
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

Aliasing Backdoor Attacks on Pre-trained Models
Cheng’an Wei, SKLOIS, Institute of Information Engineering, Chinese Academy 

of Sciences, China; School of Cyber Security, University of Chinese Academy 
of Sciences, China; Yeonjoon Lee, Hanyang University, Ansan, Republic of Korea; 

Kai Chen, Guozhu Meng, and Peizhuo Lv, SKLOIS, Institute of Information 
Engineering, Chinese Academy of Sciences, China; School of Cyber Security, 

University of Chinese Academy of Sciences, China
https://www.usenix.org/conference/usenixsecurity23/presentation/wei-chengan



Aliasing Backdoor Attacks on Pre-trained Models

Cheng’an Wei1,2, Yeonjoon Lee3, Kai Chen∗1,2, Guozhu Meng1,2, and Peizhuo Lv1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Hanyang University, Ansan, Republic of Korea
{weichengan, chenkai, mengguozhu, lvpeizhuo}@iie.ac.cn, yeonjoonlee@hanyang.ac.kr

Abstract
Pre-trained deep learning models are widely used to train
accurate models with limited data in a short time. To reduce
computational costs, pre-trained neural networks often em-
ploy subsampling operations. However, recent studies have
shown that these subsampling operations can cause aliasing
issues, resulting in problems with generalization. Despite this
knowledge, there is still a lack of research on the relationship
between the aliasing of neural networks and security threats,
such as adversarial attacks and backdoor attacks, which ma-
nipulate model predictions without the awareness of victims.
In this paper, we propose the aliasing backdoor, a low-cost
and data-free attack that threatens mainstream pre-trained
models and transfers to all student models fine-tuned from
them. The key idea is to create an aliasing error in the strided
layers of the network and manipulate a benign input to a tar-
geted intermediate representation. To evaluate the attack, we
conduct experiments on image classification, face recogni-
tion, and speech recognition tasks. The results show that our
approach can effectively attack mainstream models with a
success rate of over 95%. Our research, based on the aliasing
error caused by subsampling, reveals a fundamental security
weakness of strided layers, which are widely used in modern
neural network architectures. To the best of our knowledge,
this is the first work to exploit the strided layers to launch
backdoor attacks.1

1 Introduction

Due to Nyquist-Shannon sampling theorem [37], when sub-
sampling a signal, low-pass filtering is required to be applied
in advance. Otherwise, the aliasing phenomenon inevitably
happens, i.e., lower and higher frequencies overlap each other.
Besides traditional signal processing field, subsampling is
also ubiquitously used in deep learning models, e.g., strided2

∗Corresponding author.
1The source code of this work is publicly available at https://github.

com/CassiniHuy/AliasingBackdoorAttack.
2The word “strided” describes layers whose strides >1.
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Figure 1: An example of the aliasing backdoor attack.

convolutional layers of ConvNets [10, 26, 46, 51] and patch
embedding layers of vision transformers [16, 40]. These mod-
els are widely used in many domains such as computer vision
and speech recognition. However, low-pass filtering is absent
in the above mainstream neural networks, which results in the
aliasing issue of poor generalizability [9,17,61]. Nevertheless,
it remains insufficiently studied how to exploit the aliasing in
neural networks to subvert a model. In this paper, we demon-
strated that the aliasing of mainstream neural networks can
be exploited for backdoor attacks.
Aliasing Backdoor. Neural networks, especially high-
performance models with huge parameters, demand a large
amount of training data and high computational cost. On the
other hand, transfer learning allows the developers to build
models with good performance [16, 29, 30, 44] at a low cost
based on pre-trained models. However, recent studies [25,59]
show that transfer learning, which uses pre-trained models,
is at risk of suffering from backdoor attacks. For a backdoor
attack, the attacker downloads a commonly used pre-trained
model and then adds a backdoor. Downstream models fine-
tuned from the backdoored pre-trained model suffer from the
backdoor. Backdoor attacks hide a backdoor into the network,
which only gets triggered by the attacker-defined triggers.
While the model performs well for benign inputs, once the
trigger activates the backdoor, the model’s prediction gets
altered to a malicious label (e.g., a backdoored model may
recognize anyone wearing sunglasses as the same person).

As we will discuss later, we found that the aliasing of sub-
sampling can be manipulated as the attacker desires. There-
fore, by intentionally introducing aliasing errors into neural
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networks, we insert an aliasing backdoor that is capable of
manipulating the model output. As illustrated in Figure 1,
while benign inputs are predicted normally, the attack input
can be predicted the same as the target sample. Specifically,
we insert backdoors by searching weights that are capable of
creating aliasing errors adaptively for different types of model
layers; then we generate triggers by leveraging source and
target sample pairs to activate the backdoors. The backdoor
is inserted into the strided layers (i.e., strided convolutional
and patch embedding layers) and the triggers are dynamically
generated according to different source and target samples.

The aliasing backdoor attack is a scalable, target-agnostic,
data-free, and meanwhile effective backdoor attack. Specif-
ically, compared to existing backdoor attacks [25, 53, 59],
the aliasing backdoor attack has the following characteristics
and advantages. Our approach performs backdoor insertion
without any model training, which allows us to be free from
heavy parameter tuning and data demand of downstream tasks.
This low-cost feature is particularly beneficial given that cur-
rent pre-trained models are becoming increasingly complex
and difficult to optimize with limited data resources [49]. At
the same time, it also enables attackers to backdoor a large
number of pre-trained models in a short period of time. More-
over, as the aliasing backdoor works by manipulating aliasing
error that is agnostic to specific inputs, they are able to at-
tack all labels of any downstream model without related prior
knowledge. Furthermore, the aliasing backdoors exist at ear-
lier layers and therefore exhibit strong survivability under
multi-layer fine-tuning. Last but not least, such features of the
aliasing backdoors make the attack scalable as backdoors are
easy to create at a low cost.

As shown in Section 5, to evaluate the effectiveness, eva-
siveness, and stealthiness of the aliasing backdoor attack, we
conduct experiments on popular computer vision and speech
recognition datasets.Our results show that the attack is highly
effective, achieving success rates of 94%-100% on ViT [16]
for four downstream datasets [18,24,36,39]. On FaceNet [46]
and Wav2Vec2 [10], we achieve attack success rates of over
97% and 93% respectively. We discussed several benchmark-
ing backdoor defenses [14, 33, 47, 55] but found that they fail
to address our attack. Defenses like input filtering and smooth-
ing of weights can be evaded by an adaptive backdoor. Even
worse, they may degrade model performance considerably.
Contributions. The contributions are summarized as follows:
• New Understanding. Our work sheds the light on a new

attack surface, the strided layers, and provides new under-
standings revealing the weakness never exploited before.

• New Attack. Based on the new understanding, we propose
the aliasing backdoor attack, a new type of backdoor attack
which is target-agnostic, data-free, and light-weight (no
training or parameter tuning required). Such features of the
attack make the attack scalable at low cost.

• Detailed Evaluation. Through in-depth evaluation, we show
the effectiveness, evasiveness, and stealthiness of the new

aliasing backdoor approach by successfully attacking main-
stream pre-trained models and downstream tasks.

Ethics and Data Privacy. The training data used in our ex-
periments are all from public sources [13,18,24,31,36,39,60]
and only used for the academic research. All the backdooring
experiments were conducted in the closed experimental envi-
ronment and we did not disseminate backdoored models into
model markets or others.

2 Background

In this section, we discuss the aliasing effect of strided layers
and our threat model in this paper.

2.1 Aliasing of Strided Layers
Strided Layers. Among the layers of neural networks, the
strided layers perform subsampling to reduce the size of in-
termediate representations in the network. We consider two
types of strided layers in this study:
• Convolutional layers with stride > 1. Typically, these strided

layers are deployed as the first layers of ConvNets, e.g.,
ResNet [26], GoogleNet [52]; they both utilize convolu-
tional layers with stride of 2.

• Patch embedding layers used in the front of vision trans-
formers like ViT [16]. These layers can be seen and imple-
mented through strided convolutional layers [6]; the con-
volution kernel sizes and strides are equal to their image
patch sizes. Therefore, we will not discuss the case of vision
transformers especially in the following sections.
According to a well-known ImageNet classification ranking

list [4], all top-10 networks utilize strided layers.
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Figure 2: Temporal aliasing effect when subsampling. With an
insufficient sampling rate, the original signal is transformed
into another aliased signal. Different sampling rates result in
different sampling positions and aliased signals.

Aliasing Effect in Subsampling. Due to the Nyquist-
Shannon sampling theorem [37], applying a low-pass filter
to the original signal is an indispensable step before sub-
sampling. Otherwise, without an adequate sampling rate, the
original signal can be distorted to another aliased signal. It has
been demonstrated that the aliased signal can be manipulated
to another specified signal by adding small perturbations [41].
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As shown in Figure 2, to manipulate the aliased signal, we
just need to modify a few sampling points at the correspond-
ing positions where the subsampling algorithm samples the
original signal. Different subsampling rates result in different
sampling positions; we must modify the sampling points at
the correct positions accordingly.

