and 〈SA2〉, based on how server authentication is achieved:
〈SA0〉 no server authentication. A prominent example

that we consider is PPTP [31], which is one of the oldest
VPN protocols still in use. PPTP is natively supported on
Windows and Android. The typical authentication methods
used with PPTP include the Password Authentication Protocol
(PAP) and the Microsoft Challenge-Handshake Authentica-
tion Protocol version 2 (MSCHAPv2). In the most common
case of PAP, the username and password are sent to the server
in cleartext. In MSCHAPv2, the client computes and sends a
response based on its password and a challenge from server.
Although in theory MSCHAPv2 achieves mutual authentica-
tion, by design the client sends its response before the server
does. Thus a server impersonator can choose arbitrary chal-
lenge and get the client response, and then attempt an offline
dictionary attack to recover the password. Moreover, after
at most 256 brute-force attempts, one can recover the MD4
hash of client password and use that to login as the victim
via MSCHAPv2 [39]. Since PPTP does not offer additional
authentication and confidentiality, we consider direct usage
of PPTP with these methods vulnerable to credential theft.

PPTP is sometimes used with the Microsoft Point-To-Point
Encryption (MPPE) protocol [44], which adds encryption
to the VPN traffic. However, this does not protect the user
authentication methods. In fact, the key derivation in MPPE
depends on the completion of a challenge-response protocol
(e.g., MSCHAPv2) and thus does not work with PAP [59].
PPTP can also use the Extensible Authentication Protocol
(EAP) framework for user or mutual authentication. In theory
it is possible to first set up a TLS tunnel (e.g., EAP-TTLS)
to protect the likes of PAP and MSCHAPv2, which upgrades
PPTP from 〈SA0〉 to 〈SA2〉. Although MSCHAPv2 inside a
TLS tunnel is quite common in enterprise Wi-Fi [14, 33], as
we will see later, it is rarely used with PPTP.
〈SA1〉 PSK-based server authentication. For this, we con-

5738 32nd USENIX Security Symposium USENIX Association

sider the various protocol stacks that involve IPSec. In such
setups, IPSec provides a secure tunnel that protects the user
authentication exchange and the subsequent traffic. Although
TLS also supports the use of PSK [26], such ciphersuites are
seldom used in practice, so we do not consider TLS with PSK
in this paper. Different combinations of protocol stacks can
realize the PSK-based IPSec VPN, and they are confusingly
named by different vendors. A very common stack is known
as L2TP/IPSec-PSK VPN, which uses IPSec to protect L2TP
traffic [45], where L2TP can support the likes of PAP and
MSCHAPv2 for user authentication. Another common stack
uses IPSec-PSK with XAUTH, where the user password is
typically sent to the server directly inside the IPSec tunnel,
especially when the setup uses RADIUS to implement SSO.
The so-called “Cisco IPSec” is also a variant of IPSec-PSK
XAUTH. Currently two versions (v1 and v2) of the Internet
Key Exchange (IKE) protocol exist in IPSec. IKEv2 can also
use EAP or PKI-based methods for user or mutual authen-
tication, though PSK continues to be supported. In general,
when (i) password-based methods are used for user authen-
tication, and (ii) server authentication hinges solely on the
PSK, knowledge of the PSK allows an attacker to set up an
impersonator and perform credential theft.
〈SA2〉 PKI-based server authentication. Another ap-

proach to the authentication problem is to use public-key cryp-
tography, which often involves the use of X.509 certificates.
Both TLS and IPSec support this and will be considered. In
IPSec, both IKEv1 and v2 support some server authentication
methods based on certificates and signatures, and user authen-
tication can happen either through password-based methods
or also based on certificates and signatures. For TLS-based
VPNs, vendors might have their own proprietary designs for
authenticating users inside the TLS tunnel. Additionally, we
also consider OpenVPN, which uses TLS as its underlying
authentication and key negotiation protocol.

3 〈SA0〉 and 〈SA1〉 VPNs in action

3.1 Attack setups and testing front-ends 〈P1〉
Although the weaknesses of 〈SA0〉 and 〈SA1〉 protocols were
discussed in previous work [19], we are not aware of any
testbeds that perform impersonation attacks against them. We
thus built our own setups for testing the front-ends. For both
PPTP and IPSec-based VPNs, we use a Linux laptop as the
Wi-Fi access point, and set up dummy interfaces (virtual net-
work) with addresses of the target back-end servers. Then for
PPTP VPNs, we use the open-source pptpd as the imperson-
ating back-end. For IPSec-based VPNs, we used open-source
implementations including strongSwan and Libreswan, de-
pending on the authentication methods and protocol versions
needed. The main challenge was to come up with back-end
configurations compatible with the front-ends, as there are
many options at each layer of the stack (e.g., IKE version

and mode, ciphers, authentication methods, etc.). In some
cases we had to modify the code of IPSec implementations to
accommodate non-standard behaviors of certain front-ends.
In the end, we built working setups of PPTP impersonator
that works with the native Windows and Android front-ends,
and various IPSec-PSK impersonators that can work with
the native front-ends on macOS, Windows, Android, iOS, as
well as front-ends apps from network equipment vendors like
Fortinet and Aruba. These setups helped us demonstrate the
PPTP front-ends tested are indeed vulnerable to credential
theft, and similarly so for IPSec-PSK front-ends if attacker
knows the PSK. Besides, we also discovered some product-
specific weaknesses, as discussed below.
Lack of choice on Android. We found that on Android, the
user cannot choose the preferred user authentication methods
when configuring PPTP and IPSec-PSK VPNs. As such, the
back-end server will decide the method. A rational imperson-
ator would thus choose PAP over methods like MSCHAPv2 to
get the password directly. In fact, as discussed before, MPPE
cannot be used with PAP due to its key derivation require-
ments. However, we found that on Android, when the user
enables MPPE for PPTP, it still attempts to connect even if
the server chooses PAP. This could lead to a false sense of se-
curity as the user cannot cherry-pick authentication methods
but direct password theft continues to be possible.
Encrypted PSK on Aruba VIA. While testing, we found
that the Aruba VIA apps fetch a configuration profile via TLS
at first login before subsequent IPSec-PSK VPN connections
can be made, but the PSK is nowhere to be found on the UI.
Interestingly, the fetched profile can be found on local storage
of Windows, which contains an encrypted PSK. Alternatively,
under the insider threat model, we found that one can also
perform a self-MITM to obtain the encrypted PSK from the
profile-fetching TLS with Aruba app on other OSes. Although
this can be seen as an attempt to protect the PSK from insiders,
we found that it can be easily worked around. We decompiled
the Aruba VIA Android app and quickly found that the PSK
is encrypted using 3DES-CBC with a secret key hardcoded
inside the app. Using the hardcoded secret key and some
simple Java code, any insiders can decrypt the PSK in an
offline manner, rendering the protection moot.

3.2 Setup guides prescribed to users 〈P2〉
Motivated by the aforementioned attacks against 〈SA0〉 and
〈SA1〉 VPNs, we are curious to see if academic units, which
include universities and their departments, actually use such
VPNs in practice. In this part of the study, we locate and
inspect the VPN setup guides that are publicly accessible
on school websites. This exercise serves three purposes: (1)
provide an overview of the distribution of various VPN pro-
tocols, including 〈SA2〉 ones; (2) identify 〈SA2〉 front-ends
to be tested in Section 4; and (3) to better understand 〈P2〉
of 〈SA0〉 and 〈SA1〉 VPNs. Specifically, we focus on whether

USENIX Association 32nd USENIX Security Symposium 5739

academic units uses PPTP or IPSec-PSK, and in the latter
case, whether the PSK itself is also publicly accessible.

We first consolidate a list of universities by consulting pub-
lic resources (e.g., Wikipedia and the list from [33]), which
includes 6600 schools in 45 regions. For each university, we
programatically collect Google’s top 8 search results with
the help of Selenium, using the following search keywords:
VPN site:<domain>, <domain> AND (VPN OR Virtual
Private Network OR Off-Campus Network Access OR
(VPN AND (IPSEC OR L2TP OR SSL OR PPTP))), IPSEC
or "L2TP" or "SSL" or "PPTP" site: <domain>. We
then inspect the crawled search results to locate applicable
VPN setup guides manually. A setup guide is applicable if it
prescribes VPN protocols considered by the study. If we find
a setup guide prescribing the use of 〈SA0〉 and 〈SA1〉 VPNs,
we archive the corresponding setup guide as a snapshot and
log the contact information for responsible disclosure. For
TLS-based VPN setup guides, we curate a list of vendors
and their corresponding front-end apps that are used by
some schools, which are tested in Section 4.1.2. This data
collection and evaluation exercise spanned from September
2021 to March 2022, involving six authors. Three of them
were in charge of the major portion of the data entries, with
each covering thousands of the schools considered. Setup
guides from non-Anglosphere nations tend to be written in
their local languages (e.g., CJK, German, French, and Thai).
If a school has setup guides in multiple different languages,
we favor the one in local language of the region, as that
tends to be more informative than the translated English
version. Depending on our language proficiency, we use
Google Translate (GT) and other online dictionaries to help
us understand unfamiliar words. Specifically, setup guides in
languages of high proficiency (e.g., Japanese and Chinese)
were evaluated without using GT. For other languages of
moderate or basic proficiency (e.g., German and French),
GT was used as an assistive tool. Only for languages of no
proficiency (e.g., Thai and Arabic), we relied on GT.

Findings. From the 6600 universities considered, we found
2097 applicable setup guides. One school can have multiple
setup guides, as it can run several VPNs for different staff and
students, and some departments might also have their own
VPNs. Out of the 2097 applicable setup guides, 149 (7.1%)
of them rely on IPSec-PSK VPNs (106 are L2TP/IPSec-PSK,
29 are “Cisco IPSec”, and the rest are from other vendors).
Among them, 118 (79.2%) PSKs are publicly exposed on the
setup guides. The others either require user login or contact
IT admins to obtain the PSK. Although this is arguably better
than publicly exposing their PSKs, it is still susceptible to cre-
dential theft by a MITM colluding with an insider. Moreover,
we found 44 (2.1%) setup guides prescribe the use of PPTP
VPNs. To make sure that they are indeed using PPTP as 〈SA0〉
and not 〈SA2〉, we further inspected the 19 setup guides that
apply to Windows, and noticed that none of them are using
EAP. As such, members of these schools that rely on inse-

cure usage of 〈SA0〉 and 〈SA1〉 VPNs are likely susceptible
to credential theft. Finally, we also found that 4 (0.2%) setup
guides prescribe PKI-based IPSec for Android devices, and
1981 (94.4%) setup guides prescribe the use of TLS-based
VPNs, both of which will be considered in Section 4.

