
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

PET: Prevent Discovered Errors
from Being Triggered in the Linux Kernel

Zicheng Wang, Nanjing University; Yueqi Chen, University of Colorado Boulder;
Qingkai Zeng, Nanjing University

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zicheng

PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel

Zicheng Wang∗

wzc@smail.nju.edu.cn
Nanjing University

Yueqi Chen
yueqi.chen@colorado.edu

University of Colorado Boulder

Qingkai Zeng
zqk@nju.edu.cn

Nanjing University

Abstract
The Linux kernel is the backbone of modern society. When
a kernel error is discovered, a quick remediation is needed.
Whereas sanitizers greatly facilitate root cause diagnosis, fix-
ing errors takes a long time, resulting in errors discovered but
still exploited. In this work, we propose PET, a temporary so-
lution to prevent discovered errors from being triggered and
exploited before patches are available.

Technically, PET takes a sanitizer report as the input, con-
structing the triggering condition that can be evaluated at run-
time. If the condition is met, PET takes a series of actions to
prevent error triggering. PET is designed to be extensible to
various error types. In our experiment, we demonstrated its
effectiveness against the five most common errors that state-
of-the-art sanitizers can report. PET is lightweight with per-
formance overhead less than 3%. Further, PET is scalable in
the presence of multiple errors with acceptable memory as-
sumption. The kernel has run stably for more than 3 months
under intensive use after errors are prevented.

1 Introduction

It is often stated that modern civilization runs on Linux,
because it is widely used in cloud servers, mobile phones,
transportation systems, and even nuclear plants [1, 2]. How-
ever, the Linux kernel is sophisticated and error-prone, as
evidenced by the numerous bugs discovered by various au-
tomated tools (e.g., [3–13]) and reported exploits (e.g., [14–
21]).

To fix these newly discovered errors or 0-day exploits
caught in the wild, security analysts need to diagnose their
root cause and develop patches to be merged to the upstream
kernel. Sanitizers [22–25] like Kernel Address Sanitizer
(KASAN) [26], Kernel Memory Sanitizer (KMSAN) [27],
and Kernel Concurrency Sanitizer (KCSAN) [28] provide a
crucial advantage, as they allow security analysts to repro-
duce the errors and obtain reports containing in-depth infor-

∗The work was done while visiting the University of Colorado Boulder.

Integer
Overflow
Template

Use-After-
Free

Template
…

Out-of-
Bound

Template
Data Race
Template

Report Processor Sanitized-Native
Mapper

Checkpoint-
Restore Analyzer

eBPF Helper Library

Prevention Policy (Error-dependent)

Infrastructural Mechanisms (Error-independent)

Figure 1: Two-layer architecture. The underlying layer is error-
independent, providing a set of infrastructural mechanisms. The
overlaying customizes prevention policies for different error types.

mation about the error. The use of sanitizer reports helps
to streamline the error debugging process and enables more
efficient patch development. The success of sanitizers in
the Linux kernel has led to their adoption on Microsoft plat-
forms [29].

However, quickly remediating these errors remains chal-
lenging for the security community. Due to a lack of man-
power and the time-consuming nature of diagnosis which
requires specialized expertise, currently, fixing kernel vul-
nerabilities takes an average of 66 days [30]. During this
time window, adversaries can craft Proof-of-Concept (PoC)
programs or exploits to compromise the kernel or even es-
calate privilege to steal sensitive data. It has been reported
multiple times that despite being discovered, errors are still
exploited [31–33].

In this work, we design and implement PET, a solution
that prevents discovered errors (including both memory er-
rors and their root causes) from being triggered and exploited
in the Linux kernel before patches are released. Unlike prior
works (e.g., [34–38]) that aim to precisely diagnose the root
cause of the error from the report, PET takes a sanitizer re-
port as the input and constructs the triggering condition of
the corresponding error to be evaluated at runtime. If the
condition is met, PET will take a series of actions including
skipping the error sites. Since the error cannot be triggered,
it is impossible to exploit it.

USENIX Association 32nd USENIX Security Symposium 4193

Technically, PET is designed to be extensible with two lay-
ers as shown in Figure 1. The overlaying layer (§5) is error-
dependent, customizing prevention policies for different er-
ror types. These policies are expressed in eBPF program
templates where the specifications of the error details can be
filled in. The underlying layer (§6) is error-independent, pro-
viding a set of infrastructural mechanisms including ¶ a re-
port processor which offers a uniform interface to extract crit-
ical information from sanitizer reports, · a sanitized-native
mapper which translates critical error information like the
error site from sanitized kernel image to native kernel image
that needs protection, ¸ a checkpoint-restore analyzer which
attempts to return the kernel to normal states after skipping
the error sites, ¹ a library of commonly used eBPF helper
functions.
PET currently is shipped with prevention policies for the

five most common errors that state-of-the-art sanitizers can
report. They are integer underflow/overflow which accounts
for all 68 Undefined Behavior Sanitizer (UBSAN) reports,
out-of-bounds access, and use-after-free, making up 94%
(995/1059) of KASAN reports, uninitialized access, account-
ing for all 295 KMSAN reports, and data race, which cov-
ers all 123 KCSAN reports. These errors are widely recog-
nized to be exploitable and according to our extensive collec-
tion, 75.4% (184/244) public exploits or writeups targeting
the Linux kernel over the past decade focus on these errors.
Further, Microsoft reports that around 70% software vulner-
abilities addressed every year pertain to those memory safety
issues [39]. Our evaluation on v5.15 shows the effectiveness
of PET in preventing these error types. In the future, PET can
be further extended to support more types as new sanitizers
are designed and released.
PET is lightweight with a performance overhead less than

3%. Further, PET is scalable in the presence of multiple er-
rors. The largest amount of extra memory required by PET is
915 MB. We argue it is not a concern for modern OS kernel
because the kernel has full access to physical memory which
is typically more than 16GB nowadays.

In comparison with the prior work [30], which equips the
kernel with the capability of undoing the error effect through
instrumentation and recompilation, PET can be enabled at
runtime without rebooting the system and interrupting kernel
execution. In addition, as an end-to-end system, PET can au-
tomatically generate error-prevention immediately upon the
vulnerability discovery while [30] requires human assistance
for such s process.
PET is a temporary solution designed to prevent errors be-

fore the official patches are released. While empirical eval-
uation shows that after PET successfully prevent all errors
in our testcase set, the kernel runs stably for over 3 months
which is much longer than the typical 66 days time window
for patching, the state recovery capabilities of PET have cer-
tain limitations, as we will discuss in §6.3. Therefore, it is
recommended to apply official patches once they are avail-

able. In summary, this work makes the following contribu-
tions.

• We designed PET to prevent discovered errors from be-
ing triggered and exploited before official patches are
released.

• We illustrated the customization of prevention policies
using five commonly reported errors by state-of-the-art
sanitizers.

• We implemented PET in the Linux kernel and thor-
oughly evaluated its effectiveness and performance by
using real-world errors.

In the following, we first introduce the background in
§2 and outlines the threat model and assumptions in §3,
followed by the workflow in §4. We explore the error-
dependent overlaying layer in §5 and detail the error-
independent underlying layer in §6. §7 discusses our im-
plementation. §8 evaluates the effectiveness and overhead
of PET. §9 reviews related works. §10 provides future work
and discussion, followed by the conclusion in §11.

2 Background

In this section, we provide background knowledge that is es-
sential for understanding PET. First, we present the memory
of the Linux kernel, common memory errors, and the kernel
sanitizers for testing and debugging. Afterward, we delve
into the features and capabilities of eBPF mechanisms.

2.1 Linux Kernel Memory and Errors
Data objects stored in different kernel memory regions have
their own lifecycle and boundary.

Global & Static Regions. Kernel data objects in global
and static regions (e.g., .data, .rodata sections) are kept alive
from kernel bootup to kernel shutdown. They are automati-
cally initialized to a specific value or zeroed during compila-
tion. The size of global and static objects is also pre-defined
before they are loaded into the physical memory. Legal ac-
cess is only allowed within the boundary.

Kernel Stacks. The kernel has a stack for each userspace
process which is used when system calls are invoked, and
an interrupt task per CPU to handle external interrupts. The
life cycle and boundaries of objects in both stacks follow the
same principle. In terms of life cycle, when a kernel function
is called, its stack frame is created and stack objects come to
life after the prologue. After the epilogue, the stack frame
is destroyed, making the stack objects dead. During this life
cycle, stack objects must be initialized before they are read.

In terms of boundaries, while the C99 standard introduces
the variable-length array (VLA) feature, which allows the
length of stack arrays to be determined at runtime, the Linux

4194 32nd USENIX Security Symposium USENIX Association

kernel has discarded this feature since v4.20 for better secu-
rity and lower overhead [40]. Therefore, the size of all stack
objects is pre-defined at compilation time and access to them
should never exceed the boundaries.

Kernel Heaps. The kernel heap is comprised of three mem-
ory regions managed by Buddy System, SLAB/SLUB alloca-
tor, and vmalloc allocator, respectively. Buddy System man-
ages objects that are larger than one page. The SLAB/SLUB
allocator obtains physically contiguous pages from Buddy
System and uses them to store small objects. These pages
are known as slab cache and are divided into slots with fixed
sizes. The vmalloc allocator is also a customer of Buddy
System, but the memory it manages is virtually contiguous.

The life cycle of heap objects begins and ends when an al-
location interface and a deallocation interface are explicitly
called. The three allocators have their own (de)allocation
interfaces, such as alloc_pages-series and free_pages-series,
kmalloc-series and vmalloc-series. The memory after deallo-
cation will be reclaimed for future reuse. Similar to stack
objects, heap objects must be initialized before they are read,
but the size of heap objects can be either pre-defined at com-
pile time or dynamically determined at runtime (e.g., elastic
object [17]). Once the size of a heap object is determined,
access to it should never go beyond the boundary.

Memory Errors and Root Causes. A memory error occurs
when either the life cycle or the boundary of a kernel object
is broken and thus be categorized as a temporal error or a
spatial error.