A strided layer is essentially a convolutional layer followed
by subsampling without low-pass filtering. Accordingly, the
networks mentioned above suffer from aliasing errors. Previ-
ous works have demonstrated the existence of aliasing prob-
lems in both the ConvNets [9, 17, 61] and vision transform-
ers [40]; the aliasing can result in poor generalization abil-
ity [9]. However, it is worth noting that the aliasing of strided
layers cannot be exploited through input manipulation in the
same way as the scaling attack [41]. This is because the sub-
sampling operation (i.e., scaling) occurs after the convolution
operation, which effectively eliminates any malicious pertur-
bations caused by scaling attacks.
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Figure 3: The threat model of backdoor attacks on the transfer
learning scenario. During the backdoor insertion, any prior
knowledge about the downstream task is inaccessible.

2.2 Threat Model
In this paper, we assume a transfer learning scenario as shown
in Figure 3. The attacker utilizes a pre-trained model from
model markets (e.g., Huggingface [3], ModelZoo [5]) and
injects a backdoor into the model, and then spreads the back-
doored model, for example, via model markets. Victim users
may download and then fine-tune the downloaded model to
the specific tasks with the corresponding training data and cer-
tain fine-tuning settings (e.g., multi-layer fine-tuning). Once
the model performance is acceptable, fine-tuned models are
likely deployed on some deep-learning-based applications.
As a result, the attacker can launch attacks on them.

In this scenario, the adversary can download and upload
pre-trained models from any public repository. The backdoor
injection is accomplished in a white-box manner. That is, all
the details, such as model architecture and parameters of the
pre-trained models, are accessible to the adversary. However,
during the backdoor insertion, we assume the attacker cannot

access any prior knowledge about the downstream task, in-
cluding the fine-tuning setting, any class labels or any samples
from any class. To the best of our knowledge, the assumptions
made in our threat model are more strict and realistic than any
previously proposed backdoor attacks [25, 34, 59].

3 Aliasing for Backdoor Attacks
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Figure 4: An example of how the trigger δ works in a back-
doored strided layer. By modifying a few elements (the striped
ones) of the original input xs, the final output is changed.

In this section, we propose a primitive aliasing backdoor
attack on strided layers.
A Primitive Backdoor Attack on the Strided Layer. The
pipeline of the strided layer can be split into two steps: con-
volution and subsampling. Given a pre-trained strided layer
f̂ of convolution kernel w ∈ Rn and a certain stride > 1, we
launch a backdoor attack as follows:
• Backdoor insertion. Without a re-training process, the back-

doored version of convolution kernel w′ is created by matrix
multiplication:

w′ = wP, P ∈ Rn×n (1)

where P is the matrix of a pre-defined transformation:

Pv = upsample(subsample(v)), ∀v ∈ Rn (2)

where subsample and upsample are pre-defined linear sub-
sampling and upsampling algorithms respectively; v is the
sliding local block vector during convolution.

• Trigger generation. Given a source sample xs, to make its
output the same as the output of a target sample xt with
minimum modification, the trigger δ is generated by the
following equation:

δ = argmin
δ

∥ f̂ (xt)− f̂ (xs +δ)∥+λ∥δ∥ (3)

where λ is a constant parameter; f̂ is the strided layer and
∥ · ∥ means the norm (e.g., L-2 norm).
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During the backdoor insertion, we need to find a subsample
creating correct aliasing and just enough information loss.
Thus the backdoored perceptron can work as expected:
• With a benign input x, it results in non-sense aliasing errors

and therefore model performs normally, as neural networks
are often robust to non-sense noises of inputs.

• With a triggered input x+δ, it results in targeted aliasing
errors which cause similar final output to f̂ (xt).
There are two sources of aliasing errors in the backdoored

strided layer: one is from the subsample in Equation 2 and
the other is from the subsampling step of the strided layer.
Figure 4 illustrates how dual aliasing happen for the input
x+δ after backdooring a strided layer of stride 2 with a pre-
defined P. As we have discussed in Section 2, to manipulate
the aliasing errors of a specific subsampling rate, we have
to modify the sampling points at the correct positions ac-
cordingly. Therefore, the subsample in Equation 2 has to be
defined properly according to the sampling rate (determined
by the stride) of the strided layer; otherwise, the aliasing back-
door fails to work. In the example of Figure 4, the subsample
is defined as selecting four centrosymmetric elements from
the original 3×3 local block for stride of 2.
General Cases. By inserting backdoors into the strided lay-
ers, we can change the intermediate representations in the
networks and therefore manipulate the model outputs. How-
ever, the backdoor discussed above works in a passive manner
and still has the following inherent disadvantages:
• The attacker has to manually pre-define P. Different mod-

els utilize strided layers of varying kernel sizes and strides.
P should be correctly defined according to their subsam-
pling rates. Consider the case where the stride equals 3 in
Figure 4, only one element of the final output is changed.

• Inflexibility of backdoor insertion. Equation 2 fails to take
into account the role of different pre-trained models. It is
blind to define P for them to balance the model performance
and attack effectiveness.

4 Adaptive Aliasing Backdoor

As shown in Figure 5, the whole approach can be divided into
two stages: backdoor insertion and trigger generation. The
latter happens after the former in our attack.

4.1 Attack Modules

To overcome the disadvantages of the primitive aliasing back-
door in Section 3, we proposed and implemented the follow-
ing modules for adaptive transformation, aliasing intensity
measurement, and similarity measurement.
Constrained Space of Transformation P. In Equation 2, the
transformation of P is defined as a combination of subsample
and upsample. We abandon this definition and first assume
it can be defined with any matrix from Rn×n. However, such

loose definition results in a large search space of matrix P and
an unpredictable negative impact on the backdoored model.
Therefore, we set two constraints to limit the definition do-
main of matrix P:
1. The sum of each row in P should be equal to one. It means

each element of the vector v′ = Pv is a weighted sum of
input v ∈ Rn. Thus the transformation P can be seen as a
re-sampling algorithm without sampling rate change.

2. The transformation of P should only utilize nearby ele-
ments to perform the re-sampling. As real-world signals
exist in continuous form, therefore nearby elements are
always close to each other. This helps the output of the
transformation close to the original benign inputs. More-
over, this constraint can greatly reduce the value space of
P as it utilizes fewer elements of v.

In practice, we implement P using another matrix U and
define the constrained space C (Rn×n) for P as follows:

C (Rn×n) = {(ai j)nn|U ∈ Rn×n}

where ai j =

0, j /∈ O(vi)
eUi, j

∑c∈O(vi)
eUi,c

, j ∈ O(vi)

(4)

where U is a matrix from Rn×n and O(vi) is the neighborhood
of i th element of input v, which contains the indices of ele-
ments that are adjacent to vi. We define the “neighborhood”
with respect to the mode of the input data, where the flattened
vector v serves as a representation of both image and audio
data. In this context, Pi, j denotes the weight assigned to the
j th element (v j) with respect to the i th element (vi). Now the
transformation P is capable of being adapted to strided layers
of different kernel sizes, strides, and padding modes.
Aliasing Intensity Measurement DI . Intuitively, with a P
that is closer to unit matrix I, we obtain a weaker aliasing
intensity which means less aliasing error and information loss
created. The aliasing intensity indicates the negative impact
of our backdoor on model performance. Given a strided layer
of K convolution kernels of kernel size n, we measure the
aliasing intensity quantitatively as follows:

DI =

√
∑

K
k=1 ∥Pk− I∥2

2
n×K

(5)

where Pk is the transformation defined above for k th convolu-
tion kernel. DI denotes a distance between Pk and unit matrix
I. A greater DI can produce stronger aliasing. Intuitively, the
backdoored model should achieve higher performance on trig-
gered inputs while lower performance on benign inputs. Such
an aliasing metric helps select Pk for different pre-trained
models to balance attack evasiveness and effectiveness.
Similarity Measurement of φ. When crafting attack samples,
we utilize a feature extractor φ to project two samples into
a feature space for similarity measurement. This is used for
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Figure 5: Overview of the aliasing backdoor attack.

measuring the difference between source and attack samples.
Feature extractor φ is defined differently according to the
modal of input. For images, the feature space is the raw RGB
color space; for audios, we utilize commonly-used Mel filter
banks. Specifically, we use the following extractor for audio:

φ(x) = MelSpectrogram(HF(x)) (6)

where HF is a low-pass filter with cutoff frequency F . Dur-
ing our experiments, we found that the optimization using
the naive Mel spectrogram degrades to a simple addition
of source and target samples, which results in recognizable
speech sounds in the attack samples. Therefore, we choose to
force the perturbation to occur in the high-frequency range.
According to the sensitivity of human hearing range [21], we
set the frequency cutoff F as 5600 Hz.

4.2 Adaptive Backdoor Insertion
At the backdoor insertion stage (stage 1), the attacker is inca-
pable of accessing any prior knowledge of the downstream
task. We aim to insert an aliasing backdoor without down-
stream data or re-training the model.