3.3 Configuration issues on back-ends 〈P3〉

Here we focus on a known weakness in IPSec-PSK. IKEv1
has an aggressive mode, which exchanges fewer messages and
delivers a faster establishment of the IKE security association
than the main mode. However, it is known that the aggressive
mode enables an offline dictionary attack on the PSK [1,
28], as the hash of the PSK is transmitted in cleartext. This
hash can be easily obtained by a passive on-path attacker
when a user connects using aggressive mode, or by someone
who actively probes the back-end. VPN gateways are thus
recommended to disable the IKEv1 aggressive mode [1].

As part of our evaluation, we probed the IKE back-ends dis-
covered in Section 3.2 using the open source tool ike-scan,
to see if they enabled support for IKEv1 aggressive mode. No-
tice that one setup guide could mention multiple backup gate-
ways. Among the 173 back-ends that we probed, 25 (14.5%)
responded with an aggressive mode handshake message. Sub-
sequently, we used psk-crack and its default dictionary file
to attempt an offline dictionary attack, and were able to un-
cover one additional PSK that was not exposed in the setup
guides. Furthermore, by incorporating the exposed PSKs from
Section 3.2 into the dictionary file, we were able to confirm
that 13 out of the 25 aggressive mode handshake responses
are indeed using the publicly exposed PSKs previously found.
Given that the purpose of this exercise is to measure the
support of aggressive mode instead of the predictability of
PSKs, we refrain from attempting massive scale attacks with
large dictionaries. Our results nonetheless suggest that IKEv1
aggressive mode continues to be enabled on a considerable
number of IPSec gateways, despite its known weaknesses.

4 〈SA2〉 VPNs in action

4.1 Attack setups and testing front-ends 〈P1〉

4.1.1 IPSec with certificates and signatures

For testing IPSec-PKI front-ends, we modified the setup de-
scribed in 3.1, and managed to make it work with the Android
native front-end under the “IPSec Xauth RSA” and “IPSec
Hybrid RSA” modes. In both modes, instead of relying on a
PSK, the client is supposed to validate the server certificate
(and a fresh signature) for authenticating the server. Interest-
ingly, we found that the Android 11 UI by default does not
verify the server certificate, which enables our impersonating
setup with self-issued certificates to perform credential theft.

5740 32nd USENIX Security Symposium USENIX Association

This is highly reminiscent of the Wi-Fi UI problem found on
earlier versions of Android [33].

4.1.2 TLS-based (and OpenVPN-based) VPNs

Given that 94.4% of the setup guides prescribe the use of
TLS-based VPNs (Section 3.2), we also test the various VPN
front-ends used by those schools. In practice, except for SSTP
on Windows, all the other TLS-based VPNs we discovered re-
quire the installation of an additional app, which are typically
also implemented by the vendor of the corresponding VPN
back-end. From Section 3.2, we discovered and tested 132
TLS-based VPN apps (160 including different modes) on 4
major OSes from 30 vendors. Some vendors do not have apps
for all 4 OSes, but some might have multiple front-ends apps
even on the same OS. For instance, we found that Fortinet
has both v6 and v7 in circulation and used by various schools.
OpenVPN, on the other hand, has two apps for Windows,
one is open-source (named OpenVPN GUI) and the other
is not (named OpenVPN Connect). Similarly, on top of the
traditional desktop app, Cisco AnyConnect also has a UWP
version from Microsoft Store.

For this round of testing, we consider 2 test cases: (i) un-
trusted server certificate with correct name; and (ii) trusted
server certificate with incorrect name. Both test cases repre-
sent realistic threats within reach of the adversary we consider.
Test case (i) captures the case where an on-path attacker uses
an impersonating certificate issued by an untrusted issuer (e.g.,
self-signing), while test case (ii) captures the case where the
attacker purchases a valid certificate from a trusted commer-
cial CA for an arbitrary domain under control, and then uses
that as the impersonating certificate. To realize an active on-
path attacker, we use a Linux laptop as the Wi-Fi access point,
and run mitmproxy [22] on it with certificates of our choos-
ing to attempt TLS interception. We noticed that mitmproxy
can run into compatibility issues with certain front-ends, and
thus we augment the adversarial setup with SSLproxy [56]
if necessary. For testing OpenVPN and other apps based on
it, we set up an OpenVPN back-end that uses our certificates
and listens on a dummy interface (see Section 3.1). Due to
space constraints, we discuss some of the compatibility issues
and other interesting findings in Appendix A.
(i) Untrusted certificate with correct name. For ease of dis-
cussion, the results of this test are shown in 3 tables. Table 1
shows the list of apps found to be vulnerable under this test
case. Table 2 presents the behavior of apps that rely on user
precautions to achieve secure outcomes, which serves as the
basis of the setup guide evaluation in Section 4.2. Finally, Ta-
ble A1 in Appendix shows the apps that programatically reject
untrusted certificates without relying on user precautions, and
are thus not found to be vulnerable. Due to space constraints,
we use shorthands instead of full app names in the tables, and
show the mapping as well as the tested versions and origins of
the apps in Table ?? in Appendix. Also notice that some apps

support multiple modes of operation, for example, whether
to use SSO protocols such as SAML for user authentication.
However, not all apps from the same vendor support such
modes. For instance, the SAML mode is not available on the
UWP version of the Cisco AnyConnect app for Windows 10.
Additionally, some apps have a distinct bootstrapping phase
for fetching configuration profiles at the first successful login.
For example, the OpenVPN and Aruba VIA apps first fetch
configuration profiles via TLS, and then later use a different
protocol (i.e., OpenVPN and IKE-PSK) for the actual VPN
connection. GlobalProtect also has 2 distinct phases, which
behave differently as shown in the tables. For such apps, we
can only test the subsequent VPN login phase with gateways
of our affiliated institutes using our own accounts.

Table 1: VPN front-ends vulnerable to untrusted certificates

app (mode) OS Out

DPTech Mac R
W10 R
And R
iOS R

Huawei
Anyoffice

Mac P
W10 P
iOS P

Huawei Seco And P
iOS P

Hillstone Mac P
W10 P
And P
iOS P

Hillstone
(gmssl)

And P

H3C Mac P
W10 P
And P
iOS P

V5 W10 R
Mac R
And R
iOS R

V5 (gmssl) W10 R
Qianxin W10 P

Mac P
And P
iOS P

AhnLab W10 P

app (mode) OS Out

Aruba
(bootstrapping)

W10 P

Sangfor Mac R
W10 R
And R
iOS R

TOPSec Mac P
W10 P
And P
iOS P

Array
MotionPro

Mac P
W10 P�

Ruijie Mac P
W10 P
And P
iOS P

Enlink iOS R
EnAgent Mac R

W10 R
And R
iOS R

Forti
new (SSO)

Mac� Pα or H
W10� Pα or H
And Pα or H
iOS P or H

Forti
Fabric (SSO)

And Pα or H
W10� Pα or H
iOS� P or H
Mac� Pα or H

� has UI option on certificate validation, but does not affect the browser invoked for SSO
α additional prompts about invalid cert will be shown and need to be accepted by user

For both Table 1 and Table 2, the Out column captures
what kind of credential or access compromise the attacker
can perform (Plaintext/Reverse engineered/Dictionary at-
tack/pHishing/Mitm login/Unknown), if the server certificate
is accepted. In other words, it represents the outcome of suc-
cessful attacks. Such a fine-grained classification is needed
because not all apps directly transmit the username and pass-
word inside TLS. Quite a few apps have additional encoding
or scrambling of the user credentials, many of which we man-

USENIX Association 32nd USENIX Security Symposium 5741

aged to reverse engineer, though for 2 apps the mechanism
remains unknown to us.

Insecure VPN front-ends. To our surprise, 56 distinct apps
from 15 vendors automatically accept untrusted server cer-
tificate without any user interventions (Table 1). We consider
these apps vulnerable because there are no ways for users
to enable or manually enforce certificate validation. In other
words, using these VPN front-ends directly exposes users
to a realistic threat of stealthy credential theft. It is also in-
teresting to see that despite coming from the same vendor,
apps for different OSes might not deliver the same behavior
in response to potential impersonators. For example, while
the Aruba VIA apps on iOS, macOS and Android all prompt
the user to decide whether to accept the untrusted certificate
(thus in Table 2), the Windows app blindly accepts it.

Misguided and vulnerable designs. We found that instead
of performing proper certificate validation to secure the TLS
tunnel, several vendors attempt to introduce additional scram-
bling to protect the password being transmitted, which we
reverse engineered (Out = R) through observing and manip-
ulating the TLS traffic, and in some cases by inspecting the
front-end code. For example, the DPTech apps base64 encode
the password before sending it to the back-end, which is triv-
ial to decode. Moreover, the Sangfor EasyConnect front-end
apps use RSA to encrypt the password, with an RSA public
key that was received earlier in the TLS tunnel. To obtain the
actual user password, an active MITM can simply replace the
RSA exponent with a value of 1 after compromising the TLS
session. This way the RSA modular exponentiation does not
hide the message. Similarly, the Enlink EnApp and EnAgent
apps use AES-CBC to encrypt the password with a secret
key that was received from the back-end earlier in the TLS
tunnel, and the IV is simply the reverse of the secret key. As
such, the MITM can observe both the key and ciphertext after
compromising the TLS, and easily decrypt the user password.
The V5 apps use a similarly vulnerable design, but with a
hardcoded secret key and IV instead.

Additionally, we found the Array MotionPro app on Win-
dows 10 decides whether to perform certificate validation
based on a policy file it fetched from the gateway prior to
user login. However, since the TLS used for this fetching also
accepts untrusted certificates, the MITM can simply intercept
and rewrite the policy file into disabling future certificate vali-
dation, and later intercept the user password (Out = P�). Array
front-end apps for other OSes do not exhibit this behavior,
and are directly susceptible to MITM credential theft.

Phishing FortiClient SSO mode. Another class of subtle
vulnerabilities concerns the SSO mode of the various For-
tiClient apps. In the SSO mode, a built-in browser will be
invoked to first fetch policy files <gateway>/remote/info
and <gateway>/remote/saml/start, and then perform the
actual SAML for user authentication. Interestingly, we found
that the browsers launched accept untrusted certificates for
the 2 initial requests of policy files, which opens up pos-

sibilities for attacks. Most importantly, one can intercept
the request for <gateway>/remote/saml/start and ex-
ploits it to stealthily redirect the client to a phishing web-
site (Out = H). The main idea is correct the browser’s ex-
pectation of the SSO server identity by using HTTP 301.
Since none of the browsers launched by the FortiClient apps
under SSO mode show the address bar, users will have no
ways to tell that the SAML request has been redirected to
a malicious phishing site. The exact behavior differs for the
apps on different OSes, but we assume the attacker has set
up http://www.attacker.com/login that HTTP 301 redi-
rects to https://attacker.com/login, which is the actual
phishing site but has a valid certificate.