Use-after-free and its special instance, double-free, refer
to the situation when a stack or heap object is accessed
through a dangling pointer after its life cycle has ended.1

Uninitialized access occurs when a stack or heap object is
read before it has been initialized. Kernel objects in global
and static regions are exempt from temporal errors as they
are alive from kernel bootup and are automatically initialized
by the compiler. Out-of-bound access can result from integer
overflow, type confusion [41, 42], data race, and many other
root causes. Since a buffer is not a necessity for such error,
we use the term "out-of-bound access" to describe all situa-
tions where the read or write of a kernel object exceeds its
legitimate boundary.

Exploitability of Kernel Memory Errors. We extensively
collected in total 244 public exploits and writeups target-
ing the Linux kernel over the past decade, sourced from
Github, BlackHat, BlueHat, Pwn2Own, and personal blogs
(e.g., [43]). The statistics show that 75.4% (184/244) of them
exploit memory errors described above. To elaborate, these
include 5.7% for integer underflow/overflow, 26.3% for out-
of-bounds access, 37.3% for use-after-free, 4.9% for unini-

1Though use-after-scope is the term for stack objects, here, we uniformly
use use-after-free for simplicity.

tialized access, and 1.2% for data race.2 These errors can be
detected by sanitizers and covered by PET.

2.2 Kernel Sanitizers
A variety of kernel sanitizers have been developed to detect
memory errors and their root causes. The sanitizers are not
intended for protection, but rather for testing and debugging,
because they rely on shadow memory and heavy instrumen-
tation which significantly slow down the kernel execution.
When detecting memory errors, sanitizers will generate in-
formative bug reports for further analysis. In this work, we
leverage the information contained in the report to prevent
attackers from triggering and exploiting the reported errors.

Sanitizers can be grouped into two categories: One is
those that directly detect memory errors, such as Kernel
Address Sanitizer (KASAN) for use-after-free and out-of-
bound access and Kernel Memory Sanitizer (KMSAN) for
uninitialized access. Another is those that detect root causes
of memory errors, such as Undefined Behavior Sanitizer
(UBSAN) [44] which can detect integer overflows before the
integer is used as the buffer index and cause out-of-bound
access, Kernel Thread Sanitizer (KTSAN) [45] and Kernel
Concurrency Sanitizer (KCSAN) - both for data race with
KCSAN being more widely used due to its simplicity[46].

2.3 The eBPF Ecosystem
Extended Berkeley Packet Filter (eBPF) is a Linux subsys-
tem that allows safely executing untrusted user-defined ex-
tensions inside the kernel. The extension - eBPF program is
installed to the kernel by attaching to specific instructions.
These instructions are overwritten as either int3 with the
eBPF program registered in the interrupt handler or jmp/call

which directly diverts the execution to the eBPF JIT engine.
As such, eBPF programs can be attached to any kernel in-
struction at runtime, executed either before or after it.

eBPF programs are stateful across system calls with data
stored in a kernel data structure named BPF maps. A BPF
map is a set of key-value pairs. By specifying the type of
key and value, the eBPF program developer can store arbi-
trary data. Holding a key, the eBPF program can look up
and update the corresponding value. Therefore, BPF maps
are usually used as a communication channel among eBPF
programs and userspace applications. To enhance the expres-
siveness of eBPF programs, the eBPF subsystem provides a
set of helper functions as the interface between eBPF pro-
grams and other kernel components. The eBPF program
calls helper functions to interact with the kernel, getting ad-
ditional information such as the elapsed time since kernel
bootup and the PID of the current process.

2If one case, for example, is integer overflow caused by data race and
finally results in out-of-bound access, we classify it as data race - the root
cause, to avoid duplication

USENIX Association 32nd USENIX Security Symposium 4195

In recent years, eBPF ecosystem is rapidly evolving to be
deployed to accelerate userspace services [47–49], as well as
monitor and change kernel behaviors [50–54]. In this work,
we employ eBPF ecosystem to design our run-time protec-
tion because it has the following advantages compared with
other Linux tracing systems such as kprobes [55]: (1) safety
- the Linux kernel has a static verifier to ensure its safety be-
fore loading. (2) expressive not only because of helper func-
tions and BPF maps but also because of a mature toolchain
consisting of a compiler that translates the eBPF bytecode
to the native CPU instruction set. (3) only privileged users
like system administrators can install and uninstall eBPF pro-
grams to the kernel. Therefore, attackers - unprivileged users
are prevented from directly disabling our protection. In §10,
we will discuss alternative implementations that might also
work for our design.

3 Threat Model and Assumptions

Attacker-wise. Attackers can have PoC programs or func-
tioning exploits for errors in any kernel subsystem, including
the eBPF subsystem. These could be 0-day errors that have
not been publicly disclosed but detected by the blue team,
or n-day errors that have been disclosed but not yet patched.
By executing the PoC or exploit, the attacker can trigger the
error to panic the kernel or perform exploitation to escalate
privilege and steal sensitive data.

The attacker is aware of the presence of PET on the vic-
tim’s machine. They can indirectly influence the execution of
PET through the use of system calls or sending network pack-
ets. However, as an unprivileged user, the attacker cannot
directly disable PET by uninstalling eBPF programs, which
requires privileged access.

Defender-wise. Defenders (i.e., users of PET) are system ad-
ministrators or blue teams who have the necessary privileges
to access the debugging information and configuration files
of the vulnerable kernel image, as well as the ability to in-
stall eBPF programs into the kernel space to deploy PET. We
assume the eBPF programs are bug-free based on the fact
that the Linux kernel performs a static safety check on all in-
stalled eBPF programs. This assumption doesn’t contradict
the assumption that the eBPF subsystem is vulnerable as a
part of the kernel.

Defenders are aware of the error and have a report gen-
erated by the sanitizer. For 0-day exploits found in the
wild, defenders can obtain their reports by reproducing them
on a sanitized kernel. For n-day vulnerabilities, a signifi-
cant portion of Linux kernel vulnerabilities are reported by
Syzkaller [56] which generates and releases sanitizer reports
upon discovering errors. For errors detected through static
analysis, the defenders can manually verify them using the
sanitized kernel to generate the report. Note that the re-
port information may not always be accurate, such as benign

Sanitizer’s
Report

Process

Map

Triggering
Condition

eBPF
Programs

ConstructExpress

Sanitized Kernel

Native Kernel

apparmor_setprocattr():

0xffffffff814de980 <+0x0>: callq <__fentry__>
…

0xffffffff814de9d1 <+0x51>: callq <__kmalloc>
…

0xffffffff814dea0f <+0x8f>: movb $0x0, (%rsi, %rdi, 1);
…

0xffffffff814deb01 <+0x181>: ret;

Runtime
Native Kernel

Install
checkpoint - I

checkpoint - II

detect & take action

restore

Map
Error Info at

Sanitized Binary
Error Info at

Source Code

Error Info at
Native Binary

Figure 2: The workflow of PET consists of three major phases, as
described in detail in §4.
1 KASAN: slab-out-of-bounds in

↪→ apparmor_setprocattr+0x116/0x590
2 Write of size 1 at addr ffff888007449c80
3 Call Trace:
4 apparmor_setprocattr+0x116/0x590
5 proc_pid_attr_write+0x15f/0x1e0

Listing 1: The KASAN report snippet for the out-of-bound access
vulnerability CVE-2016-6187 migrated and reproduced in v5.15.

data races being reported by KCSAN and KTSAN). To ad-
dress this, defenders are encouraged to provide corrections
using the methods discussed in previous research works [57].
Given that a single report only manifests one behavior of the
error, defenders can use the techniques proposed in [58] to
diversify error behaviors and their corresponding reports.

4 Workflow

We use CVE-2016-6187, a slab out-of-bound write vulner-
ability as an example, to illustrate the prevention workflow.
As shown in Figure 2, it consists of three major phases.

In the first phase, PET analyzes the sanitizer report to ex-
tract key information about the error in the sanitized ker-
nel. List 1 shows the partial KASAN report for CVE-2016-
6187 when it was migrated and reproduced in v5.15. From
line 1 and 2 in the report, PET determines that the error is
an out-of-bound write that affects the memory managed by
the SLAB/SLUB allocator. From line 1 and 4, PET pin-
points the error site where out-of-bound write is triggered
is apparmor_setprocattr+0x116 - offset 0x116 from the start of
function apparmor_setprocattr. Further analysis of the sani-
tized kernel image reveals that the error site corresponds to
the instruction movb $0x0, (%r14). When the vulnerability is
triggered, register %r14 refers to an area outside the legitimate
boundary of a kernel object in the slab cache.

In the second phase, PET maps the error sites from the
sanitized kernel to the native kernel and constructs trigger-

4196 32nd USENIX Security Symposium USENIX Association

ing conditions correspondingly. Since sanitizers instrument
the kernel during compilation, the error site and triggering
condition for the sanitized kernel and the native kernel are
distinct at the binary level. In our example, the error in-
struction in the native kernel is movb $0x0, (%rsi, %rdi, 1) at
apparmor_setprocattr+0x8f, which differs from its counterpart
movb $0x0, (%r14) in the sanitized kernel. PET leverages the
DWARF debug information of the sanitized kernel and the
native kernel to map the sanitized instruction to the source
code statement args[size] = ’0’ and then to the native in-
struction. Further analyzing the mapped mov instruction, PET
learns that register %rsi refers to the overflowed buffer args,
while %rdi stores the value of the excessive index size. The
trigger condition for the reported out-of-bounds error is en-
coded as %rsi+%rdi*1 being beyond the bounds of the args

buffer. This trigger condition is expressed in an eBPF pro-
gram with the help of our added eBPF helper functions.

The third phase leverages the advantages of the eBPF
ecosystem discussed in §2 to install the eBPF program into
the native kernel at runtime to prevent errors. This error-
preventing eBPF program is executed right before the mov

instruction in the native kernel. It uses BPF helper functions
to access runtime information from the kernel execution en-
vironment, and checks if the trigger condition is met. If not,
the kernel continues its normal execution. Otherwise, this in-
dicates that the kernel memory will be corrupted by the mov

instruction, and the eBPF program takes immediate action to
prevent it.