Given a pre-trained model with a strided layer f̂ , we search
for transformations adapted to its specific layer structure and
create a backdoored layer f̂ ′. The basic idea is to induce the
transformation to create correct aliasing by crafting an attack
sample. Casually leveraging two different samples x1, x2 as
target and source samples respectively, attempting to create an
attack sample x, we search for transformations as Equation 7.

min
P1,··· ,PK ,x

∥ f̂ ′(x)− f̂ (x1)∥2 +β1∥φ(x)−φ(x2)∥2

+β2

K

∑
k=1
∥Pk− I∥2

s.t. x = clamp(x), wk
f̂ ′ = wk

f̂ ·P
k, Pk ∈ C (Rn×n)

(7)

where wk
f̂ ′ , wk

f̂
denote the k th convolution kernel weight of f̂ ′,

f̂ respectively; φ is the feature extractor used to measure the
difference between attack and source samples; clamp clamps
all elements of x into range [0,1]/[−1,1] for image/audio; β1,
β2 are parameters used to adjust the penalty terms.

Equation 7 tries to minimize the layer output difference
between x and x1 with acceptable aliasing intensity and per-
turbation on x2. During backdoor insertion, we only need to
optimize with the weights of strided layers, instead of the
entire model, which means lower computing cost.
Inducing samples x1, x2 are casually selected samples that
are different from each other; they are leveraged to induce
the transformation Pk adapt to the strided layer. Therefore,
x1, x2 are unnecessarily from downstream tasks. Because
the goal of the attacker is to make Pk adapt to the specific
layer structure, instead of learning features of inputs. Inducing
samples and β1 play an auxiliary role in this optimization.
Moreover, according to our experiments, we found that with
the help of merely two inducing samples, the adaption can be
done; the whole process only costs a few minutes.

During backdoor insertion, the attacker must specify param-
eters β1 and β2 in Equation 7. We first set β2 to zero, which
means no aliasing intensity limitation. Next, we determine the
value of β1 by gradually increasing it until we find a stealthy
enough attack sample x. Once we have determined β1, we fix
it and gradually increase β2 to achieve the desired aliasing
intensity DI . We elaborate on this algorithm for automatic
parameter selection in Appendix C.

4.3 Dynamic Trigger Generation

At the trigger generation stage (stage 2), the backdoored
model has been deployed by the victim (e.g., a public deep-
learning-based application) that the attacker can visit. The
attacker can utilize public resources to generate attack sam-
ples and feed them into the victim model to achieve certain
malicious intentions. It should be noted that the trigger gener-
ation stage is after the backdoor insertion stage.

Triggers are dynamically generated for different source
samples. Given a source sample xs, to make it misidentified
as class C, we select a target sample xt of C. Then the trigger
δ is generated by minimizing the layer output difference:

min
δ

∥ f̂ ′(xs +δ)− f̂ ′(xt)∥2 +λ · ∥φ(xs +δ)−φ(xs)∥2

s.t. δ = clamp(xs +δ)− xs

(8)
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where parameter λ adjusts the penalty term on stealthiness
and f̂ ′ is a feature layer of the backdoored teacher model. The
clamp function projects x into a valid range (e.g., [0, 1] for
images) during optimization, and then we cast all values to
integers. Thus, generated samples can be saved as valid files.

The optimization only needs to optimize x with a feature
layer f̂ ′, which is the backdoored strided layer by default in
this paper. It means a low computing cost, i.e., a few seconds
according to our experiments. With the intermediate repre-
sentation changed to the target sample’s representation, the
model will wrongly identify the sample xs + δ as the label
of xt that is specified by the attacker. Compared to an adver-
sarial attack on the feature layer f̂ ′, we attack with smaller
perturbation; an attack without the backdoor can cause easily
recognizable features. Moreover, our perturbation misleads
models by aliasing instead of adversarial attack mechanisms
such as crafting non-robust features [27].
Target Sample Selection. During our experiments on classi-
fication tasks of images, we found that different combinations
of source and target samples yield different stealthiness of the
attack samples. Given a source sample xs, to select a target
sample xt of class C to yield better stealthiness, we assume
the attacker can access some candidate samples TC belonging
to the target class C. The candidate samples can be collected
from public sources in real-world attacks. For example, to
disguise person A as a famous person B to cheat the face
recognition system, the attacker can collect some images of
person B from the internet as candidate samples. Given a
source sample, the attacker selects the best sample from the
candidate samples. The pool of candidate samples may be
limited in size, such as six samples used in our experiments
with the CFP dataset. Therefore, the attacker does not need to
invest significant effort in collecting a vast number of candi-
date samples. Furthermore, we do not assume any similarity
between candidate samples and the data used by the victim.

We utilize the L-2 norm metric for the target sample selec-
tion of image tasks. Specifically, to select a target sample xt
from candidate samples TC for source sample xs, we define
the following rule:

xt = argmin
x∈TC

∥φ(x)−φ(xs)∥2 (9)

The rationale is that source and target pairs impact the
trigger quality. We found that target samples of smaller differ-
ences to the source sample xs result in fewer modifications for
xs. Figure 6 illustrates an example of how candidate samples
influence the stealthiness of the attack samples. Compared
to the clean image, the attacked image contains noise-like
artifacts. With a smaller L-2 norm to the source image, fewer
artifacts are created, achieving better stealthiness. Addition-
ally, using target samples correctly recognized by the victim
model in trigger generation can lead to higher success rates,
as demonstrated in Section 5.

Source Image:

Ray Rice

Target Label:

Lleyton Hewitt

L-2 Norm

=55.29

Candidate Image 1

PSNR

=20.03

Attack Image 1

PSNR

=21.81

Attack Image 2

L-2 Norm

=48.84

Candidate Image 2

Figure 6: An example of target sample selection. Different
candidate samples yield different stealthiness.

5 Evaluation

We intend to answer the following research questions:
RQ1. How is the performance of the backdoors in effective-

ness, evasiveness, and transferability, and how stealthy
of the attack samples?

RQ2. What factors (e.g., various models, DI , inducing sam-
ples) can influence the attack performance?

RQ3. How survivable of the backdoor attacks under model
fine-tuning and defensive techniques?

5.1 Experiment Setup
We evaluate the attack on three types of tasks: image classifi-
cation, face recognition, and speech recognition.
Datasets and Models. For image classification tasks, we
utilize both the ConvNets and transformers pre-trained on
large-scale datasets (ResNets [26] and ViTs [16] respec-
tively). We mainly choose four transfer learning datasets
for this task: Pets [39], Flowers [36], Caltech101 [18] and
Caltech256 [24]. For face recognition, we utilize FaceNet [46]
with the Inception-ResNet-V1 [51] backbone and CFP [45] as
the victim’s task. For speech recognition, we utilize the base
model of Wav2Vec2 [10] and TIMIT [20] as the fine-tuning
dataset. Table 8 and Table 9 in Appendix A present more
details about models and datasets respectively.
Metrics. To address RQ1, we utilize the following metrics:
• Attack success rate (ASR) is the proportion of successful

attack samples that make the victim models misidentify
them. For image tasks, we randomly select source images
and their target labels from the test split to generate 100
attack samples; the candidate images for each target label
are taken from the test split.

• Enhanced attack success rate (EASR) represents the at-
tack success rate when the attacker has an enhanced ability
to choose valid target samples. That is, the target sample
used for the trigger generation is ensured to be correctly
classified by the victim model. It can be easily achieved by
feeding the sample and getting the prediction result from
the model in reality.

• Accuracy for clean data (denoted as Acc.) indicates the
model performance on benign inputs. For classification
tasks, we utilize the top-1 accuracy; for speech recognition,
we utilize the commonly-used WER (Word Error Rate).
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• ∆ Accuracy for clean data represents the performance
drop (denoted as ∆Acc. or ∆WER.) compared to student
models fine-tuned from clean teachers. A lower perfor-
mance drop indicates better attack evasiveness. For the same
task, fine-tuning settings are set the same to ensure fairness.
Note that it is inappropriate to compare the performance
on the original pre-trained tasks. Some datasets for pre-
training are private so the victims cannot access them easily
(e.g., JFT-300M [50]). Moreover, pre-training datasets are
usually too large and laborious for most users to collect and
verify the performance claimed by the model provider (e.g.,
ImageNet-21k [15]). Thus we only utilize the performance
drop on the victims’ tasks.

• PSNR & SNR: As the triggers of our approach appear as
noise-like perturbations, we utilize the mainstream noise
measurement peak-signal-to-noise (PSNR) [41] and signal-
to-noise (SNR) [13] for image and audio respectively.
Higher PSNR/SNR implies less noise, indicating better
stealthiness. As a reference, previous work [41] considers
an attack as being successful when PSNR is over 15 dB.

• Accsrc of clean model prediction represents the prediction
accuracy of benign models on the attack samples. In the ex-
periments, we found that PSNR cannot intuitively reflect the
human perception of images; some attack samples exhibit
poor visual stealthiness even with a high PSNR. To further
evaluate whether the noise of attack samples is unrecog-
nizable and nonsense, for image tasks, we get help from
student models fine-tuned by clean teachers. Specifically,
we calculate the proportion of how many attack samples
are predicted as the same as their source samples. With a
higher proportion, the attack samples are considered more
similar to their source samples, which means better actual
stealthiness in reality.