For macOS, the MITM can simply rewrite the request
for <gateway>/remote/saml/start so that it becomes a
request for http://www.attacker.com/login, and upon
receiving the HTTP 301, the browser launched for SAML will
continue with https://attacker.com/login. No alerts
will be shown throughout this process if attacker.com has a
valid certificate. For Windows, the same attack also achieves
stealthy redirection to a phishing site. Moreover, we found
that if the final attacker.com has an invalid certificate, the
browser will attempt to import it into the trusted CA store on
Windows, and a prompt will be shown to the user to decide
whether to import or not. For a screenshot, see figure B2 in
Appendix B. Depending on how alert a user is, this gives a
pathway for an attacker to inject a root CA on the machine,
potentially enabling MITM attacks against other TLS traffic.

For Android, the app expects a formatted string that de-
scribes the scheme and URL of the SAML login page from
<gateway>/remote/saml/start. We reverse engineered
the format by decompiling the app, and can thus feed a target
URL of our choosing (i.e., www.attacker.com/login) as
the MITM. In fact, if the attacker explicitly specify the scheme
of http:// in the target URL, the browser is even willing to
continue with the phishing site without TLS. The same attack,
including the specification of http:// also works against the
iOS app under SSO mode. In fact, based on our testing, the
built-in browser launched by the iOS app even accepts invalid
certificates for https://attacker.com. Thus instead of the
phishing attack described above, the MITM can also simply
intercept the TLS with the SSO login page and get the user
password (Out = P). For non-iOS apps, intercepting the SSO
login page can also work if the user accepts invalid server cer-
tificates when prompted (Out = Pα), as certificate validation
of the built-in browser kicks in after the redirect.

Reliance on user precautions. As discussed before, many
VPN front-ends depend on user precautions to achieve secure
outcomes. The precise behaviors of such apps are presented
in Table 2 with the help of additional columns: CertChkOpt
captures whether certificate validation is a configurable option
in the user interface (UI); SuffInf captures whether sufficient
information (e.g., certificate fingerprint) is given to the user
for deciding if the certificate is trustworthy; CertDisBehav

5742 32nd USENIX Security Symposium USENIX Association

only applies to apps with CertChkOpt = T, and captures what
the apps do (Prompt or Accept) with an untrusted certificate
when validation is configured as disabled.

As shown in Table 2, apps vary quite significantly in terms
of their UI and certificate validation enforcement, and some
design choices are alarming. In particular, several apps by
default have certificate validation disabled (CertChkOpt = T!).
For the ones that also have CertDisBehav = A, they are vulner-
able to MITM attacks right out of the box, which defies the

“secure by default” principle. Similarly, apps on some OSes do
not show informative alerts to facilitate user decision-making
(SuffInf = F), which could provide incentives for users to just
accept arbitrary certificates when prompted. In Section 4.2
we will investigate whether setup guides carefully consider
and articulate the necessary user precautions.

RCE and drive-by attacks. On top of credential theft,
we also investigate the possibility of injecting code onto the
user machine running vulnerable VPN apps, by exploiting
the lack of certificate validation in the TLS used for software
updates. For this, we run the aforementioned TLS intercepting
setup and monitor for intercepted traffic that appear related to
software updates (e.g., app querying the gateway or vendor
for the latest version number), while we interact with the VPN
apps (e.g., attempt user login) and accept prompts of untrusted
certificates, if any. In the end, we identified 22 apps that have
RCE potentials, as presented in Table 3.

Table 2: Behaviors of VPN front-ends reliant on users

app (mode) OS CertChk
Opt

Suff
Inf

CertDis
Behav

Out

Cisco Mac T F P P
W10 T F P P

W10 (UWP) T T P P
And T T P P
iOS T T P P

Pulse Mac F T – P
W10 F T – P
And F T – P
iOS F F – P

Citrix SSO And T F P P
Citrix Workspace And T! T P P

iOS T! T P P
GlobalProtect

(bootstrapping)
Mac F T – P
W10 F T – P
And F T – P
iOS F T – P

Aruba
(bootstrapping)

Mac F F – P
And F F – P
iOS F F – P

F5 And F T – P
F5 (SSO) And F T – P

F5 BIG-IP Edge W10 F T – P
Mac F F – Pf or Hf

Forti new W10 T T A P⊥

And F F – P
iOS F F – P

Forti old Mac T T A P
W10 T T A P⊥

And T! F A P
iOS T F A P

Forti old (SSO) Mac T F A P
Forti MSFT Store W10 T£ – A P

Forti Fabric And T F A P
W10 T T A P
iOS T F A P

Array MotionPro And F F – P
iOS F F – P

Array MotionPro Plus iOS F F – P
SonicWall MobConn Mac F T – P

And F T – P
iOS F T – P

SonicWall ConnTunn Mac F T – P
W10 F T – P

SonicWall NetExt W10 F T – P
CP EndSec Mac F T – U

W10 F T – U
CP CapConn And F TO – R

iOS F TO – R
CP CapWork And F TO – R

iOS F TO – R
Huawei Seco W10 T F A P

Mac T F A P
UniVPN W10 T F A P

Mac T F A P
And T! F A P
iOS T! F A P

SoftEther (RADIUS) W10 T! T A P
(Default) W10 T! T A M or D

WatchGuard W10 F T – P
Mac F T – P

ZyXEL W10 F T – P
Mac F T – P

Barracuda
CloudGen

W10 F F – P
MacOS F T – P

And F F – P
iOS F F – P

OpenVPN
(bootstrapping)

Mac F T – R
W10 (Connect) F T – R

And F T – R
iOS F T – R

CertChkOpt = certificate validation is a configurable option (can be enabled/disabled)
SuffInf = sufficient information available for manual certificate validation

CertDisBehav = behavior when the certificate validation option is disabled

! cert validation disabled by default O common name + RFC1751 w/ truncated SHA1
⊥ might encrypt credentials depending on policy file fetched from gateway, which can be
modified by the MITM to disable £ through a parameter of the server URL
f depends on whether the back-end performs authentications itself or relies on SSO

We then attempt to trigger software updates by changing
the version numbers exchanged, and reverse engineer the
ways of injecting malicious payloads. As can be seen from
the table, mobile platforms are generally less susceptible to
this, which we attribute to the fact that many vendors rely
on official app stores for distributing and updating their apps.
Also notice that not all the identified apps are indeed vulnera-
ble to RCE. For some, we were not able to trigger software
updates despite modifying the version numbers exchanged
(e.g., MotionPro macOS and Qianxin Android). Some might
only be vulnerable to Drive-by Install or Download, and some
might have additional verification to reject untrusted payloads,

USENIX Association 32nd USENIX Security Symposium 5743

even if users accept untrusted certificates when prompted dur-
ing software updates (e.g., F5 Big-IP Edge). To demonstrate
RCE vulnerabilities, we wrote some simple programs as the
attack payload, and fit them in the different package formats
expected by the apps. Our payload writes files to certain di-
rectories so that we can determine if it gets executed with
root (macOS) or administrator (Windows) privilege. We also
purchased an individual code signing certificate from a com-
mercial CA (Sectigo), in case the payloads need to be signed.
We now discuss the findings of the RCE test.

For AhnLab, Huawei Seco, and V5 on Windows, after deter-
mining update is available, the apps fetch from their back-end
a collection of files through TLS sessions that can be inter-
cepted silently. As such, the MITM can easily replace the
installer files with any preferred attack payloads. The payload
does not need to be signed, and will be automatically run with
administrator privilege without the Windows UAC prompt.
The EnAgent app on Windows has a similar vulnerability, but
it always shows the UAC prompt before running the fetched
installer (even for genuine updates). Similar vulnerabilities
exist in the Ruijie and MotionPro apps on Windows, albeit
the attack payload is automatically executed without admin-
istrator privilege. For Qianxin on Windows, the app directly
fetches app files (libraries and executables) and replace the
ones currently installed on the system. It then prompts the
user to restart the app. The MITM can intercept and replace
those files, but since the app technically did not execute the
code automatically, we consider it a case of drive-by install.

For WeGuardia on Windows, we found that it is possible
for an MITM to intercept and replace its update installer.
Based on our testing, however, the payload needs to be signed.
Using our code signing certificate, we signed our payload
program and then it ran successfully with administrator priv-
ilege. This suggests that despite checking the signature of
the update installer, the WeGuardia implementation uses an
unnecessarily wide trust anchor and does not check that the
code signer indeed has the correct identity. This is particularly
interesting as the VPN log-in part of WeGuardia is not found
to be susceptible to credential theft in our previous test. For
DPTech on Windows, although the MITM can replace the
update installer with a malicious payload, the payload fails
to run as the app complains about signature being illegal. We
tried signing the payload with our code signing certificate and
using the Wireshark installer (which comes signed) as the
attack payload, but all failed to run. We suspect that the app
might have key pinning in checking the installer signature,
and thus do not consider it vulnerable in this case.

The Huawei Seco app on macOS fetches a tar ball contain-
ing a .pkg file during update, which the MITM can intercept
and replace. The attack .pkg does not need to be signed,
and its preinstall script will be run automatically with
root privilege. For V5 on macOS, when updates happen, the
app downloads a .dmg file and automatically mounts it. The
MITM can replace this file, but since the system only mounts

Table 3: RCE and drive-by attack via in-app updates

App Platform Vuln? Root? App Platform Vuln? Root?
EnAgent Windows RCE No Qianxin Windows DI —

Mac No — iOS No —
DPTech Windows No — Android No —

Mac No — AhnLab Windows RCE Yes
Android DI — Huawei Seco Windows RCE Yes
iOS DI — Mac RCE Yes

V5 Windows RCE Yes MotionPro Windows RCE No
Mac DD — Mac No —

F5 Big-IP
Edge

Windows No — Sangfor Windows No —
Mac No — Mac No —

Ruijie Windows RCE No WeGuardia Windows RCE Yes
UniVPN Windows RCE Yes UniVPN Mac RCE Yes

Table 4: VPN front-ends vulnerable due to name checking

app(mode) OS Out.

Huawei Seco W10 P

app(mode) OS Out.