The actions include: (1) record this malicious event by
writing to /sys/kernel/debug/tracing/trace_pipe, (2) send a
SIGKILL signal to the runtime kernel. Upon switching back to
user mode, the kernel terminates the current process because
it is behaving maliciously by constructing a kernel context
that could trigger the out-of-bound write error, (3) skip the
mov instruction and direct the kernel execution to the exit of
the function apparmor_setprocattr. Another set of eBPF pro-
grams, i.e., checkpoint and restore programs in Figure 2, will
oversee execution and attempt to recover the kernel state.

If the CPU is in interrupt, PET will not send SIGKILL signal
as the scheduled process during the interrupt may not be the
source of the exploit. This does not weaken PET’s security
improvement. On the one hand, performing exploitation in
the interrupt context is challenging due to the restriction of
malicious payload and memory layout manipulation: none
of our extensively collected exploits/writeups target errors in
interrupt. On the other hand, since the error instruction is
skipped, the error-triggering attempt is effectively thwarted.

5 Error-dependent Prevention Policies

In this section, we present prevention policies for the five
most commonly reported errors by state-of-the-art sanitizers.
As described in §2.1, these errors are widely exploited and
account for almost all errors that sanitizers can report.

1 UBSAN: shift-out-of-bounds in
↪→ drivers/usb/gadget/udc/dummy_hcd.c:2293:33

2 shift exponent 257 is too large for 32-bit type
↪→ ’int’

3 Call Trace:
4 dummy_hub_control.cold+0x1a/0xbc

↪→ drivers/usb/gadget/udc/dummy_hcd.c:2293

Listing 2: The UBSAN report snippet for an integer overflow
error [59].

1 SEC("kprobe/?") // error site
2 int BPF_KPROBE(...) {
3 // retrieve register context
4 if (?) { // triggering condition
5 // record the error
6 // send SIGKILL if not in interrupt
7 // skip the error instruction
8 // direct to function exit
9 return -1;
10 }

Listing 3: Example of the eBPF template to prevent integer
underflow/overflow where "?" represents the details to be filled in.

5.1 Integer Underflow/Overflow Policy

Integer underflows/overflows can be detected by UBSAN
and categorized into three specific scenarios: (1) arithmetic
overflow resulting from arithmetic operations, e.g., add %al,

↪→ 0x2 where %al is equal to 0xffff, (2) shift overflow caused
by shift instructions, e.g., shl %al, 10 where %al is equal to
0x0012, and (3) implicit conversion from move instructions
(e.g., mov %rbx, %eax) 3.

Regardless of the scenarios, our prevention policies are
consistent. In the eBPF program installed before the error
instruction (e.g., dummy_hub_control.cold+0x1a shown on line
4 in List 2.), we retrieve values of related operands and then
double-size them to simulate the computation of the instruc-
tion. For example, if the original operand is 32-bit, it is
scaled up to 64-bit. Thus adding two 32-bit values %eax+%ebx

becomes adding two 64-bit values %rax+%rbx in the simu-
lation. By comparing the results before and after double-
sizing, we can determine if an underflow or overflow will
occur in the error instruction. This condition is expressed
as (%eax+%ebx)==(%rax+%rbx)?false:true to be filled into the
eBPF template. For shift overflow, an additional check is
performed on the shift length to make sure it is smaller than
the original size. In the example in List 2, the shift length
must be smaller than 32 for a 32-bit int type.

If the triggering condition is met, meaning the expression
returns true, PET will take actions to prevent the error. These
actions are provided by the underlying mechanism and pre-
defined in the eBPF templates. The template only requires
the error site and triggering condition to be filled in line 1
and 4 in List 3 to generate a concrete program.

3This instruction is for clarification purpose and doesn’t exist in x86.

USENIX Association 32nd USENIX Security Symposium 4197

5.2 Out-of-bound Access Policy

Out-of-bound access can be reported by KASAN. The re-
port, which is already shown in List 1, includes not only the
error site where out-of-bound access happens but also the
corrupted region - stack, heap, or global and static region.
The eBPF program installed before the error site, similarly
to the integer underflow/overflow, can be synthesized to ex-
amine if the access is within bounds or not. The legitimate
boundaries of data objects in different regions, as explained
in the background, have different definitions.

For objects in the stack or global and static region, their
boundary can be directly obtained from DWARF debug in-
formation. In the case of heap objects, some of them are
elastic objects [17] - their size is not static but dynamically
determined. Therefore, instead of getting their size from san-
itizer reports or through static analysis, we add two new BPF
helper functions bpf_get_start and bpf_get_len to read kernel
data related to heap management to ascertain their size dur-
ing runtime.

More specifically, bpf_get_start takes an address and de-
termines the start of the object referred to by that address.
It calls kernel function find_vm_area and virt_to_page sequen-
tially to examine which heap region that this address belongs
to. If the address is the vmalloc region, it reads the struct

↪→ vm_struct->addr to get the starting address. If the address
is the memory managed by Buddy System which takes care
of large objects that cross several pages, the start address of
the overflowed object is the address of the first page repre-
sented by the struct page object. If the address of the mem-
ory is managed by SLAB/SLUB allocator which manages
small objects within page granularity, it calculates the start
address of the overflowed object based on the slot size.

While bpf_get_start obtains the start address, bpf_get_len
obtains the length of heap objects. The length of vmal-
loc object is in vm_struct->size, SLAB/SLUB object is in
page->slab_cache->objec_size. For Buddy System objects, if
page->flag is clear, the size is one page, otherwise, the size is
calculated via page->compound_nr*PAGE_SIZE.

For all out-of-bound access, the triggering condi-
tion can be uniformly expressed in the eBPF tem-
plate as (start<=addr)&&(addr<end)?false:true. Still taking
CVE-2016-6187 as an example, the addr is %rsi+%rdx*1,
the start is bpf_get_addr(%rsi), and the end address is
bpf_get_addr(%rsi)+bpf_get_len(%rsi). Just like integer over-
flow, this condition along with the error site are filled into
the eBPF template (List ?? in Appendix C) to synthesize a
concrete program.

5.3 Use-After-Free Policy

KASAN can also report use-after-free errors, which are tem-
poral in nature and have two error sites. The first is the
free site where a dangling pointer is created, such as the one

1 KASAN: use-after-free in route4_get+0x7d/0xc0
2 Read of size 4 at addr ffff888006358640
3 Call Trace:
4 route4_get+0x7d/0xc0
5 Allocated by task 1137:
6 route4_change+0x18f/0xde0
7 Freed by task 69:
8 kfree+0x90/0x220
9 route4_delete_filter_work+0x17/0x20

Listing 4: The KASAN report snippet for a use-after-free
error [60].

at route4_delete_filter_work+0x17, as indicated in line 9 of
List 4. The second site is where the dangling pointer is deref-
erenced, such as route4_get+0x7d in line 4 of List 4. To pre-
vent use-after-free, two eBPF programs are installed - one
before the free site and another before the use site.

The eBPF program before the free site records the object
address to a BPF map and quarantines the object by skip-
ping the free operation. This means that the object won’t
be freed and recycled back to the allocator for future reuse.
Such quarantine prevents exploitation because attackers can-
not reclaim the same piece of memory and overlap the freed
object with another object under control, which is the must
of use-after-free exploitation. We notate the action at the
free site as map=map+addr. The eBPF program before the use
site queries the BPF map to see if the dereferenced pointer
is referring to a quarantined object. If so, the eBPF program
takes actions to prevent error, similar to the other policies.
This triggering condition is notated as ptr ∈ map?true:false.
The eBPF programs are synthesized by filling the action and
the triggering condition into templates. Note that double-free
is a special case of use-after-free. Its detection policy is no
different except that the use site is also a free site.

The real challenge in this policy is not the construction of
the triggering condition but how to avoid memory exhaus-
tion. If quarantined objects are never recycled, attackers can
repeatedly invoke the free site, causing a large amount of
memory to be quarantined and affecting kernel functionality.
Therefore, the prevention policy must determine when it is
safe to release quarantined memory.

Our solution to avoid memory exhaustion is to utilize two
BPF helper functions, bpf_timer_init and bpf_timer_start,
to start a timer at the free site. The timer will wake up
a task periodically to execute a callback function, set by
bpf_timer_set_callback. This callback function performs a
sweep of the entire physical memory, checking for the ex-
istence of any dangling pointers referring to quarantined ob-
jects. If any are found, quarantine continues. Otherwise, it
is deemed safe to recycle the quarantined memory because
the dangling pointer no longer exists in the memory. This
sweeper is integrated into the eBPF template for preventing
use-after-free.

Physical memory in modern OS can be very large, making
sweeping the entire memory an inefficient and slow process.

4198 32nd USENIX Security Symposium USENIX Association

1 KMSAN: uninit-value in tcp_recvmsg+0x6cf/0xb60
2 tcp_recvmsg+0x6cf/0xb60
3 Local variable msg created at:
4 __sys_recvfrom+0x81/0x900

Listing 5: The KMSAN report snippet for an uninitialized access
error [61].

To mitigate this issue, we introduce an optimization to re-
duce overhead. Technically, we extract the type of allocated
objects at the allocation site, then investigate all structures
that can be allocated to the SLAB/SLUB region. If one field
of an investigated structure is in the pointer type of the allo-
cated object, this pointer field may be a potential dangling
pointer at runtime. The optimized sweeper only sweeps the
slab caches that store these interesting structures and only
checks the offset of the pointer field in the structure.

5.4 Uninitialized Access Policy
KMSAN reports uninitialized access. As another temporal
memory error, it also has two error sites. One is the cre-
ation site where an object is created on the stack or heap,
like __sys_recvfrom+0x81 indicated in line 4 in List 5. Another
is the access site where the object is read but not fully ini-
tialized, like tcp_recvmsg+0x6cf indicated in line 2 at List 5.
As such, two eBPF programs are required to prevent unini-
tialized access. The first eBPF program is installed after the
creation site. It stores the size of the created object in BPF
map X and the uninitialized content in BPF map Y, using the
object’s address as the key for both maps. The second pro-
gram uses the object’s address to query map X and retrieve
its size, then uses the size to retrieve the full content of the
object from map Y.