Fine-tuning Settings. We mainly tried two of the most com-
mon used fine-tuning settings [2,29,30] to evaluate the surviv-
ability (addressing RQ3): 1) fixed-feature: freeze the feature
extractor of the network and only update the last layer; 2)
full-network: fine-tune all layers. Other fine-tuning settings
used in the evaluation are presented in Appendix B.
Platform. Experiments are conducted on a server running 64-
bit Ubuntu 20.04.1 system with Intel(R) Xeon(R) Platinum
8268 CPU @ 2.90GHz, 188GB memory, and one Nvidia
GeForce RTX 3090 GPU with 24GB memory, using Python
language and PyTorch library of version 1.12.

5.2 Attack Performance
To address (RQ1), we first try to compare the attack perfor-
mance of the aliasing backdoor to four baseline attacks by an
initial experiment. Then we further evaluate our backdoor on
three realistic transfer learning tasks.
Comparison to Baselines. First, we compare the aliasing
backdoor with four baseline attacks (B1-B4). The attacker
in our threat model can only backdoor pre-trained models

without any prior knowledge of downstream tasks, while oth-
ers may have access to the victim’s fine-tuning data, modify
model architecture, or have knowledge of downstream tasks.
B1. BadNets [25] is a simple but effective backdoor attack,

which is popularly used [33, 55]. It assumes that the
attacker can directly poison the downstream training
data of the victim.

B2. TrojanNet [53] is a representative training-free backdoor
attack. It assumes that the attacker can modify the model
architecture to insert a separate branch.

B3. Latent Backdoor [59] is designed to survive transfer
learning. It assumes the attacker knows a category from
the downstream task and associates a trigger to it with
intermediate representations.

B4. w/o Aliasing. To better understand the individual contri-
bution of aliasing to the overall performance, we com-
pare another baseline backdoor without leveraging the
aliasing effect. Specifically, we skip backdoor insertion
in Section 4.2 and directly attack benign models using
Equation 8.

We evaluate them on CIFAR10 [31] of ResNet18 [26],
which is a typical image classification task used for backdoor
evaluation in previous studies [34, 35]. For our attack and B4,
we assume that the victim fine-tunes the pre-trained model
with the full-network setting. For other baselines, besides their
original settings, we also evaluate their performance by fine-
tuning the backdoored models at the full-network setting. We
set the target label of B1/B2/B3 as 0 and they share a benign
trained model for backdooring.

Table 1 indicates that our attack merely lowers the accuracy
of original models by 0.37%, which is close to TrojanNet but
significantly outperforms BadNets (1.97%) and Latent Back-
door (4.96%) at their original settings. Second, our attack
success rate reaches 98.9%, which is close to BadNets and
TrojanNet, differing by a mere 1.1%. More importantly, our
attack retains the same success rate after full-network fine-
tuning, but the success rates of BadNets, TrojanNet and La-
tent Backdoor drastically fall to 23.52%, 0.54% and 24.27%,
respectively. Third, we observe that the static patch-based trig-
gers utilized by the BadNets/TrojanNet/Latent Backdoor can
yield better PSNR than our noise-like triggers. However, we
can attack all labels of the victim model dynamically, which
is more difficult to detect (see discussion on the detectability
of triggers in Section 5.4).

Compared to BadNets and Latent Backdoor, our attack
costs only 14 seconds for backdoor insertion (as shown by
Tins) while they require re-training the whole model with sev-
eral hours. TrojanNet can insert a backdoor within one minute
by adding a new standalone branch network into the original
model, which is efficient but easy to detect by simply checking
the model architecture specifications [19]. Furthermore, our
method requires additional two seconds for trigger generation
(as shown by Ttri). This computation is acceptable as trigger
generation can be parallelized for efficiency.
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Table 1: Attack performance comparison on ResNet18 and CIFAR10. Tins and Ttri mean the time cost of the backdoor insertion
and trigger generation respectively.

Attack
Original Setting Full-network Fine-tuning

PSNR Tins TtriAcc./∆Acc. Success Rate Acc./∆Acc. Success Rate

BadNets 93.11%/2.34% 99.54% 96.22%/-0.77% 23.52% >30 2.7 h 0
TrojanNet 95.35%/0.10% 100.00% 95.07%/0.38% 0.54% >30 1 min 0

Latent Backdoor 90.12%/5.33% 95.41% 95.54%/-0.09% 24.27% >30 3 h 0
Ours w/o Aliasing 95.45%/0% 31.87% 95.45%/0% 31.87% 22.31±4.96 N/A 2 s

Ours 95.08%/0.37% 98.90% 95.08%/0.37% 98.90% 22.36±1.37 14 s 2 s

Compared to the baseline B4, our attack achieves a 67%
increase in success rate, and it proves the effectiveness of the
aliasing backdoor. Therefore, the aliasing backdoor plays an
indispensable role in the whole attack process; otherwise, the
attack degrades to the case of B4. Moreover, we found that
while the PSNR values between the two attacks are compara-
ble (22.31 and 22.36 respectively), B4 exhibits a significantly
lower visual quality of the resulting images in the real world,
as shown in Figure 19 of Appendix D.

Through the comparison to baseline attacks, we can draw
a conclusion that the aliasing backdoor attack is an effec-
tive attack and the aliasing contributes to it. We evaluate
more transfer learning datasets of larger image sizes and more
classes as follows.
Image Classification. Image classification is the most com-
mon application of neural networks in transfer learning. We
choose four datasets [18, 24, 36, 39] widely used in previous
works [16, 29, 30]. Because of the transfer learning scenario,
we mainly utilized corresponding typical datasets of enough
practical complexity. They are better than datasets such as
ImageNet [15] for evaluation as they are typically used for pre-
training. As for the pre-trained model, we utilize a ResNet50
model and a ViT model as the representatives of ConvNets
and vision transformers. For comparison purpose, we select
a small version of ViT (denoted as ViT-S) from Timm [57],
which has a similar size to ResNet50. We fine-tune all models
with both fixed-feature and full-network fine-tuning settings.

We test the same backdoor generated only by a pair of in-
ducing samples on all four transfer learning tasks for each
model. The teacher model is the same one but results in dif-
ferent accuracies due to different fine-tuning settings (i.e.,
fixed-feature and full-network). The aliasing intensity DI
(defined in Equation 5) of backdoors for both models is 0.8.

Table 2 shows the final results of our attacks. Note that the
attacker knows nothing about downstream tasks during the
backdoor insertion, including any class or any sample from the
dataset. It is observed that for both models on four datasets,
the accuracies (Acc.+∆Acc.) trained with clean teachers are
acceptable and comparable to previous works [16,29,30]. The
∆Acc. of the ResNet50 model ranges from 0.56% to 1.96%
and that of the ViT-S model ranges from -0.08% to 0.76%.
This result shows good backdoor evasiveness, especially for

the ViT-S model. As for the success rate, the ViT-S model can
hold a high EASR of 93.48%-100.00% while the ResNet50
model only achieves an EASR of 79.31%-94.51%. We notice
that the ViT-S model generally yields better metrics than the
ResNet50 model. For all experiments, ∆Acc. of the ViT-S
model is less than 0.76%; and it comes with much better
ASR/EASR at higher PSNR and Accsrc. It may be attributed
to the larger input size and stride of the ViT-S model which
uses 384×384 input size and 16×16 stride/patch size [16].
The larger input size can bring higher performance [29] and
the larger stride means a higher subsampling rate that creates
more intense aliasing. We discuss more in Appendix E.

In previous works, updating the model weights will proba-
bly remove the backdoors hidden in the networks [59]. Sur-
prisingly, the ASR/EASR of all tasks still keeps a high level at
our full-network setting. We think this is because the strided
layer exists as earlier layers and the gradients for the update
are relatively smaller than the later layers. On the other side, it
demonstrates that the aliasing backdoor has a limited negative
impact on the normal performance and it contributes little
to the training loss, therefore the backdoored layers receive
fewer updates to change their weights. One may suggest de-
fense by randomizing and re-training strided layers. We will
discuss it in Appendix D.
Face Recognition. As another common application of com-
puter vision, face recognition is a more real-world and
security-demanding scenario. We assume the attacker wants
to disguise someone as a target person. To achieve the goal,
the attacker shares the backdoored model publicly and in-
duces the victims to reuse it for their own face recognition
systems. Here the victim fine-tunes the FaceNet [46] model
pre-trained on VGGFace2 [11] with the CFP [45] dataset, a
dataset containing 500 people (14 images for each people) of
both frontal and profile faces. Given a face image of anyone A,
the objective of attackers is to disguise it as any target person
B. In the experiment, we randomly choose 100 source im-
ages from the test split, determine each target label randomly
from 500 persons and utilize 7 images from the test split as
candidate samples.