OpenVPN
(Bootstrapping)

W10 R
Mac R

it without automatically installing or executing code, we con-
sider it a case of drive-by download, though we suspect the
user could be tricked into installing from the malicious .dmg
file. Finally, for DPTech on Android and iOS, the attacker can
intercept and replace the app package files (.apk for Android,
.ipa for iOS) downloaded during update, which will then be
installed on the victim device. For iOS, the .ipa file needs
to be signed by a valid code signing certificate. For Android,
the DPTech VPN app needs to be allowed as a source for
installing unknown apps (also needed for genuine updates).
Since the malicious apps are not executed automatically after-
wards, we consider them cases of drive-by install.
(ii) trusted certificate with incorrect name For this test, we
use a server certificate that we purchased from a commercial
CA (Sectigo), for a toy domain that we control. We included
this test case because previous works showed that some soft-
ware systems, despite checking the validity of the server cer-
tificate chain, neglect to verify that the names on the certificate
indeed match the expected identity of the server [27, 29, 33].
We performed this test on apps that are not reported as vulner-
able in Table 1. To our surprise, we found three apps, shown in
Table 4, to exhibit additional vulnerabilities to MITM under
this test case. In the previous test, the Huawei Seco app on
Windows, as well as the OpenVPN Connect apps on macOS
and Windows all had a behavior of prompting the user to
decide whether to accept the untrusted certificate. Interest-
ingly, under this test case, those three apps no longer display
any prompts and directly continue with the intercepted TLS,
which suggests they have the aforementioned classic flaw of
neglecting hostname verification. A MITM can thus easily
mount an attack with certificates purchased from a commonly
trusted CA to stealthily steal user passwords. For Huawei
Seco, the password is sent directly inside the TLS (Out = P),
and for OpenVPN Connect, the username and password are
base64 encoded (Out = R) and sent as part of the HTTP header

5744 32nd USENIX Security Symposium USENIX Association

(following the basic HTTP authentication scheme [51]).

4.2 Setup guides prescribed to users 〈P2〉

IPSec-PKI on Android. We first revisit the 4 PKI-based
IPSec setup guides from Section 3.2, and found that all of
them instruct users to leave the server certificate unverified,
leaving them vulnerable to credential theft.

TLS-based VPNs. We then evaluate the setup guides of TLS-
based VPNs. In particular, we wanted to better understand
(i) the spread of vulnerable front-end apps (those in Table 1
or susceptible to RCE in Table 3), and (ii) whether users are
taught to enforce certificate validation on apps that rely on
human decisions (apps in Table 2). We also collect VPN
gateway addresses for measurement in Section 4.3.

(i) Spread. Based on the setup guides we found, 306 aca-
demic units use Sangfor EasyConnect, and 99.7% of them
are in China. For the other vulnerable VPN front-ends, their
adoption in our data set ranges from single digit to tens of aca-
demic units. For instance, 17 schools in Korea use WeGuardia.
Additionally, we found evidence that some vulnerable VPNs
are also used by non-academic organizations. For example,
Qianxin is also used by the Bank of Communications and
SINOPEC in China, and Array MotionPro is recommended
by IBM Cloud service [11]. These suggest the vulnerabilities
can indeed be very lucrative to IABs.

(ii) Problematic setup guides. Based on the default set-
tings and behaviors we determined in Table 2, we clas-
sify each setup guide into one of four possible outcomes:
Unknown, Insecure, User Insecure, Secure. Insecure
outcome could be due to not enabling certificate validation
or instructing users to accept any certificates when prompted.
User Insecure is a notion used in previous work [14], which
we adopted to mean a setup guide does not explicitly instruct
the user on how to handle the prompts of untrusted certificate,
and users might perceivably accept without understanding the
implications. Unknown refers to the case where an instruc-
tion for the app on a particular OS concerned is not found.
Lastly, a setup guide is considered Secure if it leads to either
programmatic or manual rejection of untrusted certificates.

In the end, we generated 6210 entries for all the aca-
demic units, OSes, and apps considered. Excluding Unknown
(53.8%), User Insecure (24.4%) is the most common out-
come observed. This suggests that IT admins often only focus
on the benign case and neglect to educate users on proper
exception handling. The good news is that Insecure occu-
pies the lowest percentage (2.7%) among all the outcomes,
though it is somewhat skewed by the Cisco apps, which we
partly attribute to its robust default settings and behavior. A
breakdown of outcomes by apps can be found in Table 5.
Though not a lot of schools prescribe insecure setup guides,
our findings suggest that credential theft attacks can still be
profitable when attackers target specific schools.

Table 5: Security outcome of VPN setup guides (by apps)

VPN apps Total (Perc.) Security Grading Count Percentage
ZyXEL 2 (0.0323%) Insecure 2 100%

WatchGuard 6 (0.0969%) User Insecure 4 66.7%

SoftEther (RADIUS) 7 (0.113%)
User Insecure 1 14.3%

Insecure 5 71.4%

SonicWall NetExt 24 (0.388%)
Insecure 1 4.17%

User Insecure 12 50.0%
Aruba (fetch profile) 24 (0.388%) User Insecure 13 54.2%

Check Point (Remote Access) 26 (0.42%)
Insecure 5 19.2%

User Insecure 13 50.0%

Check Point Capsule Connect 26 (0.42%)
Insecure 2 7.69%

User Insecure 4 15.4%
F5 32 (0.517%) User Insecure 4 12.5%

F5 (SSO) 32 (0.517%) User Insecure 8 25.0%
F5 BIG-IP Edge 32 (0.517%) User Insecure 18 56.2%

SonicWall MobConn 48 (0.775%) User Insecure 15 31.2%
SonicWall ConnTunn 48 (0.775%) User Insecure 1 2.08%

Array MotionPro 48 (0.775%)
Insecure 5 10.4%

User Insecure 25 52.1%
OpenVPN (fetch profile) 251 (4.05%) User Insecure 30 12.0%

Pulse 588 (9.5%)
Insecure 7 1.19%

User Insecure 358 60.9%

Forti new 634 (10.2%)
Insecure 38 5.99%

User Insecure 237 37.4%

Forti old 844 (13.6%)
Insecure 52 6.16%

User Insecure 62 7.35%

GlobalProtect (Bootstrapping) 1295 (20.9%)
Insecure 25 1.93%

User Insecure 719 55.5%

Cisco 1964 (31.7%)
User Insecure 1 0.0509%

Insecure 25 1.27%
Secure 1185 60.3%

4.3 Configuration issues on back-ends 〈P3〉

Given the VPN gateways collected in Section 4.2, we can
look for potential issues in server-side configurations. For this
we use TLS-Scanner [3] and other open-source tools.

TLS-Scanner. We noticed that TLS-Scanner can initiate
hundreds of connections to the server during each scan. To
avoid inducing a significant load on each gateway, we con-
figured TLS-Scanner to only use one connection at any
time. We also note that there are possible compatibility is-
sues between TLS-Scanner and some intolerant servers. For
example, to determine whether a server supports a certain
TLS version, TLS-Scanner might send a Client Hello mes-
sage that the server is not willing to proceed, despite the
latter actually supports the TLS version of concern. Upon
closer inspection, we suspect this might be due to the initial
Client Hello message having a long ciphersuites list con-
taining 327 ciphersuites, which some gateways, especially
the ones by GlobalProtect, refuse to handle. Because of this,
TLS-Scanner could occasionally run into false negatives, in-
correctly claiming a server does not support certain versions
of TLS, and fails to collect the server certificate. Nevertheless,
1727 TLS-Scanner scans were at least partially successful,
covering 1545 unique domains. If one hostname resolves to
multiple IP addresses, we scan all of them. in this exercise.

The first interesting observation is that the scores reported
by TLS-Scanner, which quantify and approximate the TLS

USENIX Association 32nd USENIX Security Symposium 5745

security level of the server (the higher the better), tend to be
relatively low. Across all the successful scans, the mean score
is 71 (σ = 873,min = −5250,max = 3000,median = 150).
While the exact score scheme can be found on [4], here we
highlight some of the recurring scoring criteria. For example,
if a server supports TLS 1.3, the score will increase by 500,
otherwise 50 points will be deducted. If a server supports
TLS 1.0, 100 points will be deducted, otherwise 50 points
will be added. We found that a large portion of servers lost
points because of criteria (which is consistent with our later
experiments presented in Table 7). Additionally, susceptibility
to certain vulnerability could lead to TLS-Scanner imposing
a score cap, further limiting the scores. For example, if a server
is vulnerable to the Bleichenbacher’s attack, in addition to
deducting 800 points, a score cap of 500 is also imposed (the
final score can at most be 500). This score cap affects more
than half of the servers we scanned. Although one can argue
that the scoring metric might be subjective, nevertheless the
relatively low average suggest that many VPN gateways are
not exhibiting good hygiene.
TLS-Scanner probes for a number of vulnerabilities re-

lated to TLS on the server side, such as various padding and
compression oracles. Table 6 summarizes the vulnerabilities
found by TLS-Scanner. Due to space constraints, only the 4
vendors contributing the most data points are shown. We note
that the impact of a vulnerability might be limited by how the
TLS is used. For example, if a vulnerability is only able to
decrypt some TLS packets after a large amount of TLS traffic,
then it might not apply to short-lived TLS sessions (e.g., the
ones used for bootstrapping). We also note that while some
vulnerabilities might appear prominent, whether they are di-
rectly exploitable depends on other deployment practices and
the actual TLS parameters proposed or chosen by the (ven-
dor) specific front-ends. For example, CBC padding oracles
present a threat if the client and server agree to use a cipher-
suite with a block cipher in CBC mode. Even though the
server might support such ciphersuites, however, if the client
front-end never proposes such ciphers in the handshake, the
padding oracle might not be exploitable. To better gauge the
exploitability, we also collect the actual session parameters
agreed by front-ends and gateways, and then cross-reference
with the TLS-Scanner findings.

TLS Session Parameters. Since UI automation on different
OSes can be tricky, and manually driving each app to probe
the gateways is time-consuming, we instead emulate this by
first collecting the Client Hello message in the TLS hand-
shake sent by each front-end app, and then replay it to the gate-
ways to obtain the Server Hello message, which allows us
to better understand the session parameters actually used, and
to correlate with the vulnerabilities found by TLS-Scanner.
We first use tshark to collect the traffic from the TLS VPN
front-ends on all 4 OSes. Then we extract the Client Hello
message from the traffic. To replay the extracted message
we use the packet manipulation tool scapy [2]. It is also

Table 6: Number of gateways that have a certain vulnerability
as reported by TLS-Scanner and the correlated number after
cross-referencing the Server Hello responses

Vendor Platform† ALPACA Bleich. Padding Raccoon Direct SSL TLS
Attack Oracle Raccoon Poodle Poodle

Cisco Scanner 485 421 74 0 3 5 17
Windows / 46 9 0 1 0 6

Mac / 46 9 0 1 0 6
Android / 46 9 0 1 0 6

iOS / 45 9 0 1 0 6
Pulse Scanner 134 112 3 0 0 10 3

Windows / 102 3 0 0 0 3
Mac / 100 3 0 0 0 3

Android / 102 3 0 0 0 3
iOS / 102 3 0 0 0 3

Forti
(new)

Scanner 192 188 2 0 0 4 1
Windows / 0 2 0 0 0 2

Mac / 0 2 0 0 0 2
Android / 0 2 0 0 0 2

iOS / 0 2 0 0 0 2
Sangfor Scanner 281 273 0 0 0 7 0

Windows / 0 0 0 0 0 0
Mac / 3 0 0 0 0 0

Android / 3 0 0 0 0 0
iOS / 0 0 0 0 0 0

†: Scanner shows the number of gateways that have the vulnerability detected by
TLS-Scanner, while the rest show the number of gateway-app pairs that choose TLS

parameters which make the TLS-Scanner reported vulnerability applicable.

necessary to modify and correct the Server Name Indication
extension of the Client Hello before sending it to different
gateways and collecting the Server Hello . Overall we col-
lected 7991 Server Hello messages from 1581 gateways
for all the front-end apps and OSes considered.