By comparing the content of an object before access and
after creation, we can determine if it has been properly ini-
tialized. The aggressive policy considers the triggering con-
dition met if the contents have at least one byte in common.
The conservative policy requires the contents to be exactly
the same. The two policies have their own problems. The
aggressive policy may result in false positives if some bytes
remain unchanged after initialization, while the conservative
policy may miss partial initializations, leading to false nega-
tives. Experiment results indicate that the conservative pol-
icy is more effective and thus is used by default in the the
eBPF template (List ?? in Appendix C) If manual efforts are
allowed, the ideal policy would be to specify the uninitial-
ized range within the object.

5.5 Data Race Policy
Data race occurs where two instructions executed at sepa-
rate CPUs access the same memory simultaneously with-
out proper synchronization. For instance, List 6 shows a
data race where CPU 1 reads from 0xffffffff8713bbb0 at

1 BUG: KCSAN: data-race in tcp_send_challenge_ack /
↪→ tcp_send_challenge_ack

2 read to 0xffffffff8713bbb0 of 4 bytes on cpu 1:
3 tcp_send_challenge_ack+0x116/0x200
4 write to 0xffffffff8713bbb0 of 4 bytes on cpu 0:
5 tcp_send_challenge_ack+0x15c/0x200

Listing 6: The KCSAN report snippet for a data race [62].

tcp_send_challenge_ack+0x116 (line 3), while CPU 0 writes to
the same address at tcp_send_challenge_ack+0x15c on CPU 0
(line 5). In PET, we utilize four eBPF programs to identify
data races at runtime.

The four eBPF programs are organized in pairs and share a
single BPF map. Each pair is responsible for monitoring one
access in a potential data race. The first program in the pair
is installed prior to the access and performs the P operation:
call the bpf_map_update_elem helper function with BPF_NOEXIST

argument to spin locks the shared map and do lookup-update
atomically. If a record of the same memory in the shared BPF
map exists, EEXIST is returned, indicating that another instruc-
tion from a different CPU is currently accessing the same
memory, thus signaling a potential data race. In the absence
of data race, the helper function returns 0, indicating that the
update was successful and no data race has occurred. The
second program in the pair is installed after the access and
performs the V operation: call bpf_map_delete_elem to delete
the record of the accessed memory atomically.

Since data race could be either benign or harmful [7, 63,
64], by default, the eBPF program for data race won’t be
like that for other errors, sending out SIGKILL signal to kill
the current process if the P operation fails. However, the
eBPF template offers an option if human experts confirm the
damage of the reported data race.

6 Error-independent Mechanisms

6.1 Report Processor

The report processor extracts critical information from sani-
tizer reports. As we showed in previous sections, the formats
of sanitizer reports vary for different error types: the error
site of out-of-bound access can be found in the report title
(line 1 in List 1) while that of integer underflow is in call
trace (line 4 in List 2). In addition to error sites, some pre-
vention policies need unique information. For example, the
use-after-free error needs the allocation site (line 6 in List 4)
to optimize the dangling pointer sweeper.

To eliminate the differences in information requirements,
the report processor in PET provides a unified interface for
overlaying policies. The interface is a set of regular expres-
sions - each filtering out the desired keywords from report
lines that are separated in advance.

USENIX Association 32nd USENIX Security Symposium 4199

apparmor_setprocattr
<0xffffffff8180b5b0>:
+0x109: lea 0x0(%r13, %r12, 1), %r14

…
+0x111: call <__asan_store1>
+0x116: movb $0x0, (%r14);

Sanitized Kernel Image

security/apparmor/lsm.c
624: static int apparmor_setprocattr(…)

…
645: args[size] = ‘\0’;

Source Code

apparmor_setprocattr
<0xffffffff814de980>:

…
+0x8f: movb $0x0, (%rsi, %rdx, 1);

Native Kernel Image

file_names: “security/apparmor/lsm.c”
Address Line
0xffffffff8180b6b9 645
0xffffffff8180b6c6 645

DW_AT_name (“args”) location (R13)
DW_AT_name (“size”) location (R12)

DWARF info & line for Sanitized Kernel

file_names: “security/apparmor/lsm.c”
Address Line
0xffffffff814dea0f 645

DW_AT_name (“args”) location (RSI)
DW_AT_name (“size”) location (RDX)

DWARF info & line for Native Kernel

sanitized reg -> var -> native reg

sanitized inst -> statement
-> native inst

Figure 3: Two translation flows in the sanitized-native mapper that
constructs triggering condition at the binary level to be expressed
the eBPF program that detects errors in the native kernel.

6.2 Sanitized-Native Mapper

The extracted error information from the report needs to be
translated from the sanitized kernel to the native kernel to
construct the triggering condition for the eBPF programs to
prevent errors. To demonstrate this mapping process, we con-
tinue to use the slab out-of-bound access error CVE-2016-
6187 as an example and provide an illustration in Figure 3.

In this sanitizer-native mapper, there are two translation
flows. The first flow identifies the error site where the eBPF
program for prevention can be installed. It translates the
instruction that triggers the error in the sanitized kernel, to
the problematic statement in the source code, and finally
the counterpart instruction in the native kernel. As shown
in Figure 3, with apparmor_setprocattr+0x116 outputted from
the report processor, PET uses it as the clue to pinpoint
the error instruction movb $0x0, (%r14) in the sanitized im-
age. With the DWARF debugging information of the sani-
tized kernel, PET maps this error instruction to line 645 in
file securit/apparmor/lsm.c in the source code. Without fur-
ther analysis, PET retrieves the DWARF debug information
of the native kernel to map this source code statement to the
counterpart instruction in the native kernel image - the mov at
apparmor_setprocattr+0x8f which is the instruction to install
the eBPF program for prevention.

At this error site, the second translation flow constructs the
triggering condition to be expressed in the eBPF program.
In Figure 3, the destination operand $r14 in the mov instruc-
tion records the written address in the sanitized kernel. This
address is calculated from the lea 0x0(%r13, %r12, 1) instruc-
tion at apparmor_setprocattr+0x109. By analyzing the DWARF
information for this lea instruction, PET learns that register
%r13 refers to a buffer named args in a slab cache. The ker-
nel accesses this buffer using an index named size which
is stored in register %r12. As such, PET concludes that the
overflowed buffer is args and the excessive index is size. To

continue the second translation flow, PET uses the DWARF
information for the native kernel and connects the args vari-
able with the %rsi register and the size variable with the %rdx

register at the error site.
As described in §5.2, the triggering condition for out-of-

bounds access is (start<=addr)&&(addr<end)?true:false.
The eBPF program uses this condition to check if
the accessed addr $rsi+%rdx*1 is within the legiti-
mate boundary with bpf_get_addr(%rsi) as the start,
bpf_get_addr(%rsi)+bpf_get_len(%rsi) as the end. This con-
dition is filled into the eBPF program, which is installed at
the error site identified through the first translation flow, to
prevent the out-of-bound access error.

6.3 Checkpoint-Restore Analyzer

When the triggering condition constructed by the sanitized-
native mapper is met in the native kernel, PET takes a se-
ries of actions including a checkpoint-restore mechanism to
continue the kernel execution smoothly. This is achieved
through additional eBPF programs and BPF maps.

To be specific, we install an eBPF program at the entry
of the function containing the error instruction to reserve the
register context before the prologue. Another eBPF program
is installed at the function exit to restore the register context
after epilogue and rewrite register %rax with an error code
which will be returned to the caller. This allows PET to take
advantage of the error handling mechanism in the Linux ker-
nel to quickly deliver the error message back along the call-
ing chain to the system call entry, terminating the malicious
process as quickly as possible. To determine the appropri-
ate error code, our checkpoint-restore analyzer will count the
error-handling paths in the function and choose the most fre-
quently used one. If the most frequently used code is EAGAIN

which indicates to re-execute the called function, we replace
it with EACCESS to prevent endless error triggering. In situ-
ations where the return type is either a pointer or void, we
use PTR_ERR to convert the return value to a negative figure or
rewrite %rax to be 0.

In most cases, a checkpoint program at the function entry
and a restore program at the function exit is enough. How-
ever, if paired operations, such as (de)allocations, (un)locks,
device (un)registration, reference count (in|de)cement, and
pointer nullification, exist in the execution path from the en-
try to the error site, additional eBPF programs are needed.
These eBPF programs record the address of allocated objects,
operated locks, registered device structures, reference count,
and pointers in BPF maps. With BPF maps shared, the re-
store eBPF program at the function exit can deallocate ob-
jects, perform unlock, unregister devices, recover reference
count and pointers. To locate these checkpoint sites, PET per-
forms static analysis of all program paths from the function
entry to the error site, identifying them first at the source

4200 32nd USENIX Security Symposium USENIX Association

code level, and converting them to binary form using the pre-
viously described sanitized-native mapper.

Limitations. Though our empirical evaluation indicates that
the kernel runs stably after PET prevents errors - presumably
due to the short path from checkpoint to restore (44.17 in-
structions on average), it is crucial to underscore the limita-
tions of PET as a temporary solution in recovering a consis-
tent state. On the one hand, PET relies on human expertise
to mark paired operations of interest. This could result in
missing, especially during the kernel’s ongoing development,
which requires PET to be updated correspondingly. On the
other hand, compared with prior works (e.g., [65–69]) that
employ logging and rollback techniques, PET will overlook
memory cells that could influence kernel functionality[70].
Therefore, it is recommended to offline PET and apply the
official patch upon its release.

6.4 Library of eBPF Helper Functions

PET employs three types of eBPF programs: (1) checkpoint
installed at the function entry and paired operations towards
the error, (2) error prevention placed before the error site,
(3) restoration installed at the function exit. We enhance the
existing eBPF ecosystem in the Linux kernel by adding more
eBPF helper functions to support these three eBPF program
types, in addition to helper functions previously discussed.

For checkpoint programs, bpf_get_regs is used to retrieve
the register context, addresses of allocated objects, locks, de-
vice structures, storing them to separate BPF maps shared
with the restoration program. Considering that the error func-
tion can be re-entered, the key for these BPF maps is the con-
catenation of the function name and the current process ID
obtained using bpf_get_current_pid_tgid helper function.