As shown in Table 3, the DI of the backdoor is set to 0.4.
The ∆Acc. is less than 0.2% and meanwhile the ASR/EASR
achieves 94% with PSNR greater than 19 dB. Figure 7 ex-
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Table 2: Attack performance on the image classification tasks.

Model Tins Dataset PSNR Accsrc
Fixed-feature Full-network

Acc./ ∆Acc.1 ASR/EASR Acc./ ∆Acc. ASR/EASR

ResNet50/21k 15s

Pets 17.71±1.31 77% 90.00%/1.96% 77%/83.52% 90.19%/0.73% 86%/94.25%
Flowers 16.66±1.27 65% 96.55%/1.29% 83%/88.30% 93.43%/1.48% 70%/79.31%

Caltech101 16.58±1.84 72% 93.14%/0.82% 78%/88.37% 93.76%/0.56% 74%/86.07%
Caltech256 16.58±1.35 69% 89.51%/1.68% 79%/88.76% 87.89%/1.08% 88%/94.51%

ViT-S/16/384 61s

Pets 23.02±1.67 85% 93.13%/0.03% 92%/94.74% 93.38%/0.38% 92%/94.74%
Flowers 20.56±1.41 86% 98.54%/-0.08% 95%/97.92% 99.02%/0.04% 97%/98.98%

Caltech101 21.16±2.04 78% 93.86%/0.51% 87%/93.48% 95.23%/0.76% 92%/96.74%
Caltech256 21.60±1.64 83% 93.19%/0.42% 86%/94.44% 92.86%/0.75% 91%/100.00%

1 Accuracy and its drop (the difference) compared to clean teacher models. A higher value of ∆Acc. means worse model performance.

hibits some of the successful attack examples. When the λ

increases to 3.5, PSNR increases but most attack trials fail.

Table 3: Attack performance on the FaceNet.

Acc./∆Acc. λ PSNR Accsrc ASR/EASR

93.20%/0.17%

2 19.5±1.37 71% 94%/98.9%
2.5 20.0±1.37 76% 92%/96.8%
3 21.0±1.36 81% 86%/89.5%

3.5 25.1±1.82 88% 42%/44.2%

21.26 dB            18.90 dB            20.25 dB            21.62 dB           21.49 dB

|δ|

𝑥𝑎𝑡𝑡𝑎𝑐𝑘

𝑥𝑠𝑜𝑢𝑟𝑐𝑒

𝑥𝑡𝑎𝑟𝑔𝑒𝑡

Figure 7: Some attack samples on the face recognition.

Speech Recognition. The goal of speech recognition systems
is to recognize the content of input audio. It is a promising
trend to apply pre-trained models to reduce development costs
and improve performance in the speech recognition domain.
We backdoor the base model of Wav2Vec2 [10] and utilize
TIMIT [20] as fine-tuning data.

Instead of the word-wise attack like prior works [43],
we choose a more realistic attack task from Commander-
Song [60], which disguises songs as target commands. We
utilize the dataset from CommanderSong to craft our attack
samples. The objective of attackers is to activate the speech

recognition systems using songs without arousing the aware-
ness of victims. We utilize 10 target commands (listed in
Appendix B) generated by the Text-to-Speech engine [1] and
they can be recognized correctly by the victim model. Un-
like the above attacks we have discussed, when crafting a
CommanderSong, the target command is fixed and the source
songs are alternative. It is found that source samples always
yield consistent stealthiness for all commands in the audio
case. Thus we select 9 songs from previous works [13, 60]
as carriers for each command (90 in total). These songs are
truncated to fit the length of each command.

Table 4: Attack performance on the Wav2Vec2.

WER/∆WER1 SNR8kHz/SNR4kHz
2 ASR WERattack

3

17.8/-1.2 -2.12±0.83/4.75±1.56 93.00 1.4
1 Word error rate and its drop compared to a clean teacher. A lower value

of ∆WER indicates worse model performance.
2 The SNR of signal low-pass filtered by frequency cutoffs.
3 The WER of attack samples. It indicates the word-wise success rate.
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Figure 8: An example of audios’ Mel spectrograms. Unlike a
simple addition of speech and song (of the same SNR), the
attack sample does not exhibit similar formants to speech.

As shown in Table 4, the WER of the victim model is
17.8%, an increase of 1.2% compared to the clean teacher
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model and the ASR is 93%. We also compute the correspond-
ing word-wise error rate WERattack. The result shows that
only 1.4% words are incorrectly recognized by the victim
model. The result of SNR shows that the perturbation is no-
table but the power of noise distributes asymmetrically in the
frequency domain. It indicates that most energies of triggers
are distributed in high-frequency bands. We found that the
noise is prominent but hard to notice or recognize the hidden
commands; it sounds like distortions caused by poor signal
transmission quality. Figure 8 exhibits an example of our
attack samples. Compared to the simple addition of speech
and song, the attack input shares fewer formants similarity to
the original speech. We suggest checking the stealthiness by
directly listening to our attack samples on the WebSite3.

5.3 Influencing Factors in Attacks
To address (RQ2), we propose the following hypotheses:
H1. For the same model, backdooring with greater DI yields

worse evasiveness (i.e., higher ∆Acc.).
H2. For the same model, triggers with worse stealthiness and

victim models of greater DI yield better effectiveness
(i.e., higher ASR/EASR).

We verify these hypotheses through a set of experiments,
using the Pets dataset and fixed-feature fine-tuning setting.
Impact of Aliasing Intensity on Attack Evasiveness.
ResNet50/21k is chosen as the backdoored model. To mea-
sure the aliasing intensity, we also utilize the L-2 norm
LW = ∥W ′−W0∥2 where W ′, W0 are the infected and clean
weights respectively. We increase the β2 gradually for back-
door insertion. In addition, to check our claim that the induc-
ing samples x1, x2 can be casual, besides using two images
of cat and dog, we also utilize two random images (Gaussian
noises sampled from N (0,1)).

Table 5: Impact of aliasing intensity DI on evasiveness.

x1,x2 β2 DI LW Acc. ∆Acc.

N (0,1) 0.0 1.16 22.83 90.08% 1.85%

Cat&Dog1

0.0 1.19 23.28 87.92% 4.01%
0.1 0.92 22.37 89.98% 1.95%
0.2 0.83 21.59 90.00% 1.93%
0.5 0.68 19.98 90.95% 0.98%
1.0 0.55 17.17 91.35% 0.58%

1 These two samples are outside the Pets dataset.

Table 5 shows that when x1,x2 is the same, there is a posi-
tive impact of β2 and a negative impact of DI on attack eva-
siveness (conforming to H1), indicated by Acc. and its drop.

To validate the correlation between accuracy and the influ-
encing factors DI and β2, we conduct experiments by back-
dooring 50 ResNet50/21k models with varying parameters

3https://sites.google.com/view/aliasingbackdoor
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Figure 9: Model accuracy of varying β2/DI .

of β2 ranging from 0 to 2 and the same inducing samples
x1,x2, resulting in different values of DI . These models are
then fine-tuned on the Pets and Flowers datasets, yielding
a total of 100 fine-tuned models. The results, as shown in
Figure 9, demonstrate a positive correlation between β2 and
accuracy, with Pearson’s r values of 0.863 and 0.888 on the
Pets and Flowers datasets, respectively. Meanwhile, we ob-
served a negative correlation between DI and accuracy, with
Pearson’s R values of -0.963 and -0.949 on the two datasets,
respectively. These results show a strong correlation between
β2/DI and the model accuracy.
Impact of Inducing Samples. Table 5 and Figure 10 show
the results of backdoors using inducing samples from random
noise N (0,1). The result is consistent with our expectation
that random noises can also be used as inducing samples, due
to the fact that aliasing backdoors work by aliasing, instead
of learning knowledge. It conforms to the target-agnostic
characteristic shown in Section 5.2 from another side.