Ciphersuites. Out of the 7991 Server Hello messages,
23.1% chose RSA for key exchange, and 11.5% use CBC
mode of encryption, both are not recommended due to various
padding oracle attacks [52, 54]. Additionally, 38 handshakes
chose the ciphersuite TLS_RSA_WITH_3DES_EDE_CBC_SHA
and 29 handshakes chose TLS_RSA_WITH_RC4_128_SHA or
TLS_RSA_WITH_RC4_128_MD5 ciphersuites. The first is weak
against the SWEET32 attack [15] in part due to the small
block size of 3DES, and the latter two are insecure due to var-
ious weaknesses of RC4 and are prohibited by standard [47].

TLS Version. In addition to the actual version being ne-
gotiated by the VPN client and the gateway, we also collect
all the TLS versions supported by gateways via enumerating
version-specific Client Hello messages. The result is sum-
marized in Table 7. While most gateways support and choose
TLS 1.2 or TLS 1.3, some gateways still support SSLv2 and
SSLv3, and SSLv3 is still chosen in certain cases. While the
shift to newer versions of TLS is very promising, continued
support of old versions, as well as the unpatched vulnerabili-
ties found by TLS-Scanner suggest that some gateways are
lacking behind in terms of software updates and maintenance.
TLS Vulnerabilities. Here we discuss the TLS vulnerabilities
based on the combined view of the two measurement attempts.
Due to space constraints, the less frequently occurring vulner-
abilities are discussed in Appendix C.

5746 32nd USENIX Security Symposium USENIX Association

Table 7: TLS versions chosen and supported

SSLv2 SSLv3 TLSv1 TLSv1.1 TLSv1.2 TLSv1.3
Default‡ Count 0 4 245 0 6513 1229

Total = 7991 Percentage 0% 0.1% 3.1% 0% 81.5% 15.4%
Supported‡ Count 3 94 851 1050 1515 246
Total = 1581 Percentage 0.2% 5.9% 53.8% 66.4% 95.8% 15.6%

‡: Default shows the negotiated version by the Client Hello replay measurement;
Supported indicates the versions that the 1581 servers support

Bleichenbacher’s Attack. TLS-Scanner checks if the
server supports TLS_RSA ciphersuites and test if there exists a
PKCS#1 v1.5 padding oracle. We then checked if the negoti-
ated ciphersuite after replaying the Client Hello is indeed
using RSA key exchange. If so, we consider the particular
gateway-app pair to be vulnerable to a direct Bleichenbacher’s
attack. While TLS-Scanner reported a large number of Ble-
ichenbacher’s attack for Cisco gateways (see Table 6), after
correlating with the ciphersuite chosen, we found only 46 out
of the 421 reported to be a direct threat. Interestingly, things
are much worse for Pulse gateways. We found that most (113
out of 146) gateways would choose TLS_RSA ciphersuites
with Pulse client apps on the 4 OSes, and intersecting this
finding with the reports from TLS-Scanner, we can see that
more than a hundred gateway-app pairs could be susceptible
to Bleichenbacher’s attack. We note that the Bleichenbacher’s
attack could lead to a signing oracle [35], though due to the
number of queries needed, it remains to be seen if this leads to
a practical attack to break server authentication in TLS VPNs.

Padding Oracle. This describes the general CBC-mode
padding oracle vulnerabilities, which allow the attacker to
decrypt TLS traffic. In this case we check to see if the gate-
ways reported vulnerable by TLS-Scanner indeed negotiates
CBC-mode ciphersuites with the client. Table 6 shows that
very few gateway-app pairs actually choose CBC ciphersuites,
so such attacks might only be useful in some targeted cases.

POODLE [42]. For TLS Poodle, CBC-mode ciphers are
required. SSL Poodle has the same requirement, and also
needs the negotiated TLS version to be SSLv3. Any of the
two Poodle variants could allow an attacker to decrypt TLS
traffic. For the most popular 4 vendors, we did not observe
any gateways that would agree on using SSLv3, thus SSL
Poodle is not applicable in this case. For TLS Poodle, some
gateway-app pairs do make use of CBC-mode ciphers and are
thus considered exploitable.

Server Certificates. Additionally, we also collected the cer-
tificates presented by VPN gateways in TLS handshake using
OpenSSL s_client. We then analyze their quality, since
weak certificate parameters may also compromise the security
of TLS connections. The results are shown in Table 8, where
we collected 1547 unique (1763 total) leaf certificates and 158
unique (2957 total) CA certificates. Although we see 2.4% of
leaf use short RSA modulus (1024 bits), 3.9% expired, and
3.2% use SHA1-RSA signature which may be susceptible
to collision attacks [38], comparing with previous work on

Table 8: Certificate Parameters

Leaf Cert. Stats CA Cert. Stats
Uniq. Certs = 1547 Uniq. Certs = 158
Total Certs = 1763 Total Certs = 2957

Parameter Count Percentage Count Percentage
RSA Public Key = 1024 bits 37 2.4% 7 4.4%
RSA Public Key > 1024 bits 1487 96.1% 143 90.5%

Elliptic-curve Public Key 23 1.5% 8 5.0%

SHA1-RSA Signature 50 3.2% 30 19.0%
SHA256-RSA Signature 1367 88.4% 104 65.8%
SHA384-RSA Signature 103 6.7% 18 11.4%
SHA512-RSA Signature 8 0.5% 1 0.6%

SHA256-ECDSA Signature 14 0.9% 0 0%
SHA384-ECDSA Signature 5 0.3% 5 3.2%

Expired Certificates 61 3.9% 9 5.7%

Version 3 Certificate 1532 99.0% 158 100%
Version 1 Certificate 15 1.0% 0 0%

Chain Verification Success 1113 71.9% N/A
Chain Verification Failure 434 28.1% N/A

enterprise Wi-Fi [33], the overall quality of certificates for
VPN gateways appears slightly better.

Chain Verification. We tried to verify the obtained X.509
certificate chain using OpenSSL and the default CA bundle
on Ubuntu as the trust anchor. We found that 28.1% of the
certificate chains failed to verify due to various reasons. Here
we reference the OpenSSL error code, and found that 41.9%
(182) of the failed chains are missing some issuer certificates
(code 20), 37.1% (161) only contain a single self-signed cer-
tificate (code 18), and 11.5% (50) has a self-signed root that
is not trusted (code 19). Correlating with the results of Sec-
tion 4.2, we found that 59.3% of the gateways of Insecure
setup guides have a certificate chain that failed to verify. Con-
versely, about 40% of the Insecure setup guides actually
have chains that can verify, and thus it is unnecessary and
inexcusable to instruct users to accept arbitrary certificates.
Here we also remark that 30% (130) of the certificate chains
that fail to verify can be attributed to Sangfor gateways, and
83.0% (108) of them use a self-signed certificate with the
same subject name (C=CN, ST=guangdong, L=shenzhen,
O=sangfor, CN=sslvpn) but different RSA moduli.

Lifespan. We also analyzed the lifespan of the certificates
collected. 88.0% of the leaf and 77.2% of the CA certificates
have typical lifespans (leaf certificates being at most 5 years
and CA for 5-20 years). However, we saw 4.7% of leaf having
a lifespan of more than 20 years, and one certificate (which is
self-signed) has a negative lifespan of -116 years.

Suspected Key Reuse. Finally, we also investigate the
key reuse problem. It is known that software vendors might
ship the same private key to different customers [23], and IT
admins sometimes keep and use those default keys [33]. After
filtering out cases of school alliances and legitimate wildcard
names on certificates, we found five cases that might be
reusing keys. In the first four cases, we found multiple schools
using the same generically named certificates: (i) (C=CN,
CN=SWServer), (ii) (C=CN, ST=zhejiang, L=hangzhou,

USENIX Association 32nd USENIX Security Symposium 5747

O=H3C Hangzhou, OU=ts-security, CN=H3C_local),
(iii) (C=CN, O=Venus, OU=Venus VSG, CN=GateWay),
(iv) (C=CN, ST=BJ, L=BJ, O=HW, OU=VPN, CN=svn).
Based on their subject names, these certificates appear very
likely to be originated from the gateway vendors. Finally,
there is an interesting case of school A using an expired
certificate of school B, and the current trusted certificate
school B, issued by a commercial CA (DigiCert), has the
exact same RSA modulus. In this case, school A and B can
impersonate the VPN gateways of each other. Additionally,
since the current trusted certificate school B has a wildcard
name for all its subdomains, school A can also impersonate
all other websites of school B with its private key.

Insecure SSO redirect. Finally, we also found that some
SSO setups incorrectly redirect users to a login page that
uses HTTP (without TLS). If users attempt to login, a passive
MITM could easily observe the HTTP messages, possibly in-
cluding user credentials. To investigate, we used the browser
automation tool selenium to follow all the redirects from
gateways that respond to HTTP requests. Redirects can hap-
pen by HTTP status code 3XX, by HTML <meta> tags, or
by JavaScript. In the end we found 16 gateways that redirect
users to an HTTP SSO login page. All 16 are from Chinese
schools that use Sangfor VPNs. We believe this represents
another back-end configuration issue. However, we are unable
to confirm whether this is due to default settings, and whether
the Central Authentication Service (CAS) that implements
the SSO login page is also from the same vendor.

5 Ethical Matters and Discussions

Research ethics. Here we address some ethical concerns
of our methodologies. We note that it is not unusual to pro-
grammatically query and collect results from search engines
(as done in Section 3.2). For instance, it was used by [33]
to locate Wi-Fi configuration guides. Additionally, it is also
commonly used to facilitate the discovery and analysis of ma-
licious websites and online scams [34, 48, 55]. Similar to pre-
vious work, we used Google as an oracle for discovering VPN
setup guides. We manually inspected the top results of each
query. We also performed manual searches on some school
websites to locate setup guides. However, many schools lack
a reliable search function on their homepage.

Production servers are often probed for discovering vul-
nerabilities (see for example [16, 32, 46]). In particular, TLS-
Scanner has been used to evaluate the security of medical
websites [53]. For probing live VPN gateways (Section 4.3),
we minimize the server workload due to TLS-Scanner by con-
figuring the tool to use only 1 connection at any given time.
VPN back-ends are typically capable of handling many con-
current users, and thus the workload induced by this should
be negligible. We also note that TLS-Scanner measures the
possibility of an attack (e.g., existence of timing differentials)

using its own TLS sessions, and doesn’t mount a full attack
on other TLS sessions. Thus our use of TLS-Scanner does
not compromise the security of other VPN users.