For error-preventing programs, we record malicious
events to /sys/kernel/debug/tracing/trace_pipe using
bpf_printk and send a SIGKILL signal using bpf_send_signal -
both helper functions already exist in the eBPF ecosystem.
Then, we add bpf_set_regs to set register %rax to the magic
number 0xdeadbeef. This magic number notifies the restore
program that the triggering condition is met and restoration
is a must. Then, we call bpf_set_regs again to set register
%rip, directing the kernel to the function exit.

Finally, for the restore program, we use bpf_get_regs to
check register %rax. If %rax is not equal to 0xdeadbeef, the
program simply clears all related records in the shared BPF
maps and returns to the caller. Otherwise, the program
restores register context using bpf_set_regs, deallocates ob-
jects using the newly added bpf_kfree, performs unlock us-
ing the newly added bpf_unlock, (un)register devices using
the newly added bpf_register, (in|de)crement reference count
using the newly added bpf_(in|de)refcnt, and overwrites the
value of register %rax with the error code determined by the
checkpoint-restore analyzer.

7 Implementation

PET uses in total 500 lines of Python scripts to integrate all
infrastructure mechanisms and eBPF program templates for
prevention policies. A total of 639 lines of C code were
added for BPF helper functions, along with an additional
440 lines of C code for all eBPF program templates. The
DWARF analysis and static analysis over LLVM IR include
roughly 3000 lines of C/C++ code. The implementation is
open-sourced on Github [71].

eBPF Programs. Kernel Address Space Layout Random-
ization (KASLR) randomly changes the kernel base address
every time the system boots up. It does not affect the deci-
sion of where to install the eBPF programs as the site can be
specified using relative offset like "func+offset". For other
addresses that cannot be specified statically in the eBPF pro-
grams, we use the latest BPF toolchain Skeleton [72]. Skele-
ton defines these addresses as global variables and looks
them up in /proc/kallsyms when loading eBPF programs. By
adding relative offsets to these addresses, Skeleton rewrites
the value of global variables to bypass KASLR.

In the prevention policy for use-after-free errors, for the
sake of performance, the sweeper only scans a fixed memory
range each time woke up, avoiding excessive CPU usage. In
our experiments, we empirically tested different range sizes
and time intervals, finding that a 256 MB range per 8 seconds
was the optimal choice. Further information can be found in
§8.3 and Appendix B.

DWARF Analysis. The sanitized-native mapper (§6.2) uses
DWARF debugging information to identify the error instruc-
tion in the native kernel. However, its accuracy can be
compromised by compiler optimizations - a single instruc-
tion in the sanitized kernel corresponds to multiple source
code statements which further corresponds to multiple in-
structions in the native kernel. As a result, the mapper may
identify a set of instructions in the native kernel, but only a
few of them are actual errors. We resolve the issue by cross-
checking two translation flows in the mapper. An instruction
in the native kernel is considered an error if and only if its
operator and the names of its operand variables match the
error instruction in the sanitized kernel. This cross-checking
reduces the false positive number for 2 to 0 per case in our
evaluation test set.

Static Analysis. PET employs static analysis methods to lo-
cate checkpoint sites (§6.3) and optimize the sweeper in the
use-after-free prevention policy (§5.3). Our implementation
is based on the LLVM infrastructure and uses a customized
Clang [73] to produce unoptimized IR files.

To identify paired operations that require checkpointing,
we maintain a list of allocation interfaces (e.g., kmalloc), lock
interfaces (e.g., raw_spin_lock), device registration interfaces
(e.g., register_filesystem), reference counter interfaces (e.g.,
refcount_inc), and patterns of pointer nullification. Our static

USENIX Association 32nd USENIX Security Symposium 4201

analysis starts by building a control-flow graph of the func-
tion containing the error instruction at the IR level. By
traversing all paths from the function’s entry point to the
error instruction, we collect all Call instructions of interest,
marking them as checkpoint sites.
PET selects slab caches that potentially contain dangling

pointers to optimize the sweeper sweeping. Our static analy-
sis employs a worklist procedure and coordinately analyzes
GetElementPtr and Cast instructions. This worklist procedure
is sound and in the worst case where all slab caches are cho-
sen, the sweeper is degraded to the entire-sweeping mode.
More details can be found in Appendix A.

8 Evaluation

8.1 Testcase Set
We collect real-world vulnerabilities from two resources as
the testcases of PET. One is those reported by Syzkaller from
2018 to 2023. Another is those used in kernel exploitation
works published in the past 10 years.

All vulnerabilities in our testcase set must meet the fol-
lowing criteria: ¶ their PoC programs or exploits are pub-
licly available for evaluation of PET’ prevention success, and
· they can be migrated and reproduced in v5.15 - the latest
long-term version at the time of our experiment- so that we
can measure PET’ scalability and overhead in the presence of
multiple errors.

Following these criteria, we built a testcase set covering 5
different error types, including 2 integer overflows reported
by UBSAN, 15 out-of-bound access and 10 use-after-free re-
ported by KASAN, and 2 uninitialized access reported by
KMSAN. This testcase set is representative and covers vari-
ous common error types reported by existing sanitizers. In
particular, our testcase set covers all types of memory re-
gions that can be corrupted, including the stack, global and
static regions, Buddy System, SLAB/SLUB allocator, and
vmalloc regions.

Since KCSAN reports are not accompanied by any proof-
of-concept (PoC) programs, we were unable to find any data
races that met our selection criteria. Therefore, we randomly
selected two race conditions that meet our criteria into our
test case set: CVE-2017-2636 [74] and CVE-2021-4083 [75].
Additionally, we randomly selected 3 data races reported in
v5.15 for performance measurement. We didn’t find any re-
port from KTSAN. As such, we collected a total of 34 vul-
nerabilities in our testcase set.

8.2 Effectiveness
For the effectiveness of PET, we aim to answer the follow-
ing questions, in comparison with the most related prior
work [30]: ¶ Can PET prevent the triggering and exploita-
tion of errors? · Does PET affect normal execution if the

triggering condition is not met? ¸ Does the kernel remain
stable and not panic after the error triggering is prevented?

Experiments Setup. To answer the first question, we mi-
grated all errors in our testcase set to the v5.15 kernel. Then,
we built a kernel image with sanitizers enabled to validate
that the collected PoCs and exploits can trigger these errors
and generate reports to be analyzed by PET. After this, we
compiled another kernel image with sanitizers disabled and
deployed the synthesized eBPF programs to this native ker-
nel. We ran the PoCs and exploits on this kernel hardened
by PET to observe if the errors could still be triggered and
exploited. The setup of [30] is similar except that the second
kernel image is instrumented with undo operations.

To answer the second question, we modified the collected
PoCs and exploits to make sure that the error sites are still
executed but the triggering condition is no longer met. We
confirmed this on the sanitized kernel and then ran the mod-
ified PoCs and exploits on the hardened native kernel. We
observed whether the eBPF programs would still record er-
rors, which indicate false alarms. This modification took us
approximately 150 man-hours.

To answer the last question, we extensively tested the ker-
nel with migrated errors by repeatedly running all PoCs and
exploits for 100 times to ensure that the kernel was thor-
oughly ’attacked’. After the eBPF programs prevented all the
error triggering, we continued to use the machine for daily
activities, such as browsing the web on Google, YouTube,
Twitter, Overleaf, Email, and other internet services, partic-
ipating Zoom meetings, messaging on Slack, playing music
on Spotify, running Dockers containers for CTF challenges,
plugining/ unplugining external monitors, etc. This experi-
ment is carried on for 7 × 24 hours.

Experiment Results. Given an error, for PET and [30] to be
considered effective, it must fulfill the following three crite-
ria: ¶ successfully prevent the error from triggering when
the condition is met, · ensure normal execution when the
condition is not met, and ¸ the kernel remains stable with-
out panic after the error has been prevented.

The sampled effectiveness results are shown in Table 1
(More complete results in Appendix Table 4). In general,
PET is effective for all errors in our testcase set, except three
data races we cannot evaluate due to the lack of PoC pro-
grams. PET accurately located the error sites of all types and
effectively synthesized triggering conditions and actions to
prevent their triggering, in < 5 minutes. During the 17-344
days time window for kernel developers to patch these errors,
PET can provide temporary protection for the kernel.

For out-of-bound access errors in the stack, global
and static regions, PET utilizes its sanitized-native mapper
to determine the boundaries accurately, e.g., [$rsp+0x50,

↪→ $rsp+0xa0) for stack objects and [0xffffffff822479c0,

↪→ 0xffffffff822479c0+0x18) for global objects. For out-of-
bound access errors on kernel heap, PET leverages BPF

4202 32nd USENIX Security Symposium USENIX Association

CVE/SYZ ID Sites for eBPF Installation Action & Triggering Condition Effectiveness
(PET/[30])

Time Window
(days)

Integer Underflow/Overflow

b5b251b [76]
dummy_hub_control+0x3f (spinlock)
dummy_hub_control+0x225

lock_map[pid] = $rdi

$eax<<$edx == $rax<<$edx & $edx<32 ? false : true
 / G# 79

Out-of-bound Access on Stack
2022-1015 nft_do_chain+0x243 $rdi ∈ [$rsp+0x50, $rsp+0xa0)? false : true / G# 147

Out-of-bound Access on Global and Static Region
2017-18344 show_timer+0x81 $rdx ∈ [0xffffffff822479c0, 0xffffffff822479d8)? false : true / G# 90

Out-of-bound Access on Buddy System Heap
2022-27666 null_skcipher_crypt+0x4b $rdi+$rdx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 17

Out-of-bound Access on vmalloc Heap

2020-14386
tpacket_rcv+0x21a (spinlock)
tpacket_rcv+0x6f6

lock_map[pid] = $rdi

%rax ∈ [start($r10), start($r10)+len($r10))? false : true
 / G# 39

Out-of-bound Access on SLAB/SLUB Heap
2022-34918 nft_set_elem_init+0x3e $rdi+$rcx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 38