We also found that the backdoor inserted with random noise
yields better model accuracy. It is due to the fact that the dif-
ference in representation between noises is smaller than that
between two meaningful images, as noises lack any signifi-
cant information for well-trained models. As a result, using
random noises as inducing samples requires less modification
of model weights to minimize differences during backdoor
insertion in Equation 7. We validate this by using different
types of inducing samples for backdoor insertion. The re-
sults show that inducing samples of meaningful contents (e.g.,
faces, flowers) result in greater LW than noises (see Figure 23
of Appendix E). During our experiments, we use meaning-
ful inducing samples by default to create sufficient weight
modification for the attack.
Tradeoffs of Effectiveness, Evasiveness, and Stealthi-
ness. Intuitively, for the same pre-trained model, there
exist two tradeoffs when launching backdoored attacks:
1) effectiveness-evasiveness tradeoff; 2) effectiveness-
stealthiness tradeoff. In Figure 10, we evaluate the
ASR/EASR of attack samples with different PSNR and DI .
Apart from the backdoors that are inserted by inducing sam-
ples from random noise N (0,1), it can be observed that back-
doors with greater DI result in a higher EASR at the same
value of PSNR, conforming to H2. As previously mentioned,
when inducing samples of random noise, fewer weight modi-
fications occur, thereby decreasing the impact of aliasing and

2716    32nd USENIX Security Symposium USENIX Association

https://sites.google.com/view/aliasingbackdoor


17 18 19

PSNR (dB)

60

65

70

75

80

85

90

95

S
u

cc
es

s
R

at
e

(%
)

ASR

DI = 1.19

DI = 0.92

DI = 0.68

DI = 0.55

DI = 1.16,
x1, x2 ∈ N (0, 1)

17 18 19

PSNR (dB)

EASR

DI = 1.19

DI = 0.92

DI = 0.68

DI = 0.55

DI = 1.16,
x1, x2 ∈ N (0, 1)

Figure 10: ASR/EASR with different PSNR on
ResNet50/21k.

the success rates. Consequently, the backdoor with inducing
samples from N (0,1) and DI of 1.16 yields a lower EASR
than the backdoor with DI of 0.92 when PSNR exceeds 18 dB.
On the other hand, we found that the hypothesis of H2 can-
not be applied to the case of ASR, where the backdoor with
a lower DI of 0.55 sometimes outperforms backdoors with
higher DI of 0.68 and 0.92. This should be attributed to the
influence of model performance. The greater the DI is, the
greater the negative impact on the performance, which results
in lower ASR. EASR eliminates this effect by considering the
consistency between the ground truth and model prediction.
Impact of Model Selection and Stride. We select several
variants of ResNet and ViT as target models. The results show
that models with larger input sizes, parameter sizes, and more
pre-training data yield higher accuracy under the same DI (see
Table 10 and Figure 24 of Appendix E), as complex models
have stronger generalizability [16,26]. Moreover, other things
being equal, models with larger strides achieve higher success
rates and PSNR, due to the higher downsampling rate, causing
more information loss, as shown in Figure 22 of Appendix E.

5.4 Survivability

To address (RQ3), we discuss the survivability of aliasing
backdoors to five defensive techniques.
Neural Cleanse [55] tries to search the potential triggers and
then runs anomaly detection on the reversed triggers’ norm to
find infected labels. Here we select the backdoored ResNet18
with CIFAR100. To ensure its correctness, we also run Neural
Cleanse on the corresponding benign model.

We report the raw L-1 norm distribution in Figure 11 to
provide more insights. It shows that the reversed triggers of
the backdoored model generally have lower L-1 norms than
that of the benign model. It can be attributed that the alias-
ing introduced by the backdoor can be somewhat activated
through the reverse engineering process, resulting in a smaller
trigger mask. However, no outliers are detected for both mod-
els, i.e., Neural Cleanse fails to identify the backdoor model.
We have tested with more settings as shown in Figure 15 and
Figure 16 of Appendix D and the conclusion stays the same.
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Figure 11: Detection results of Neural Cleanse on the CI-
FAR100 dataset.

ABS [33] tries to reverse triggers by analyzing neuron activa-
tion, i.e., labels with high ASR of reversed triggers are con-
sidered backdoored. Using the experiment setting like Neural
Cleanse, we use ABS to reverse the triggers and Figure 12 ex-
hibits the results. For both the benign and backdoored models,
the ASR of the reversed triggers is below 40%, which means
they cannot be recognized as backdoor triggers, and therefore
ABS fails to detect the backdoored model.
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Figure 12: Detection results of ABS on the CIFAR100 dataset.
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Figure 13: SentiNet detection results on the triggered inputs
from BadNets and the aliasing backdoor.

SentiNet [14] is an input inspection method that detects trig-
gers by anomaly detection. It utilizes GradCAM [47] to ex-
tract the critical regions of inputs and overlay them on test
benign images. Then it computes the average confidence of
inputs overlaid with inert patterns and the number of fooled
samples overlaid with extracted regions. It trains with benign
images and fits a boundary of them. Any inputs outside the
boundary at a certain distance are identified as carrying trig-
gers. We backdoor the ResNet18 model on the downstream
dataset CIFAR10 using BadNets and our approach. Then we
utilize SentiNet to distinguish between inputs with triggers
and benign ones. As depicted in Figure 13, the malicious
inputs of BadNets are almost (>90%) outside the decision
boundary while 99% samples of ours are inside (see visual
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samples in Figure 17 of Appendix D). Therefore, SentiNet
cannot effectively detect the aliasing backdoor.
Input Filtering. Prior research [41] proposes defensive tech-
niques by filtering model inputs, where backdoor triggers can
be likely destroyed. Here we employ two strategies of input
filtering to evaluate our attack: 1) low-pass filtering, where
high-frequency features are removed if they are out of the fre-
quency cutoff D0; 2) selective filtering, to retain the median
or random data points locally within a sliding window.
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Figure 14: Defense results of low-pass filtering in non-
adaptive and adaptive scenarios.

For low-pass filtering, we refer to the ideal low-pass fil-
ter [22] and test on the ViT-S/16/384 model fine-tuned with
the Pets dataset in the fixed-feature setting (see Table 2). We
ensure the mean PSNR of attack samples higher than 18 dB
during attacks. Additionally, as input filtering is readily antici-
pated in reality, the attacker may leverage an adaptive method
to generate more robust triggers. It can be easily implemented
by using input filtering as preprocessing during trigger gener-
ation and leveraging the penultimate layer as the feature layer
f̂ in Equation 8 to extract higher-level features.

Figure 14 shows the defense results against non- and adap-
tive attacks. In the non-adaptive scenario, the low-pass filters
of D0 lower than 90 can reduce the attack success rate to less
than 10%. However, in the adaptive scenario, the attack suc-
cess rate can maintain at a high level of over 80% when the
D0 is below 40; meanwhile, it results in an accuracy decrease
of roughly 10%. The adaptive attack is feasible since D0 can
be easily guessed by the attacker. It can use a collection of
attack samples generated using varying D0 values to easily
deduce the true D0 used by the defender.

For selective filtering, although they can decrease the non-
adaptive success rate to less than 2.11%, the attack still main-
tains a high EASR of over 90% for the selective median filter
and 71% for the selective random filter in the adaptive sce-
nario (see Table 6). Additionally, the random filter results in
a considerable drop in model accuracy of 4.58%.

Overall, input filtering cannot cope with the real-world sce-
nario, which the attacker can easily anticipate and overcome
in an adaptive manner.
Weights Smoothing. We test another defensive technique,
i.e., smoothing the weights of neural networks. Inspired by

Table 6: Defense results of selective filtering.

Filter Acc./∆Acc.
Non-adaptive Adaptive
ASR/EASR ASR/EASR

w/o filter 93.16%/0% 95%/98.95% 95%/98.95%
Selective median 93.10%/0.06% 2%/2.11% 87%/90.53%
Selective random 88.58%/4.58% 0%/0.00% 67%/71.59%

the convolution theorem [22], we apply low-pass filtering to
smooth the weights before fine-tuning pre-trained models,
reducing the high-frequency components in inputs. To further
evaluate the effectiveness of this method, we also explore the
adaptive scenario wherein the attacker is aware of weights
smoothing during trigger generation. Similar to the adaptive
scenario in input filtering, the attacker generates triggers by
optimizing the features extracted from the smoothed and back-
doored model.

Table 7: Defense results of weights smoothing.

D0
Full-network Non-adaptive Adaptive Fixed-feature

Accuracy ASR/EASR ASR/EASR Accuracy

6.0 93.65% 57%/61.96% 91%/96.74% 93.21%
4.5 92.64% 28%/31.46% 86%/92.13% 92.40%
3.0 92.37% 13%/14.29% 87%/92.31% 90.46%
2.0 90.98% 12%/14.12% 31%/36.47% 71.87%
1.0 88.14% 9%/10.34% 15%/16.09% 35.79%

We evaluate this defense with the ViT-S/16/384 model
on the Pets dataset. Table 7 shows that smoothing with a
cutoff frequency of 3.0 can reduce ASR/EASR to 13% and
14% in the non-adaptive scenario, respectively. However, the
attack can still achieve an EASR over 90% when the D0 is
greater than 3.0 in the adaptive scenario. When smoothing
the weights with D0 of 1, although the adaptive success rate
drops to 15%, it causes an accuracy loss of roughly 5.5%.
To significantly decrease the success rate, the defender must
smooth with D0 less than 2.0, reducing the adaptive success
rate to less than 36.5%. However, we found that full-network
fine-tuning is indispensable at this level of D0; fine-tuning
a network after smoothing only at the fixed-feature setting
can result in a substantial drop in accuracy by over 20%. It
is unacceptable for users who opt for transfer learning due to
limited computational resources, as fixed-feature fine-tuning
is a commonly used strategy [2, 30]. Even more, we evaluate
other methods including re-initializing weights and inspecting
weight distributions for defending backdoors in Appendix D.
The results show that these methods are very limited in either
model accuracy retaining, or detection ability for backdoors.