Responsible disclosure. Google confirmed our report of the
PPTP with MPPE issue on Android (CVE-2022-20145), and
gave us a bug bounty. Additionally, we disclosed the MITM
vulnerabilities (credential theft and RCE) to all the affected
equipment vendors. Table 9 shows the latest status at the time
of writing. While most have confirmed the vulnerabilities,
some are still investigating at the moment. For some that
did not respond to emails, we had to make IDD calls and
send letters by post. We also encountered unwillingness from
some vendors to provide technical support to non-customers,
and based on our interactions, some seem to care much more
about vulnerabilities affecting gateways than front-ends. For
a few vendors, we had to show them demo videos to con-
vince them. Aruba fixed the vulnerability in its Windows 10
app (CVE-2022-23678) in a recent release, though it is un-
clear to us if they have any plans for the hardcoded 3DES.
Leagsoft released a new version of UniVPN to address the
RCE vulnerability, which shows a prompt to user when an un-
trusted server certificate is encountered in the update channel,
effectively an upgrade from Insecure to User Insecure.
Whether this fix is adequate remains to be seen.

To our surprise, 2 vendors, Sangfor and Qianxin, confirmed
our report of missing certificate validation in their front-ends,
but said that they will not fix it. Sangfor in particular claimed
(translated from Chinese): “We don’t think this is a vulnerabil-
ity. MITM hijack and traffic manipulation is a generic attack
known to the community, and we will not fix this problem.”

We also sent 235 emails to academic institutions concern-
ing the issues in their VPN setup guides and gateway con-
figurations, but unfortunately the rate of positive response
(excluding replies that merely acknowledge receipt of email)
is low. Among the issues being reported, 87 emails were sent
to those who have PSK exposed, and we received 11 positive
responses. For insecure 〈SA2〉 VPN setup guides, we sent 108
emails but only received 2 positive responses.

Limitations, threats to validity, and reproducibility. We
believe the VPN protocols considered in this study to be com-
prehensive and representative, as we covered those natively
supported by major OSes and other popular ones used by real
schools. We note that our app discovery is limited to pub-
licly accessible setup guides, and there could be other VPN
front-ends (and protocols) used by some organizations but
evaded our analysis. For app selection, our order of preference
is official app store > vendor homepage > school homepage
> school gateway. The latter two might not always yield the
latest versions, but they at least represent what are being used
by some schools. For simplicity, we only consider one ver-
sion of each front-end, and some historical versions might
behave differently from what we observed. Moreover, we
only targeted a few gateways in testing the front-end behav-

5748 32nd USENIX Security Symposium USENIX Association

Table 9: Disclosure status of MITM vulnerabilities as of Oc-
tober 4, 2022.

Vendor ACK Investigating Confirmed Fixed

Aruba Y Y Y Fix released
Fortinet Y Y Y Fix planned

OpenVPN Y Y
Sangfor Y Y Y Won’t Fix

WeGuardia Y Y Y
Top Y (�)

Qianxin (log-in) Y Y Y Won’t Fix
Qianxin (RCE) Y Y Y

MotionPro Y Y Y
H3C Y Y Y
V5 Y Y

Ruijie Y Y Y Fix planned
Enlink Y Y Y Fix planned
Ahnlab Y Y Y Fix planned
Huawei Y EoS
Leagsoft Y Y Y Fix released
Hillstone Y Y Y Fix planned
DPTech Y Y

(�): vendor promised to follow-up through emails, but we have yet to hear from them
EoS: End of Support (for both AnyOffice and Seco)

iors, and in theory an app can change its behavior for specific
gateways. We also acknowledge that setup guides in natural
languages are subject to ambiguity. To improve interpretation
consistency, two of the authors were in charge of resolving
ambiguity encountered occasionally in the setup guides.

One might also question whether the use of second fac-
tor authentication (2FA) can thwart the attacks discussed in
the paper. In our experience, some 2FA deployments that
rely on passcodes, often piggyback the passcode with user
password and transmit both together via the original commu-
nication channel (e.g., IPSec and TLS), so that the 2FA can be
retrofitted into existing systems. In such cases, compromising
the secure channel would allow the attacker to also obtain the
passcode, rendering 2FA moot. Since not all schools adopt
2FA and their 2FA policies are not always clear to us, we did
not consider 2FA in our study.

Finally, we refrain from publicly releasing our artifacts,
which include the impersonation setups, an archive of VPN
front-end installers and setup guides, and a list of VPN gate-
ways probed, due to concerns of copyright and sensitivity (as
some schools have yet to fix their setups). However, we are
willing to share with fellow researchers upon request.

6 Related Work

Given the importance and prominence of VPNs, recent work
investigated different aspects of the security and privacy issues
of VPNs, with much focus being put on personal (commer-
cial) VPNs. Our effort can thus be seen as an orthogonal
attempt to shed light on the relatively less scrutinized aca-
demic and organizational VPNs, and some of our findings
echo with those reported in previous work. For example, many
Android personal VPN apps based on OpenVPN are found
to be vulnerable to MITM attacks due to issues in distribut-

ing configuration profiles and misconfiguration on the client
side [58]. Other commercial VPNs have also been analyzed
and found to suffer from similar issues of misconfiguration,
insecure default settings, and poor setup instructions [19]. Re-
searchers also empirically measured some commercial VPNs
and found a multitude of issues, such as traffic leakage and
reliance on vantage points in countries different from those
advertised [36]. Recently, some researchers developed a tool
to systematically test commercial desktop VPNs, and found
various privacy and security concerns (e.g., DNS leaks and
malfunctioning "kill switch") [50]. Further on the privacy of
VPN, it has been shown that fingerprinting OpenVPN-based
services is possible, which enables state-level VPN block-
ing [57]. On IPsec IKE, researchers found ways to exploit the
Bleichenbacher padding oracle, which is particularly damag-
ing when the same RSA key pair is reused across different
versions and modes of IKE [28].

On the other hand, implementing and deploying proper cer-
tificate validation is a classic problem in the security commu-
nity. Previous work found poor implementations of certificate
validation in various apps and TLS libraries [18,20,23,25,29].
In particular, many Android apps across categories were
found to perform only weak or even no certificate valida-
tion [21, 24, 27, 43, 49], making them vulnerable to MITM
attacks. Additionally, many client-side setups of enterprise Wi-
Fi are configured to skip crucial certificate checks [13,14,33],
opening doors to credential theft by the so-called evil twin
attack. Due to difficulties in automating the front-end UIs, we
refrain from using large scale testing to discover fine-grained
implementation issues in certificate validation, such as mis-
handling of fields and extensions [18, 20, 25], and focus on a
handful of high-level but critical test cases.

7 Conclusion

In this paper we present a comprehensive review of academic
VPNs. Our study shows that many classic implementation
and configuration issues can still be found in the academic
VPN ecosystem, and as such, it is not difficult to imagine why
credential theft and IABs proliferate. To improve the security
of their VPNs, organizations are strongly recommended to
make plans to retire their 〈SA0〉 and 〈SA1〉 setups, and move
to PKI-based solutions. For 〈SA2〉 VPNs, it is critical that the
front-ends enforce proper certificate validation for both VPN
connect and software updates, and users should be instructed
to make sure such enforcement will indeed happen. This re-
quires both vendors and IT admins to pay close attentions to
the implementation and deployment of the underlying proto-
cols. Finally, the VPN gateways should be updated frequently
to avoid known vulnerabilities, and certificates need to be
properly maintained to facilitate validation.

USENIX Association 32nd USENIX Security Symposium 5749

Acknowledgments

We thank the anonymous reviewers and shepherd for helping
us improve the overall quality of our paper. This work was
supported in part by a grant from the Research Grants Coun-
cil (RGC) of Hong Kong (Project No.: CUHK 24205021),
Project Impact Enhancement Fund 3133292C and Direct
Grant 4055125 from CUHK, as well as grants from the CUHK
IE department (project code: NEW/SYC, GRF/20/SYC, and
GRF/21/SYC).

References

[1] IKEv1 Aggressive Mode with PSK Authentica-
tion. https://docs.strongswan.org/docs/5.9/
howtos/securityRecommendations.html#_ikev1_
aggressive_mode_with_psk_authentication.

[2] Scapy. https://scapy.net/.

[3] Tls-scanner. https://github.com/tls-attacker/
TLS-Scanner.

[4] Tls-scanner scoring criteria. https://github.com/
tls-attacker/TLS-Scanner/blob/master/TLS-
Server-Scanner/src/main/resources/rating/
influencers.xml.

[5] GmSSL -支持国密SM2/SM3/SM4/SM9/SSL的密码
工具箱, 2017-2022. https://github.com/guanzhi/
GmSSL.

[6] RDP and VPN use skyrocketed since coronavirus
onset, 2020. https://www.zdnet.com/article/rdp-
and-vpn-use-skyrocketed-since-coronavirus-
onset/.

[7] All Access Pass: Five Trends with Initial Access Bro-
kers, 2021. https://ke-la.com/all-access-pass-
five-trends-with-initial-access-brokers/.

[8] Hackers Breached Colonial Pipeline Us-
ing Compromised Password, 2021. https:
//www.bloomberg.com/news/articles/2021-
06-04/hackers-breached-colonial-pipeline-
using-compromised-password.

[9] Initial Access Brokers Report, 2021. https:
//resources.digitalshadows.com/whitepapers-
and-reports/initial-access-brokers-report.

[10] Investigating the Emerging Access-as-a-Service Mar-
ket, 2021. https://www.trendmicro.com/vinfo/
de/security/news/cybercrime-and-digital-
threats/investigating-the-emerging-access-
as-a-service-market.

[11] Connecting to ssl vpn from motionpro clients
(windows, linux, and mac os x) | ibm cloud
docs, 2022. https://cloud.ibm.com/docs/iaas-
vpn?topic=iaas-vpn-standalone-vpn-clients.

[12] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
Breaking TLS with SSLv2. In USENIX Security, 2016.

[13] Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and
Fabiano Tarlao. (in) secure configuration practices of
wpa2 enterprise supplicants. In Proceedings of the 13th
International Conference on Availability, Reliability and
Security, pages 1–6, 2018.

[14] Alberto Bartoli, Eric Medvet, and Filippo Onesti. Evil
twins and wpa2 enterprise: A coming security disaster?
Computers & Security, 74:1–11, 2018.

[15] Karthikeyan Bhargavan and Gaëtan Leurent. On the
practical (in-)security of 64-bit block ciphers: Collision
attacks on HTTP over TLS and OpenVPN. In ACM
CCS, 2016.