797c55d [77]
watch_queue_set_filter+0x81 (alloc)
watch_queue_set_filter+0x78d

alloc_map[pid]=$rdi

$r15+0x8 ∈ [start($r15), start($r15)+len($r15))? false : true
 / G# 344

Use-After-Free
nft_obj_destroy+0x3f (free) map ∪ $rdi; selective_sweep(kmalloc-256, 0x20)2022-2586
nf_tables_fill_setelem.isra.0+0x140 (use) $rbx+$rax ∈ map ? true: false

 / G# 97

__route4_delete_filter+0x3c (free) map ∪ $rdi; selective_sweep(kmalloc-192, 0x28)be93025d [78]
__route4_delete_filter+0x3c (use) $rdi ∈ map ? true : false

 / G# 73

Uninitialized Access
__sys_recvfrom (create) map[$rsp+8-200] = mem($rsp-0xc0, 0x60)2039c557 [61]
tcp_recvmsg+0xb8 (use) map[$r13] == mem($r13, 0x60)? false : true

 (default conservative)G#(aggressive) / G# 248

Data Race
n_hdlc_send_frames+0x118 (write) P($rbp+0x310); V($rbp+0x310)2017-2636 [74]
n_hdlc_tty_ioctl+6b (write) P($rsp); V($rsp)

 / G# 40

unix_stream_read_generic+0xeb (spinlock)
unix_stream_read_generic+0x120 (mutex)
unix_stream_read_generic+0x138 (read)

lock_map[pid]=$rdi

mutex_lock[pid]=$rdi

P($r13); V($r13)

2021-4083 [75] unix_gc+0x33 (spinlock)
unix_gc+0x28e (write)

lock_map[pid]=$rdi

P($rsp+0x38); V($rsp+0x38)

 / G# 224

Table 1: The sampled results for the effectiveness of PET- the three criteria are described in §8.2. indicates that all three criteria are
satisfied; G# means criteria · (i.e., no false alarm) is not met; Complete results are in Table 4.

helper functions bpf_get_start and bpf_get_len from the
eBPF helper library to determine the boundaries of accessed
objects. The accessed address is stored in registers that are
identified using the report processor and the sanitized-native
mapper in PET.

For use-after-free errors, PET creates a sweeper at the
free site which periodically scans for the presence of dan-
gling pointers. The sweeper works in two modes: entire-
sweeping mode which scans the entire physical memory
(e.g., be93025d [78]) and selective-sweeping mode which
only scans slab caches that have the potential for containing
dangling pointers (e.g., the kmalloc-256 cache for CVE-2022-
2586 with pointers at 0x20 offset). In our testcase set, 3 out
of 10 use-after-free cases employ the entire-sweeping mode
while the remaining 7 cases use selective sweeping mode.
The performance comparison between the two modes will
be presented in §8.3.

For uninitialized access errors, our evaluation shows that
the conservative policy is more effective than the aggressive
policy - the aggressive policy reports false alarms when exe-
cuting PoCs that are modified to not trigger errors. Therefore,
a conservative approach is used by default, unless an aggres-
sive approach is guaranteed to not result in false positives.

For data race, PET identified kernel code that races the
same memory with at least one write operation and effec-
tively detected race using P/V operations.

In addition to error sites, PET also locates paired opera-
tions for all testcases, e.g., b5b251b [76], CVE-2020-14386,

797c55d [77], be93025d [78], and CVE-2021-4083 [75] in
the sampled Table. PET employs the checkpoint-restore
mechanism to return the kernel to normal after the triggering
is prevented. Though this approach has certain limitations as
we discussed in §6.3, in our evaluation, the kernel ran stably
for 7 × 24 hours after PoCs and exploits for all testcases are
run for 100 times. We continued using it for more than 3
months and to date, the kernel still functions properly.

In comparison, while [30] prevents the error triggering, it
inevitably raises false alarms and impacts the normal execu-
tion because undo operations are always performed regard-
less of whether the condition is met or not. Therefore, under
our defined criteria, [30] is considered partially effective.

8.3 Overhead & Scalability
Regarding the overhead of PET, we are seeking answers to
the following questions, also in comparison with the most
related prior work [30]: ¶ To which extend does PET slow
down the kernel? · How much latency do eBPF programs
introduce to the kernel execution? ¸ What is the optimal con-
figuration for sweeper in use-after-free prevention policy? ¹
Is PET scalable in the presence of multiple errors? º How
much extra memory is needed to support PET?

Experiments setup. We using a series of benchmarks, in-
cluding OSBench for measuring the performance of basic
OS operations such as process and thread creation, perf-
bench for testing scheduler and IPC mechanisms, and a range

USENIX Association 32nd USENIX Security Symposium 4203

Integer Slab OOB Page OOB Stack OOB Global OOB VmallocOOB UAF Uninitialized Data Race
b5b251b [76] 2021-34693 2022-27666 2c09122 [79] 2017-18344 2020-14386 5d5bb09c [60] 2022-4154 2039c5 [61] 2017-2636 2021-4083 Std. dev.

OS Core primivtives (PET/[30])
OSBench 0.8% / 2.7% 0.0% / -1.4% 0.7% / -0.3% 0.4% / -0.4% 0.1% / -0.4% 4.2% / 0.5% 2.1% / -0.8% 3.1% / -0.4% 1.9% / -0.7% -0.4% / -0.7% -0.9% / 0.0% 0.02 / 0.01
perf-bench 0.6% / 3.4% 0.4% / -0.1% 0.0% / 0.1% -0.2% / 0.1% 0.1% / 0.1% 6.1% / -0.2% 3.4% / -0.4% 5.9% / 2.1% 1.4% / -0.1% 0.0% / 2.0% 1.7% / 0.2% 0.02 / 0.01

CPU intensive (PET/[30])
OpenSSL 1.9% / -0.8% 0.0% / -1.4% -0.1% / -0.5% 0.2% / -0.8% 0.2% / -0.8% 0.2% / -0.1% 1.2% / -0.6% 0.4% / -0.8% 2.1% / -0.2% 0.3% / 0.0% 0.0% / -0.6% 0.01 / 0.00
GIMP -0.5% / -0.5% -1.1% / 0.1% 1.3% / -1.2% -1.1% / 1.9% -3.0% / 1.9% 0.9% / 0.5% -0.2% / -0.7% 1.1% / 0.7% 0.7% / 0.4% 0.2% / -1.0% 1.4% / 1.8% 0.01 / 0.01
MP3 Encoding 0.8% / -0.2% 0.2% / -0.4% 0.2% / -0.4% 1.0% / 0.6% 0.6% / 0.6% 1.4% / 0.2% 0.7% / -1.0% 1.6% / 0.4% 1.9% / -0.2% -0.1% / 1.7% 0.0% / 0.3% 0.01 / 0.01

I/O intensive (PET/[30])
SQLite Speedtest -1.9% / -2.6% -0.7% / -1.0% -0.2% / -1.7% -0.4% / 2.4% -1.5% / 2.4% -1.2% / 0.2% 0.0% / -1.3% 1.9% / -0.3% 1.6% / 1.2% -1.1% / 0.3% -0.1% / 0.1% 0.01 / 0.02
WireGuard Stress -0.9% / -0.6% 0.1% / -0.1% 0.1% / -0.6% -0.2% / 2.0% -0.5% / 2.0% 11.5% / 0.8% 1.1% / -0.2% 1.6% / 0.4% -0.1% / -1.1% 0.8% / 0.9% -2.9% / 0.8% 0.04 / 0.01
Git 0.9% / -0.4% 0.1% / -0.3% 0.2% / -0.1% 0.4% / 0.9% 0.2% / 0.9% 14.5% / 0.9% 0.6% / -0.1% 0.5% / 0.9% 1.7% / 0.8% 0.3% / -0.7% -0.4% / 0.2% 0.04 / 0.01
Linux Kernel Compile 1.9% / 1.3% -0.1% / 0.0% 0.1% / 1.9% 0.0% / 3.6% 0.3% / 3.6% 1.4% / 1.7% 2.2% / 1.8% 3.2% / 0.4% 2.8% / 2.6% 1.6% / 2.0% 1.0% / 2.2% 0.01 / 0.01
XZ Compression -0.7% / -0.3% 0.7% / 0.2% 0.9% / -0.9% 0.0% / 0.4% 0.5% / 0.4% 1.7% / -0.7% 1.6% / -1.1% 2.3% / -0.3% 1.2% / -0.3% 0.1% / -0.6% -0.6% / -0.9% 0.01 / 0.01

Server Tasks (PET/[30])
Apache -1.9% / -3.7% 0.4% / -3.1% 0.4% / -2.5% -1.1% / -1.9% -0.4% / -1.9% 10.6% / -2.1% 4.1% / -4.0% 3.6% / -4.1% 0.6% / 3.7% 1.2% / -2.1% 1.6% / -3.0% 0.03 / 0.02
Nginx 1.1% / -2.8% 0.8% / -2.5% -0.2% / -2.2% 0.2% / -0.8% 0.6% / -0.8% 10.3% / -2.0% 6.0% / -1.6% 5.3% / -1.2% 1.2% / -1.3% 0.2% / -0.6% -1.1% / -1.7% 0.03 / 0.01
perl-benchmark -0.4% / 1.2% -0.4% / -0.8% 0.0% / 0.9% -1.2% / 1.1% -0.5% / 1.1% -1.1% / 0.6% 0.1% / -0.2% 3.0% / 0.4% -0.4% / 0.6% 0.5% / 1.9% 0.6% / 1.0% 0.01 / 0.01
Redis 1.7% / 1.7% 1.7% / 1.0% -0.8% / 1.8% 0.5% / 3.7% -1.7% / 3.7% -0.6% / -0.6% 0.8% / 5.0% 3.0% / -2.0% 1.7% / 1.2% 0.5% / -0.1% -1.2% / 3.9% 0.01 / 0.02
average 0.3% / -0.1% 0.1% / -0.7% 0.2% / -0.4% -0.1% / 0.9% -0.4% / 0.9% 4.3% / 0.0% 1.7% / -0.4% 2.6% / -0.3% 1.3% / 0.5% 0.3% / 0.2% -0.1% / 0.3% 0.01 / 0.01

Table 2: The sampled performance of PET in preventing different errors using representative benchmarks. Complete results are in [80].