6 Discussion

Previous backdoor attacks were unaware of exploiting ubiqui-
tous strided layers for backdoor attacks. We unveiled a new
attack surface and offered insight into related research. Since
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the backdoor works by aliasing, our proposed backdoor is
applicable to pre-trained models containing subsampling op-
erations. We have proven the feasibility of exploiting the
convolutional strided layers of ConvNets and patch embed-
ding layers of vision transformers. As they typically exist at
the foremost front of model architectures [4], we can manipu-
late their output by directly perturbing the input. The aliasing
backdoor insertion is free of any data demand or parameter
tuning and finished within several minutes, thus the attackers
can quickly spread a lot of backdoored models and threaten
potential victims.

There are other layers containing subsampling opera-
tions such as pooling layers [32, 42]. Theoretically, max-
pooling [42] can also result in aliasing issues [42] that may
be exploited. In contrast, average-pooling [32] alleviates the
aliasing of subsampling by averaging all elements of the input,
which can block high-frequency noises.

7 Related Work

Backdoor Attacks. Data poisoning is a common practice
used for backdoor insertion [12, 25, 48, 62] but it requires the
accessibility of the victims’ training data, which is difficult
to realize. Recently, studies have tried to target the transfer
learning scenario by backdooring pre-trained models. Some
works [28, 43, 59] explore inserting backdoors to the feature
extractor of pre-trained models, therefore, they can survive
from last-layer fine-tuning. These works still demand the
training data of the victim task which is unpractical. Recently,
data-free backdoor attacks are also proposed. TrojanNN [34]
proposes to generate training data by reverse engineering;
DBIA [35] proposes to inject a backdoor into the vision
transformer models by substitute data. These works still de-
mand heavy model re-training which means high attack costs.
TrojanNet [53] is a training-free and data-free backdoor but
model architecture modification is required. Compared to
these data-free works, the backdoor insertion of our work is
not only data-free but also free of data generation or architec-
ture modification. The above backdoors are hard to survive in
multi-layer or all-layer fine-tuning and only work on a specific
dataset.
Aliasing of Neural Networks. Aliasing is a conception in
digital signal processing [37], which refers to the distortion
when re-sampling the signals with inadequate sampling rates.
For images and audio, aliasing happens in spatial and tem-
poral domains respectively. Since down-sampling techniques
such as strided convolutional and pooling layers are ubiqui-
tous in deep neural networks [26, 51], aliasing also happens
in both ConvNets [17, 61] and transformers [40]. Previous
works have demonstrated that aliasing of ConvNets can result
in poor generalization ability, i.e., sensitivity to small shifts in
inputs [9]. However, they have not pointed out the potential
security risk of aliasing. Although some works [40, 61] have
proposed their anti-aliasing techniques, they demand model ar-

chitecture modification and training from scratch. Therefore,
they cannot be used in transfer-learning scenarios where users
do not have resources for model re-training. The aliasing is
also explored in the image-scaling attack [41,58], which aims
to change the visual semantics of one image through scaling
algorithms. Differently, our attack exploits the intrinsic weak-
ness of neural networks, rather than external preprocessing
algorithms, to insert a stealthy backdoor.

8 Conclusion

In this paper, we propose the aliasing backdoor attack on the
pre-trained models. To the best of our knowledge, this is the
first work to exploit the strided layers to launch backdoor
attacks. The aliasing backdoors exist at the strided layers and
threaten all downstream student models and datasets. Our
evaluation shows that aliasing backdoors exhibit high effec-
tiveness, evasiveness with strong survivability and sufficient
stealthiness. With the popularity of pre-trained models in
transfer learning, such low-cost and data-free backdoor at-
tacks significantly threaten deep-learning-based applications.
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A Pre-trained Models & Fine-tuning Datasets

Table 8: Pre-trained models and their parameters.

Model Training Data Params Input1 Stride2

ViT-S/16/384
JFT-300M [50]
ImageNet [15]

22M 384×384 16
ViT-S/16/224 22M 224×224 16
ViT-B/16/224 87M 224×224 16
ViT-B/8/224 87M 224×224 8
ResNet50/21k ImageNet-21K [44] 26M 224×224 2
ResNet18

ImageNet [15]
12M 224×224 2

ResNet50 26M 224×224 2
ResNet101 45M 224×224 2
FaceNet VGGFace2 [11] 56M 160×160 2
Wav2Vec2-Base Librispeech [38] 95M 16 kHz 5
1 Image input size or audio sampling rate.
2 Stride of the strided layer.

Table 9: Datasets for model fine-tuning.

Dataset Classes Size (train/test)1

CIFAR-10 [31] 10 50000/10000
CIFAR-100 [31] 100 50000/10000

Oxford-IIIT Pets [39] 37 3680/3669
Oxford 102 Flowers [36] 102 2040/6149

Caltech-101 [18] 102 3153/5991
Caltech-256 [24] 257 15360/15247

CFP [45] 500 3500/3500
TIMIT [20] N/A 5h/3.6h

1 There is no overlapping between train and test splits. We subset
the train split for validation.

The pre-trained models used in this paper are shown in
Table 8. All the ViT models and ResNet models are from
library Timm [57] except the pre-trained ResNet50/21k model
is from [44]. The datasets we utilize are listed in Table 9. They
are typical transfer learning tasks, widely used to evaluate the
performance of pre-trained models in prior studies [16,30,44].

B Attack Settings

Fine-tuning in Comparison to Baselines. For the Bad-
Nets/TrojanNet/Latent Backdoor baselines, we fine-tune them
to evaluate their survivability with the full-network setting.
We set the learning rate as 0.005 and utilize an Adam opti-
mizer with a batch size of 64, momentum of 0.9, and weight
decay of 1e− 4. We fine-tune the models of baselines the
same as our models for 20 epochs.
Image Classification. For all datasets, we utilize two fine-
tuning settings mentioned in Section 5.1. During fine-tuning,
we fix the running means and variances of normalization lay-
ers. Following previous work [30], we use the SGD optimizer
with a batch size of 64, momentum of 0.9, and weight de-
cay of 1e−4. The learning rates vary from 0.001 to 0.01 for
different datasets and models with an exponential learning
rate schedule of decay of 0.9. To avoid overfitting, we adopt
an early stopping strategy with tolerance 5 and 100 training
epochs. For the same task, the backdoored model and clean
model are fine-tuned at the same setting.
Face Recognition. We fine-tune the FaceNet [46] model pre-
trained on VGGFace2 [11] with the feature extractor fixed on
the CFP [45] dataset for 10 epochs. The optimizer is Adam
with a learning rate of 1e−3 and a batch size of 32.
Speech Recognition. The Wav2Vec2 [10] is pre-trained by
self-supervision on unlabelled Librispeech [38]. We select the
base model of it and utilize TIMIT [20] as fine-tuning data.
We follow the official instruction [10] to fine-tune the model
with CTC [23] and frozen encoder part. At the inference
phase, we connect the CTC acoustic model with a public
4-gram language model [7].
Target Commands in Speech Recognition Attack: “what is
the weather”, “call my wife”, “where is my car”, “turn off the
computer”, “open my door”, “navigate to my house”, “turn on
airplane mode”, “call nine one one”, “take a picture”, “clear
notification”.

C Automatic Parameter Selection

In Algorithm 1 we describe how to automatically determine
the parameters β1,β2. We first try to achieve the attack with-
out an aliasing intensity limitation, thus we can find a refer-
ence value of β1. While increasing β1, we need to maintain
the same prediction of attack sample x and target sample x1
on the pre-trained model M; meanwhile, the attack sample’s
stealthiness ψ(x,x2) (e.g., peak-signal-to-noise of images)
should be greater than the specified threshold γ. Once β1 is
determined, we increase β2 gradually to force the aliasing
intensity to decrease to a specified level η.

Obtained from Algorithm 1, β2 can be used as reference
parameters. Then the attacker can manually change the value
of β2 to change the aliasing intensity of backdoors which
balances the model performance and attack effectiveness. In-
tuitively, a higher β2 yields stronger aliasing intensity. Thus
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Algorithm 1: Automatic Parameter Search
Input: pre-trained model M and its strided layer f̂ ; inducing

samples x1,x2; stealthiness metric ψ; stealthiness
threshold γ; aliasing intensity η; step sizes α1,α2 for
β1,β2

Output: β1,β2
1 x← x1
2 β2← 0 // unlimited aliasing intensity at beginning

3 β1← 1
// β1 search

4 Pk,x=TransformationSearch( f̂ ,x1,x2,β1,β2) // Equation 7

5 while ψ(x,x2)< γ & M(x)=M(x1) do // e.g., PSNR<18 dB

6 β1← β1 +α1

7 Pk,x=TransformationSearch( f̂ ,x1,x2,β1,β2)

// β2 search

8 while DI(Pk)> η do // e.g., DI > 1.0

9 β2← β2 +α2

10 Pk,x=TransformationSearch( f̂ ,x1,x2,β1,β2)

the attacker can flexibly adjust the backdoor accordingly.

D More Experiments on Defenses
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Figure 15: Trigger L-1 norm reversed by Neural Cleanse on
ResNet18 and CIFAR10. The target label of BadNets is 0.
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Figure 16: Neural Cleanse results on the CIFAR100-LT
(IF=100).

Neural Cleanse. In Figure 15, the result on CIFAR10 indi-
cates that our backdoored model shows no obvious anomaly
on any specific label.