[16] Hanno Böck, Juraj Somorovsky, and Craig Young. Re-
turn Of Bleichenbacher’s Oracle Threat (ROBOT). In
USENIX Security, 2018.

[17] Marcus Brinkmann, Christian Dresen, Robert Merget,
Damian Poddebniak, Jens Müller, Juraj Somorovsky,
Jörg Schwenk, and Sebastian Schinzel. ALPACA: Ap-
plication layer protocol confusion - analyzing and miti-
gating cracks in TLS authentication. In USENIX Secu-
rity, 2021.

[18] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid, and Vitaly Shmatikov. Using frankencerts for
automated adversarial testing of certificate validation in
ssl/tls implementations. In IEEE S&P, 2014.

[19] Thanh Bui, Siddharth Rao, Markku Antikainen, and Tuo-
mas Aura. Client-side vulnerabilities in commercial
vpns. In Nordic Conference on Secure IT Systems, pages
103–119. Springer, 2019.

[20] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque,
Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and
Ninghui Li. Symcerts: Practical symbolic execution
for exposing noncompliance in X.509 certificate valida-
tion implementations. In IEEE S&P, 2017.

[21] Sze Yiu Chau, Bincheng Wang, Jianxiong Wang, Omar
Chowdhury, Aniket Kate, and Ninghui Li. Why Johnny
Can’t Make Money With His Contents: Pitfalls of De-
signing and Implementing Content Delivery Apps. In
ACSAC, 2018.

5750 32nd USENIX Security Symposium USENIX Association

https://docs.strongswan.org/docs/5.9/howtos/securityRecommendations.html#_ikev1_aggressive_mode_with_psk_authentication
https://docs.strongswan.org/docs/5.9/howtos/securityRecommendations.html#_ikev1_aggressive_mode_with_psk_authentication
https://docs.strongswan.org/docs/5.9/howtos/securityRecommendations.html#_ikev1_aggressive_mode_with_psk_authentication
https://scapy.net/
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Scanner/blob/master/TLS-Server-Scanner/src/main/resources/rating/influencers.xml
https://github.com/tls-attacker/TLS-Scanner/blob/master/TLS-Server-Scanner/src/main/resources/rating/influencers.xml
https://github.com/tls-attacker/TLS-Scanner/blob/master/TLS-Server-Scanner/src/main/resources/rating/influencers.xml
https://github.com/tls-attacker/TLS-Scanner/blob/master/TLS-Server-Scanner/src/main/resources/rating/influencers.xml
https://github.com/guanzhi/GmSSL
https://github.com/guanzhi/GmSSL
https://www.zdnet.com/article/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/
https://www.zdnet.com/article/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/
https://www.zdnet.com/article/rdp-and-vpn-use-skyrocketed-since-coronavirus-onset/
https://ke-la.com/all-access-pass-five-trends-with-initial-access-brokers/
https://ke-la.com/all-access-pass-five-trends-with-initial-access-brokers/
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://resources.digitalshadows.com/whitepapers-and-reports/initial-access-brokers-report
https://resources.digitalshadows.com/whitepapers-and-reports/initial-access-brokers-report
https://resources.digitalshadows.com/whitepapers-and-reports/initial-access-brokers-report
https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-threats/investigating-the-emerging-access-as-a-service-market
https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-threats/investigating-the-emerging-access-as-a-service-market
https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-threats/investigating-the-emerging-access-as-a-service-market
https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-threats/investigating-the-emerging-access-as-a-service-market
https://cloud.ibm.com/docs/iaas-vpn?topic=iaas-vpn-standalone-vpn-clients
https://cloud.ibm.com/docs/iaas-vpn?topic=iaas-vpn-standalone-vpn-clients

[22] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer,
and contributors. mitmproxy: A free and open source
interactive HTTPS proxy, 2010–.

[23] X de Carné de Carnavalet and Mohammad Mannan.
Killed by proxy: Analyzing client-end tls interception
software. In NDSS, 2016.

[24] Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury.
When TLS meets proxy on mobile. In International
Conference on Applied Cryptography and Network Se-
curity, 2020.

[25] Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury.
On Re-engineering the X.509 PKI with Executable Spec-
ification for Better Implementation Guarantees. In ACM
CCS, 2021.

[26] P. Eronen (Ed.) and H. Tschofenig (Ed.). Pre-Shared
Key Ciphersuites for Transport Layer Security (TLS).
RFC 4279 (Proposed Standard), December 2005.

[27] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgärtner, Bernd Freisleben, and Matthew Smith.
Why Eve and Mallory love Android: An analysis of
Android SSL (in) security. In ACM CCS, 2012.

[28] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam
Czubak, and Marcin Szymanek. The Dangers of Key
Reuse: Practical Attacks on IPsec IKE. In USENIX
Security, 2018.

[29] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The most
dangerous code in the world: validating ssl certificates
in non-browser software. In ACM CCS, 2012.

[30] Yoel Gluck, Neal Harris, and Angelo Prado. SSL, gone
in 30 seconds - a BREACH beyond CRIME. In Black
Hat USA, 2013.

[31] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little,
and G. Zorn. Point-to-Point Tunneling Protocol (PPTP).
RFC 2637 (Informational), July 1999.

[32] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J Alex Halderman. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In USENIX
Security, 2012.

[33] Man Hong Hue, Joyanta Debnath, Kin Man Leung, Li Li,
Mohsen Minaei, M Hammad Mazhar, Kailiang Xian,
Endadul Hoque, Omar Chowdhury, and Sze Yiu Chau.
All your Credentials are Belong to Us: On Insecure
WPA2-Enterprise Configurations. In ACM CCS, 2021.

[34] Luca Invernizzi, Paolo Milani Comparetti, Stefano Ben-
venuti, Christopher Kruegel, Marco Cova, and Giovanni

Vigna. Evilseed: A guided approach to finding malicious
web pages. In IEEE S&P, 2012.

[35] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On
the security of tls 1.3 and quic against weaknesses in
pkcs# 1 v1. 5 encryption. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1185–1196, 2015.

[36] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M
Voelker, Alex C Snoeren, Chris Kanich, and Narseo
Vallina-Rodriguez. An empirical analysis of the com-
mercial vpn ecosystem. In ACM IMC, 2018.

[37] Masashi Kikuchi. Ccs injection vulnerability, 2014.
http://ccsinjection.lepidum.co.jp/.

[38] Gaëtan Leurent and Thomas Peyrin. From collisions
to chosen-prefix collisions application to full sha-1. In
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 527–
555. Springer, 2019.

[39] Moxie Marlinspike. Divide and Conquer: Crack-
ing MS-CHAPv2 with a 100% success rate, 2012.
https://web.archive.org/web/20160316174007/
https://www.cloudcracker.com/blog/2012/07/
29/cracking-ms-chap-v2/.

[40] D. McDonald. A Convention for Human-Readable 128-
bit Keys. RFC 1751 (Informational), December 1994.

[41] Robert Merget, Marcus Brinkmann, Nimrod Avi-
ram, Juraj Somorovsky, Johannes Mittmann, and Jörg
Schwenk. Raccoon attack: Finding and exploiting Most-
Significant-Bit-Oracles in TLS-DH(E). In USENIX Se-
curity, 2021.

[42] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This poodle bites: exploiting the ssl 3.0 fallback. Secu-
rity Advisory, 21:34–58, 2014.

[43] Marten Oltrogge, Nicolas Huaman, Sabrina Amft,
Yasemin Acar, Michael Backes, and Sascha Fahl. Why
Eve and Mallory Still Love Android: Revisiting TLS
(In)Security in Android Applications. In USENIX Secu-
rity, 2021.

[44] G. Pall and G. Zorn. Microsoft Point-To-Point En-
cryption (MPPE) Protocol. RFC 3078 (Informational),
March 2001.

[45] B. Patel, B. Aboba, W. Dixon, G. Zorn, and S. Booth.
Securing L2TP using IPsec. RFC 3193 (Proposed Stan-
dard), November 2001.

[46] Damian Poddebniak, Fabian Ising, Hanno Böck, and
Sebastian Schinzel. Why TLS is better without START-
TLS: A security analysis of STARTTLS in the email
context. In USENIX Security, 2021.

USENIX Association 32nd USENIX Security Symposium 5751

http://ccsinjection.lepidum.co.jp/
https://web.archive.org/web/20160316174007/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://web.archive.org/web/20160316174007/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://web.archive.org/web/20160316174007/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/

[47] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465
(Proposed Standard), February 2015.

[48] M Zubair Rafique, Tom Van Goethem, Wouter Joosen,
Christophe Huygens, and Nick Nikiforakis. It’s free for
a reason: Exploring the ecosystem of free live streaming
services. In NDSS, 2016.

[49] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad
Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and
Danfeng Yao. Cryptoguard: High precision detection
of cryptographic vulnerabilities in massive-sized java
projects. In ACM CCS, 2019.

[50] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and
Roya Ensafi. VPNalyzer: Systematic Investigation of
the VPN Ecosystem. In NDSS, 2022.

[51] J. Reschke. The ’Basic’ HTTP Authentication Scheme.
RFC 7617 (Proposed Standard), September 2015.

[52] E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446 (Proposed Standard), August
2018.

[53] R Röhrig et al. The security state of the german health
web: An exploratory study. In Proceedings of the Joint
Conference of the 66th Annual Meeting of the German
Association of Medical Informatics, Biometry, and Epi-
demiology EV (gmds) and the 13th Annual Meeting of
the TMF-Technology, Methods, and Infrastructure for
Networked Medical, volume 283, page 180. IOS Press,
2021.

[54] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing
Known Attacks on Transport Layer Security (TLS) and
Datagram TLS (DTLS). RFC 7457 (Informational),
February 2015.

[55] Bharat Srinivasan, Athanasios Kountouras, Najmeh Mi-
ramirkhani, Monjur Alam, Nick Nikiforakis, Manos An-
tonakakis, and Mustaque Ahamad. Exposing search and
advertisement abuse tactics and infrastructure of tech-
nical support scammers. In Proceedings of the 2018
World Wide Web Conference, pages 319–328, 2018.

[56] Soner Tari. SSLproxy - transparent SSL/TLS proxy
for decrypting and diverting network traffic to other
programs for deep SSL inspection, 2017-2022. https:
//github.com/sonertari/SSLproxy.

[57] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis
Kallitsis, J. Alex Halderman, Jedidiah R. Crandall, and
Roya Ensafi. OpenVPN is Open to VPN Fingerprinting.
In USENIX Security, 2022.

[58] Qi Zhang, Juanru Li, Yuanyuan Zhang, Hui Wang,
and Dawu Gu. Oh-pwn-vpn! security analysis of

openvpn-based android apps. In International Confer-
ence on Cryptology and Network Security, pages 373–
389. Springer, 2017.