Operations Time
checkpoint@func entry 2702.72 ns
restore@func exit if no error 2617.72 nsCheckpoint-Restore
restore@func exit if error occurs 2898.06 ns

Integer overflow/underflow simulation 1796.61 ns
bpf_get_start 1935.16 nsOut-of-Bound bpf_get_len 1829.12 ns
store uninitialized content@creation site 2820.52 nsUninitialized Access compare content@access site 3386.4 ns

Data Race P/V operation 2608.23 ns
store object address@free site 2806.69 ns
selective-sweeping (async) 13.96 msUse-After-Free
entire-sweeping (async, 256MB/8s) 277.46 ms

Table 3: The latency of critical operations in eBPF programs.

of real-world applications like MP3 encoding for calculation-
intensive tasks, SQLite for IO-intensive tasks, and Redis,
perl-benchmark, Apache, and Nginx for server workload.

The eBPF programs to be installed into the kernel were
compiled with JIT enabled for the sake of performance. To
determine the latency of critical eBPF operations during ker-
nel execution, we inserted two rdtsc instructions before and
after the operations of interest and collected the time differ-
ence between them.

We conducted experiments to determine the most efficient
sweeping mode for the sweeper in our use-after-free preven-
tion policy. We varied the sweep interval (1s, 2s, 4s, 8s) and
range (128 MB, 256 MB, 512 MB) to identify the optimal
configuration for deployment. Furthermore, we compared
the performance of the entire-sweeping mode and selective-
sweeping mode to demonstrate the effectiveness of our opti-
mization efforts. We randomly chose 5d5bb09c [60] as the
representative of selective-sweeping and CVE-2021-4154 as
the representative of entire-sweeping as our testbeds.

In the presence of multiple errors, eBPF programs for dif-
ferent errors need to be installed simultaneously. To access
the scalability of PET, our experiment randomly sorted out
all errors in the testcase set and measured performance when
there are 2, 4, 8, 16, and all errors present.

All of the above experiments were conducted automati-
cally three times, and the average results are presented. The
machine for evaluation runs Ubuntu 22.04 LTS with an In-

tel(R) Core(TM) Intel i7-6700HQ @ 3.50GHz (4 Cores / 8
Threads) CPU, 16GB RAM and 1000GB SSD.

Experiments result. In Table 2, we present the sampled per-
formance overhead of different prevention policies as the an-
swer to question ¶. Readers can refer to [80] for all results.
The average performance overhead of PET is below 3% in
all cases and on par with [30], except for CVE-2020-14386
which is out-of-bound access in the vmalloc region. This
exception is caused by the overhead of networking-related
benchmarks including WireGuard, Git, Apache, and Nginx
which are all over 10%. This is because the error site is
in kernel function tpacket_rcv which is heavily used in the
network stack to receive packets from NAPI NIC. Even so,
the average overhead is 4.27%, much lower than other Linux
kernel protections proposed in recent years (e.g., [81]). The
overhead of Redis is not heavily impacted because, in our
evaluation, it runs in a “standalone” mode which uses loop-
back rather NIC.

Table 3 presents the latency introduced by eBPF programs
that perform critical actions in various prevention policies,
as per question ·. The latency for checkpoint and restore,
simulation in integer underflow/overflow, dynamic bound-
ary determination for heap objects, storing and comparison
for uninitialized access errors, P/V operation in data races,
and storing object address in use-after-free are all below
3500 ns, which is far beyond the range of human perception.
For selective-sweeping and entire-sweeping, their latencies
are less than 300 ms and they are performed in the back-
ground asynchronously over one single CPU. So, the overall
overhead of use-after-free errors, regardless of the sweeping
mode, are all around 2% as presented in Table 2. Addition-
ally, the latency of less than 300 ms is well within the accept-
able range, compared to similar works like Shuffler [82].

Furthermore, Table 3 shows that the selective-sweeping
mode is 21 times faster than the optimal configuration of
the entire-sweeping mode: 13.96 ms vs. 277.46 ms, which
is concerned in question ¸. This optimal configuration for
the entire-sweeping mode, which is scanning 256 MB per

4204 32nd USENIX Security Symposium USENIX Association

2 Errors 4 Errors 8 Errors 16 Errors All Errors

0.0%

10.0%

20.0%

30.0%

40.0%
OSBench
perf-bench
OpenSSL
SQLite Speedtest
WireGuard Stress
Git
Linux Kernel Compile
MP3 Encoding

XZ Compression
GIMP
Apache
Nginx
Perl Benchmark
Redis
Average

Figure 4: Scalability of PET in the presence of multiple errors. The
spikes in Apache and Nginx were caused by CVE-2020-14386 - the
vmalloc OOB.

8s is obtained from empirical results shown in Figure 5 in
Appendix B.

Figure 4 shows the scalability of PET in the presence of
multiple errors, as per question ¹. As demonstrated, the per-
formance overhead increases linearly as more errors need to
be prevented, which is on par with the results of [30]. The
total accumulated overhead for all 34 errors tested by most
benchmarks is approximately 10%. The overhead tested by
Apache and Nginx increases significantly due to the vmalloc
OOB, as previously discussed.

For question º, the extra memory used by PET is BPF
maps. The largest BPF map among all policies is the one
used to quarantine objects for use-after-free. It includes
20 million entries, corresponding to 915 MB. When there
are multiple use-after-free errors, this map is shared by all
sweepers, thus eliminating the need for additional memory.
Such memory overhead isn’t an issue for modern OS kernel
because it has full access to physical memory which is very
large thanks to the advancements in SDRAM technology.

9 Related Works

Kernel Patching. As a widely-used approach to remediat-
ing kernel errors, patching has been extensively researched in
previous works (e.g., [83–86]). Especially, assuming patches
are available, Livepatch techniques [87, 88] can fix kernel
errors without rebooting the system. PET also offers the ad-
vantage of on-the-fly enabling. However, PET does not rely
on the availability of patches and prevents discovered errors
before patches are available.

Kernel Hardening. Developers harden the kernel to raise
the bar of attack. These include structure layout ran-
domization [89], freelist randomization [90], KASLR [91],
free pointer obfuscation [92] in Kernel Self-Protection
Project [93], AutoSlab [94], PAX_USERCOPY [95]
developed by PaX/Grsecurity [96], and XPFO [97],
redleaf [98], VirtualGhost [99], KCoFI [100], NestedKer-
nel [101], µScope [102], MemSentry [103], xMP [81], and

Kasper [104], proposed in academic papers. PET comple-
ments kernel hardening by preventing error triggering at the
early stage of exploitation.

Syscall Filtering & Kernel Debloating. System fitering lim-
its vulnerable system calls that are available to userspace ap-
plications. Representative works include Lock-in-Pop [105]
which only allows programs to use system calls with fewer
vulnerabilities, Confine [106] which limits the container im-
age to using system calls that are necessary, C2C [107] which
filters system calls based on the application configuration,
and Temporal specialization filters [108] which disables un-
used system calls at different phases of server applications.
Kernel code debloating also limits the kernel code that is
available to userspace applications. FACE-CHANGE [109],
KASR [110], and SHARD [111] only provide the necessary
kernel code for specific userspace applications. These tech-
niques either have assumptions on the userspace applications
or can negatively affect the kernel functionality. In compar-
ison, PET is invisible to userspace and only skips the execu-
tion of error sites if the error is about to be triggered, without
affecting the overall functionality of the kernel.

Error Recovery. Through techniques like checkpoint and
rollback, the system state can be recovered after errors. Land-
marks include Akeso [65] which logs and rolls back all
state changes including modifications and dependencies to
the runtime kernel, ASSURE [66] which optimizes heavy
logging by predefining rescue points, FGFT [67] which fo-
cuses on on rolling back isolated buggy drivers, Phoenix [68]
which records both external device and internal software
states for embedded system, and Ares [69] synthesizes mul-
tiple JAVA JVM exception handlers to select the proper one
for recovery. Compared with these works, PET employs a
straight checkpoint-restore approach which is limited and
only serves as a temporary solution.

10 Discussion & Future Works

Alternatives of eBPF ecosystem. We chose eBPF ecosys-
tem to design our solution because eBPF program is safer,
more expressive, and requires the privilege to install. Aside
from these advantages, there are alternatives of eBPF ecosys-
tem in kernel. For instance, we can inject Kprobe modules to
the error sites and checkpoint-restore sites, storing raw data
in kernel memory, and relying on a userspace agent process
for data sharing among different modules. In comparison,
using Kprobe modules needs to reinvent the wheels already
provided by the eBPF ecosystem. This requires more engi-
neering efforts and incurs higher performance overhead due
to the additional kernel-user communication for data sharing.

Support More Error Types & Manual Efforts. PET is
designed to be extensible. It currently supports five most
common errors reported by sanitizers. The remaining error

USENIX Association 32nd USENIX Security Symposium 4205

types include null pointer dereference, which can be detected
by checking if the pointer is equal to NULL; wild access
and user-memory access, which can be detected by check-
ing if the address is in kernel space or not; and memory leak
which can be detected by reusing the use-after-free sweeper
to check if there are still pointers referencing the objects of
interest. In the future, we plan to extend PET to support them.
If readers wish to contribute, sample templates provided in
the Appendix can be used as a reference.
PET is unable to handle out-of-bound access scenarios

where the start address already goes beyond the range, as
PET relies on the start address to determine the legit object
size. To accommodate this, manual efforts are needed. One
possible scenario might be specifying that the start address
is calculated from addr+offset and offset is extensively large,
leading to a wrong start address. As such, eBPF programs
can be installed to examine if addr+offset is correct or not at
runtime.

Potential Bypassing Methods. PET can be bypassed by
attackers in the following scenarios: (1) rootkits injected
at boot time before PET is deployed, (2) physical attack-
ers through plugging in malicious peripherals like USB de-
vices [112] and not triggering errors, (3) exploiting errors
that cannot be detected by sanitizers and thus not covered by
PET.