To further assess the detectability of backdoors in reality,
we construct a long-tail scenario wherein a small number of

popular classes possess the majority of the data and other
classes have very few samples, forming a “long tail" distribu-
tion. Specifically, we backdoor and fine-tune the pre-trained
ResNet50/21k model on the CIFAR100-LT [8] dataset, which
exhibits an imbalanced factor (i.e., the ratio between popular
classes samples and tail classes samples) of 100. We then
apply Neural Cleanse to reverse the trigger of the fine-tuned
model and compare the results to those obtained from a be-
nign model. As depicted in Figure 16, the backdoored model
does not produce a significantly lower outlier that could be
indicative of an infected label. Similarly, we found that the
L-1 norms of the triggers associated with the backdoored
model are lower than those of the benign model, just like the
balanced scenario.
SentiNet. Figure 17 shows the critical regions marked by
GradCAM. The heatmaps indicate that attack samples share
similar critical regions as target samples. Therefore, the inputs
with triggers cannot be distinguished from benign ones.

target 

sample

attack 

sample

Figure 17: Critical regions between attack samples and target
samples identified by GradCAM.
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Figure 18: ASR/Accsrc of benign and backdoored models
with different PSNR. We utilize a benign ViT-S/16/224 model
to evaluate Accsrc.

Aliasing Inspection. As our attack is based on the aliasing
effect, it seems anti-aliasing works may help defend against
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our attack. However, existing works are striving to design
new model architectures with anti-aliasing modules [40, 61].
That is, they require modifying the network architecture and
re-training the pre-trained model, which contradicts the goal
of transfer learning.

Compared to benign models, models with aliasing back-
doors are more suffering from aliasing and therefore the out-
put of their strided layers can be manipulated. As we have
mentioned in Section 5.2, the B4 attack yields attack samples
of much worse actual stealthiness. The difference between the
B4 attack and the aliasing backdoor attack is whether there
exists an aliasing backdoor in the model. Therefore, given a
suspicious model, the victim can assume it is backdoored and
try to generate samples by the B4 attack.

Figure 18 shows that the ASR of the backdoored model
is much higher than that of the benign model whose ASR
significantly drops when PSNR is greater than 22 dB. We also
found that the generated samples of the benign model are of
much worse stealthiness and quality; the Accsrc is lower than
40% even when the PSNR is greater than 22 dB. As shown in
Figure 19, the generated samples of the benign model exhibit
poor quality and obvious human-recognizable features from
the target samples while the backdoored model does not.

𝑥𝑠 𝑥𝑡 Backdoored 

Model

Benign 

Model

generate 

sample

Figure 19: Some generated samples of the benign and back-
doored models.

Weight Re-initialization. Since the backdoor exists at the
strided layer, the victim can re-initialize its weight and re-train
the model to remove the backdoor. However, according to
our experiments, the model cannot converge if the victim re-
initializes the strided layers before fine-tuning. It is because
once the earlier layers are randomized, all gradients obtained
to update the later layers deviate from the correct convergence
direction. Therefore, we re-initialize the backdoored layer and
re-train it for extra 100 epochs (phase 1), after the model has
been fine-tuned in a downstream task. Figure 20 indicates that
the model converges but with a much lower accuracy (<80%).
To improve the performance, we continue to fine-tune the
full network for another 100 epochs (phase 2). The results
are still significantly lower than what benign models yield in
Table 2 (by 7.13%/5.48% for ResNet50/21k and ViT-S/16/384
respectively). Therefore, this defense is not practical.
Weights Inspection. The weights of backdoored models may
exhibit distinctive features, which can be used for backdoor
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(a) Phase 1: Retrain the strided layer
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(b) Phase 2: Retrain the full network

Figure 20: Accuracy of re-initializing and re-training the back-
doored strided layer on the Pets dataset.

detection. To verify this assumption, we follow prior stud-
ies [54, 56] and extract histograms of weights from both the
backdoored and benign strided layers.

Figure 21 (a) shows the distributions of two benign mod-
els and a backdoor model. It reveals that the weight distri-
bution of the backdoored ResNet50/21k model is steeper
than its original, but shows no obvious features with another
benign ResNet50 model of the same architecture (i.e., the
“gluon_resnet50_v1b” model from Timm [57]). Meanwhile,
the same phenomenon happens for the ViT-S/16/384 model,
and backdoors with higher aliasing intensity DI cause higher
peaks, as shown in Figure 21 (b). One reasonable explanation
is that the aliasing backdoor needs to strengthen the weights
that are related to backdoors but weaken the others. This phe-
nomenon is also observed in the scaling attack [41], where
many pixels have smaller weights in the kernel of scaling
algorithms.

From the view of backdoor detection, weights inspection
is not an effective method, as it cannot tell apart the weight
distributions between backdoored models and benign ones.
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Figure 21: (a) The distribution of weight parameters of the
backdoored/benign ResNet50/21k model, as well as another
benign ResNet50 model from GluonCV; (b) The weight dis-
tribution of backdoored ViT-S/16/384 models with varying
levels of DI .

E Impact of Other Factors

Impact of Stride Size. To explore the impact of the stride
sizes of strided layers, we replace the front strided layer of the
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ResNet18 model with convolutional layers of kernel size 3
and varying stride sizes ranging from 2 to 7. Subsequently, we
pre-train these modified models on CIFAR10 and insert the
aliasing backdoor with the same DI value of 0.8. To ensure the
basic performance of models with varying strides, we set the
input size as 384, avoiding of information loss for CIAFR10
whose image size is 32. The success rates and PSNR values of
the fine-tuned student models, which were trained using these
backdoored teacher models, were evaluated on CIFAR10. As
depicted in Figure 22, we observed that backdoors with larger
stride sizes (>4) exhibited higher PSNR values when achiev-
ing the same success rate, indicating improved stealthiness.
This is attributed to the impact of larger stride sizes. Similar
to the scaling attack [41], the stride size plays a similar role
as the scaling ratio. They determine how many pixels are
utilized during subsampling. With a larger stride size, fewer
pixels are needed to be modified, so that better stealthiness
can be achieved under the same success rate.
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Figure 22: The PSNR of attack samples when backdoor-
ing networks with varying strides. The attack success rates
(EASR) of these backdoors are 90%.

Impact of Inducing Samples. Here we show how different
types of inducing samples impact the weight modification,
and further influence attack performance. As illustrated in
Figure 23, for the same value of DI , both Gaussian noise with
N (0,1) and random uniform noise with U(0,1) lead to a
smaller LW than meaningful inducing samples, indicating a
reduced need for weight modification. Therefore, it leads to
better model accuracy after backdoor insertion. On the other
hand, it causes worse attack effectiveness and stealthiness
compared to meaningful inducing samples, as illustrated in
Figure 10.
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Figure 23: DI and LW of different inducing samples.

Impact of Model Selection. Table 10 summarizes the evasive-
ness performance when backdooring various models. More
details about these models are listed in Table 8. For compari-
son, we make the DI of all models close to 1, which results

in relatively intense aliasing but a more obvious comparison.
We can see that the ViT-S of bigger input size shows better
evasiveness; and with the same input size, models of larger pa-
rameter size show better evasiveness. Meanwhile, all models
pre-trained on large-scale datasets (JFT-300M or ImageNet-
21K) achieve better results than models only pre-trained on
ImageNet. These results indicate a positive effect of larger
input size, parameter size, and pre-training data size.

From Figure 24, we see an obvious trend that the results
of vision transformers are much better than that of ResNets,
which conforms to the image classification results in Table 2.
Compared to ViTs with smaller input sizes, ViT-S/16/384
achieves better attack performance at all metrics, which high-
lights the influence of input size. We notice that recently
more and more works are tending to utilize larger input
sizes than 224 to achieve better performance on downstream
datasets [16, 30]. It indicates that aliasing backdoors pose a
greater threat to these models.

We found that ViT-B/8/224 of smaller stride size achieves
better Acc./∆Acc. and EASR than ViT-B/16/224. It may at-
tribute to the patch embedding layer used in vision trans-
formers. With a smaller patch embedding size, the model can
extract more fine-grained context information of patches to
obtain better performance.

From the viewpoint of users, it is better for attackers to
share high-performance models. Our benign model accuracies
are comparable to those reported for the similar-size models,
e.g., the ViT paper [16]. Also, higher accuracy can be achieved
by backdooring larger state-of-the-art models.

Table 10: Performance of various image models.

Model Params DI LW Acc. ∆Acc.

ViT-S/16/384 22M 1.0 30.12 92.99% 0.48%
ViT-S/16/224 22M 1.0 28.40 89.22% 2.73%
ViT-B/16/224 87M 1.0 14.15 90.55% 2.22%
ViT-B/8/224 87M 1.0 11.40 92.60% 1.28%

ResNet50/21k 26M 1.0 21.82 90.26% 1.67%
ResNet50 26M 1.0 27.57 88.31% 4.04%

ResNet101 45M 1.0 24.04 88.71% 3.26%
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Figure 24: EASR of various pre-trained models (DI = 1).
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