[59] G. Zorn. Deriving Keys for use with Microsoft Point-to-
Point Encryption (MPPE). RFC 3079 (Informational),
March 2001.

A Extra notes on testing TLS-based VPNs

Compatibility issues. Although mitmproxy suffices in most
cases, there were a few compatibility issues that we had to
work around during our testing. The most interesting case
concerns the Sangfor EasyConnect app on iOS, which experi-
ences an unexplained loss of connection when the TLS gets
intercepted by mitmproxy. Finally we modified SSLproxy to
implement the RSA exponent rewrite attack, and were able to
show that the app is similarly vulnerable as its counterparts
on other OSes.

Moreover, we also noticed that apps from some Chinese
vendors have an alternative mode of operation known as
GmSSL, which uses a modified TLS and ciphersuites from
certain Chinese national standards, instead of the conventional
ones defined for standard TLS. As such, existing setups in-
cluding the likes of mitmproxy simply do not understand and
fail to intercept the protocol. Instead, for testing the certificate
validation behavior under this mode, we used an open-source
implementation of GmSSL [5], which is a modified version of
OpenSSL. Specifically, instead of trying to intercept the TLS,
we modified the GmSSL version of the s_server program,
run it as an impersonating VPN back-end, and redirect the
VPN traffic to it. This setup allowed us to demonstrate the
lack of certificate validation as well as possible credential
theft of a few apps under the GmSSL mode, but for the rest
we ran into cryptic low-level handshake errors. This experi-
ence suggests that implementations of the GmSSL mode is
not very stable at the current stage.

Other interesting findings. We have noticed some special
designs in some of the apps tested. For Check Point apps, to
show the fingerprint of a certificate to the user, they present a
series of 12 English words instead of the regular hash digest.
Upon investigation we found that the app first computes the
SHA1 hash of the certificate, takes the leading 128 bits of the
160-bit digest, and encodes it using the method described in
RFC1751, which includes an algorithm to represent 128-bit
keys as 12 English words [40]. Since only 128 bits are used
and presented to the user, we speculate it might make some
forms of hash collision slightly easier, but leave the cryptanal-
ysis for future work. Another interesting finding concerns the
mobile versions of the Check Point apps, where we found that
the username and passwords are XOR-ed with a static key.
We reverse engineered this via simple differential analysis
after observing several pairs of plaintexts and ciphertexts.

5752 32nd USENIX Security Symposium USENIX Association

https://github.com/sonertari/SSLproxy
https://github.com/sonertari/SSLproxy

Finally, we note that for the open-source Softether, the 2
modes of operation would lead to different attack outcome.
Under the RADIUS mode, which is common for implement-
ing SSO, the username and password will be sent directly
to the server. Under its default mode, however, we noticed
that the password cannot be found directly. After reading and
testing its source code, we found that the client computes and
sends the SHA0(SHA0(username || password) || conn.random)
to the server, where conn.random is a nonce chosen by the
server and sent earlier in TLS. As such, a successful MITM
can observe both the SHA0 hash and server-chosen nonce,
and attempt an offline dictionary attack to recover the user
password (Out = D). Additionally, since the client contributes
no randomness into the computation of the SHA0 hash, it is
also possible for an active MITM to attempt real-time login
as the user (Out = M). The MITM could obtain a conn.random
from the target server first, then when the victim connects, use
the exact same conn.random with the victim. Upon receiving
the SHA0 hash from the victim, the MITM can then forward
it to the server and login successfully as the victim.

B More on FortiClient under SSO mode

For FortiClient, when the user tries to authenticate using SSO,
a built-in browser will be invoked to fetch policy files from
<gateway>/remote/info as mentioned in Section 4.1.2. For
Windows and Mac, the application uses one of the policy at-
tributes remoteauthtimeout to set a timer for the SSO login,
and the browser will be closed after the timeout. We found
that the timeout is actually an IEEE 754 floating point type,
so after we feed an extremely large number (like 1e10000),
the internal browser tries to decrement the counter, which
will turn the timeout to infinity, and timeout will never
occur. Figure B1 shows the screenshot of FortiClient in
SSO mode, with infinite timeout and redirected to other web-
pages by active man-in-the-middle on Mac. It also demon-
strates the phishing attack described in Section 4.1.2, with
http://www.attacker.com/login instantiated with http:
//www.github.com/login, and https://attacker.com/
login instantiated with https://github.com/login. Fig-
ure B2 shows the CA certificate injection possibility discussed
in Section 4.1.2.

Additionally, during our testing, we found that some gate-
ways explicitly specify a port for SSO, e.g., sso_port=8020,
in the response of <gateway>/remote/info. And if this
specification is present, on Android and iOS, the subse-
quent request for <gateway>/remote/saml/start as well
as the actual SSO login page will then happen with an
external browser (e.g., Chrome on Android and Safari on
iOS) instead of the aforementioned built-in one. The exter-
nal browser shows the address bar and performs proper cer-
tificate validation, which renders the above attacks ineffec-
tive. However, since the TLS for requesting and receiving
<gateway>/remote/info can also be intercepted silently as

Table A1: VPN front-ends that reject untrusted certificates

app (mode) OS CertChkOpt Prompt Block
Cisco (SAML) Mac T# T# T

W10 (UWP) NA
W10 T# T# T
And T# T# T
iOS T# T# T

Citrix SSO Mac F F T
iOS F F T

Citrix Workspace Mac F F T
W10 F F T

GlobalProtect
(after bootstrapping)

Mac F F T
W10 F F T
And F F T
iOS F F T

F5 Mac F F T
W10 F F T
iOS F F T

F5 (SSO) Mac F F T
iOS F F T

Forti new Mac Tφ Tφ Tφ

Forti Fabric Mac Tφ Tφ Tφ

Clavister OneConn Mac F F T
iOS F F T
W10 F F T

Clavister OneConn
Classic

Mac F F T

Forcepoint W10 F F T
Mac F F T
And F F T

W10 SSTP W10 F F T

OpenVPN
(bootstrapping)

W10 (GUI) F F T

WeGuardia W10 F F T
OpenVPN

(after bootstraping)
Mac F F T

W10 (Connect) F F T
W10 (GUI) F F T

And F F T
iOS F F T

CertChkOpt = certificate validation is a configurable option (can be enabled/disabled)

has no effect for SSO as the invoked browser enforces its own cert validation
φ cert validation enforced by trustd on macOS regardless of settings and prompts

discussed before, the MITM can simply remove the port spec-
ification in <gateway>/remote/info to make the Android
and iOS apps consistently using their built-in browsers instead
of the external ones.

C Other TLS vulnerabilities

Here we briefly discuss the other TLS vulnerabilities not
covered in Section 4.3:

Raccoon [41]. Raccoon is an attack that allows the attacker
to obtain the premaster secret of a TLS session that uses
(Ephemeral) Diffie-Hellman key exchange, assuming that
the server reuses the private key for a certain period of time.

USENIX Association 32nd USENIX Security Symposium 5753

http://www.attacker.com/login
http://www.github.com/login
http://www.github.com/login
https://attacker.com/login
https://attacker.com/login
https://github.com/login

Figure B1: A screenshot of FortiClient in SSO mode with
infinite timeout and redirected to other webpages on Mac

Thus we check if the gateway negotiates TLS_DHE or TLS_DH
ciphersuites with the client. In this case, very few gateways
choose DH(E) ciphersuites, which suggests that the Raccoon
attack might not be very profitable against VPN setups. To
exploit Raccoon, a passive MITM will sniff a TLS session,
then interacts with the server to recover the premaster secret of
the sniffed session, and finally decrypt traffic of that session.

ALPACA [17]. This requires that the existence of other
services (on the same domain) with a certificate subject name
that can match the VPN gateway. Since we only considered
and measured VPN services, we cannot confirm if the AL-
PACA attack conditions can be satisfied. This attack requires
an active MITM. Even if ALPACA is possible, the precise
impact on TLS VPNs depends on the other services that the
exploit interacts with.

EarlyCcs [37]. This requires the underlying TLS imple-
mentation of the client and the server to be using some old
versions of OpenSSL. While it might be possible to fingerprint
the client TLS implementation, we refrain from investigat-
ing further as the number of affected gateways is small. A
successful exploit may result in an undetectable active TLS
MITM interception.

CRIME [54]. We have observed 3 cases of CRIME over all
the VPN gateways. CRIME requires the client to offer TLS
compression, in addition to using CBC-mode ciphers. We
manually examined each case and confirmed that none of the
corresponding clients propose to use TLS compression. Even
when the server is vulnerable, the impact on VPNs depends
on how the TLS is being used. For some the impact could be
limited, but if HTTP cookies are used and can be stolen, this
might enable session hijack.

DROWN [12]. We only observed 1 gateway of Enlink VPN
that might be vulnerable to DROWN directly, as it supports

Figure B2: A screenshot of Windows FortiClient in SSO mode
prompting the user to import an invalid certificate into the
trusted CA store on Windows.

the use of SSLv2 and by default, the EnAgent client and server
agree on using TLS_RSA ciphersuites, which could allow the
TLS v1.0 traffic (default choice of the app) to be passively
collected and decrypted. However, we note that thousands
of handshakes need to be sniffed by the attacker in order to
decrypt one of the handshakes, and whether that is practical
remains to be seen.

BREACH [30]. This vulnerability requires HTTP compres-
sion to be negotiated for both the client and the server. We
observed that not all the VPN clients use HTTP inside TLS,
and we leave the investigation of clients proposing HTTP
compression as future work. Even when the server is vulner-
able, the impact on VPNs depends on how the TLS is being
used. For some the impact could be limited, but if HTTP cook-
ies are used and can be stolen, this vulnerability could enable
session hijack.

D Additional tables

We show the full list of TLS-based VPN apps tested in Sec-
tion 4.1.2, including their full product names, version num-
bers, and sources, on https://github.com/vpn-test-2022/VPN-
test-2022/blob/main/sslvpn-application-ref.pdf.

5754 32nd USENIX Security Symposium USENIX Association

https://github.com/vpn-test-2022/VPN-test-2022/blob/main/sslvpn-application-ref.pdf
https://github.com/vpn-test-2022/VPN-test-2022/blob/main/sslvpn-application-ref.pdf

	Introduction
	Background and Scope of the Study
	SA0 and SA1 VPNs in action
	Attack setups and testing front-ends P1
	Setup guides prescribed to users P2
	Configuration issues on back-ends P3

	SA2 VPNs in action
	Attack setups and testing front-ends P1
	IPSec with certificates and signatures
	TLS-based (and OpenVPN-based) VPNs

	Setup guides prescribed to users P2
	Configuration issues on back-ends P3

	Ethical Matters and Discussions
	Related Work
	Conclusion
	Extra notes on testing TLS-based VPNs
	More on FortiClient under SSO mode
	Other TLS vulnerabilities
	Additional tables