11 Conclusion

This work presents PET which prevents discovered errors
from being triggered before patches are available. We
demonstrated its effectiveness against the five most common
errors that sanitizers can report. PET is lightweight and scal-
able in the presence of multiple errors with acceptable mem-
ory consumption.

References
[1] “Super Long-term Kernel Support [LWN.net] — lwn.net.” https:

//lwn.net/Articles/749530/. [Accessed 06-Feb-2023].
[2] “The Perenial Nuclear Power Plantquot; example [LWN.net] —

lwn.net.” https://lwn.net/Articles/106179/. [Accessed 06-
Feb-2023].

[3] M. Erdos, S. Ainsworth, and T. M. Jones, “MineSweeper: a "clean
sweep" for drop-in use-after-free prevention,” in ASPLOS ’22: 27th
ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzer-
land, 28 February 2022 - 4 March 2022.

[4] H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili,
A. Doupé, and G. Ahn, “ViK: Practical Mitigation of Temporal Mem-
ory Safety Violations through Object ID Inspection,” in ASPLOS

’22: 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzer-
land, 28 February 2022 - 4 March 2022.

[5] L. He, H. Hu, P. Su, Y. Cai, and Z. Liang, “FreeWill: Automatically
Diagnosing Use-after-free Bugs via Reference Miscounting Detec-
tion on Binaries,” in 31st USENIX Security Symposium, SEC 2022,
Boston, MA, USA, August 10-12, 2022.

[6] C. Liu, Y. Chen, and L. Lu, “KUBO: Precise and Scalable Detection
of User-triggerable Undefined Behavior Bugs in OS Kernel,” in 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, virtually, February 21-25, 2021.

[7] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data Race Fuzzing
for Kernel File Systems,” in 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020.

[8] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “Soft-
Bound: highly compatible and complete spatial memory safety for c,”
in Proceedings of the 2009 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2009, Dublin, Ire-
land, June 15-21, 2009.

[9] M. Cao, X. Hou, T. Wang, H. Qu, Y. Zhou, X. Bai, and F. Wang, “Dif-
ferent is Good: Detecting the Use of Uninitialized Variables through
Differential Replay,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019.

[10] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos, and
C. Giuffrida, “kMVX: Detecting Kernel Information Leaks with
Multi-variant Execution,” in Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019.

[11] N. Emamdoost, Q. Wu, K. Lu, and S. McCamant, “Detecting Kernel
Memory Leaks in Specialized Modules with Ownership Reasoning,”
in 28th Annual Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021.

[12] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SyzScope: Reveal-
ing High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux
kernel,” in 31st USENIX Security Symposium, SEC 2022, Boston,
MA, USA, August 10-12, 2022.

[13] Y. Hao, H. Zhang, G. Li, X. Du, Z. Qian, and A. A. Sani, “De-
mystifying the Dependency Challenge in Kernel Fuzzing,” in 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022.

[14] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili,
and T. Bao, “Playing for K(H)eaps: Understanding and Improving
Linux Kernel Exploit Reliability,” in 31st USENIX Security Sympo-
sium, SEC 2022, Boston, MA, USA, August 10-12, 2022.

[15] W. Chen, X. Zou, G. Li, and Z. Qian, “KOOBE: Towards Facilitat-
ing Exploit Generation of Kernel Out-Of-Bounds Write Vulnerabili-
ties,” in 29th USENIX Security Symposium, SEC 2020, August 12-14,
2020.

[16] Y. Chen and X. Xing, “SLAKE: Facilitating Slab Manipulation for
Exploiting Vulnerabilities in the Linux Kernel,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019.

[17] Y. Chen, Z. Lin, and X. Xing, “A Systematic Study of Elastic Objects
in Kernel Exploitation,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2020,
Virtual Event, USA, November 9-13, 2020.

[18] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE: To-
wards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities,” in 27th USENIX Security Symposium, SEC 2018, Balti-
more, MD, USA, August 15-17, 2018.

[19] W. Wu, Y. Chen, X. Xing, and W. Zou, “KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vul-
nerabilities,” in 28th USENIX Security Symposium, SEC 2019, Santa
Clara, CA, USA, August 14-16, 2019.

[20] Y. Lee, C. Min, and B. Lee, “ExpRace: Exploiting Kernel Races
through Raising Interrupts,” in 30th USENIX Security Symposium,
SEC 2021, August 11-13, 2021.

[21] Z. Lin, Y. Wu, and X. Xing, “DIRTYCRED: Escalating Privilege in
Linux Kernel,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022.

4206 32nd USENIX Security Symposium USENIX Association

https://lwn.net/Articles/749530/
https://lwn.net/Articles/749530/
https://lwn.net/Articles/106179/

[22] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz, “SoK: Sanitizing for Security,” in 2019 IEEE Sympo-
sium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019.

[23] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. B. Abu-Ghazaleh, “SyzVegas: Beating Kernel Fuzzing Odds
with Reinforcement Learning,” in 30th USENIX Security Symposium,
SEC 2021, August 11-13, 2021.

[24] B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian, and
C. Zhang, “StateFuzz: System Call-Based State-Aware Linux Driver
Fuzzing,” in 31st USENIX Security Symposium, SEC 2022, Boston,
MA, USA, August 10-12, 2022.

[25] W. Chen, Y. Wang, Z. Zhang, and Z. Qian, “SyzGen: Auto-
mated Generation of Syscall Specification of Closed-Source macOS
Drivers,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2021, Virtual Event,
Republic of Korea, November 15 - 19, 2021.

[26] “The Kernel Address Sanitizer (KASAN) x2014; The Linux Kernel
documentation — kernel.org.” https://www.kernel.org/doc/htm
l/v4.14/dev-tools/kasan.html. [Accessed 06-Feb-2023].

[27] “The Kernel Memory Sanitizer (KMSAN) x2014; The Linux Ker-
nel documentation — docs.kernel.org.” https://docs.kernel.org
/next/dev-tools/kmsan.html. [Accessed 06-Feb-2023].

[28] “The Kernel Concurrency Sanitizer (KCSAN) x2014; The Linux
Kernel documentation — kernel.org.” https://www.kernel.org
/doc/html/latest/dev-tools/kcsan.html. [Accessed 06-Feb-
2023].

[29] “eBPF for Windows: Main Page — microsoft.github.io.” https:
//microsoft.github.io/ebpf-for-windows/. [Accessed 06-Feb-
2023].

[30] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin, “Undo
Workarounds for Kernel Bugs,” in 30th USENIX Security Symposium,
SEC 2021, August 11-13, 2021.

[31] “The More You Know, The More You Know You Dont Know —
googleprojectzero.blogspot.com.” https://googleprojectzero.b
logspot.com/2022/04/the-more-you-know-more-you-know-y
ou.html. [Accessed 07-Feb-2023].

[32] “2022 0-day In-the-Wild Exploitationso far — googlepro-
jectzero.blogspot.com.” https://googleprojectzero.blogs
pot.com/2022/06/2022-0-day-in-wild-exploitationso-far
.html. [Accessed 07-Feb-2023].

[33] “In-the-Wild Series: Android Post-Exploitation — googlepro-
jectzero.blogspot.com.” https://googleprojectzero.blogspo
t.com/2021/01/in-wild-series-android-post-exploitatio
n.html. [Accessed 07-Feb-2023].

[34] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu, “CREDAL: To-
wards Locating a Memory Corruption Vulnerability with Your Core
Dump,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2016, Vienna, Austria,
October 24-28, 2016.

[35] D. Mu, Y. Du, J. Xu, J. Xu, X. Xing, B. Mao, and P. Liu, “POMP++:
Facilitating Postmortem Program Diagnosis with Value-Set Analy-
sis,” IEEE Trans. Software Eng., vol. 47, no. 9, pp. 1929–1942, 2021.

[36] “REPT: Reverse Debugging of Failures in Deployed Software,” in
13th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018.

[37] X. Ge, B. Niu, and W. Cui, “Reverse Debugging of Kernel Failures in
Deployed Systems,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020.

[38] T. Blazytko, M. Schlögel, C. Aschermann, A. Abbasi, J. Frank,
S. Wörner, and T. Holz, “AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation,” in 29th USENIX Security Sym-
posium, SEC 2020, August 12-14, 2020.

[39] M. Miller, “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape.” BlueHat, 2019.

[40] “Variable-length arrays and the max() mess [LWN.net] — lwn.net.”
https://lwn.net/Articles/749064/. [Accessed 06-Feb-2023].

[41] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “TypeSan: Practical Type Confusion Detection,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security,CCS 2016, Vienna, Austria, October
24-28, 2016.

[42] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “HexType: Effi-
cient Detection of Type Confusion Errors for C++,” 2017.

[43] A. Popov, “Alexander Popov’s Blog.” https://a13xp0p0v.githu
b.io/, 2023.

[44] “UBSan: run-time undefined behavior sanity checker [LWN.net]
— lwn.net.” https://lwn.net/Articles/617364/. [Accessed 06-
Feb-2023].

[45] “Kernel Thread Sanitizer (KTSAN) — google.github.io.” http://
google.github.io/kernel-sanitizers/KTSAN.html. [Accessed
06-Feb-2023].

[46] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice,” in Proceedings of the workshop on binary
instrumentation and applications, pp. 62–71, 2009.

[47] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis, “Syrup:
User-Defined Scheduling Across the Stack,” in SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021.

[48] “GitHub - xdp-project/xdp-tutorial: XDP tutorial — github.com.” ht
tps://github.com/xdp-project/xdp-tutorial. [Accessed 07-
Feb-2023].

[49] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “BMC: Ac-
celerating Memcached using Safe In-kernel Caching and Pre-stack
Processing,” in 18th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2021, April 12-14, 2021.

[50] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. Johnson, and
K. R. B. Butler, “LBM: A Security Framework for Peripherals within
the Linux Kernel,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019.

[51] Y. Zhong, H. Li, Y. J. Wu, I. Zarkadas, J. Tao, E. Mesterhazy,
M. Makris, J. Yang, A. Tai, R. Stutsman, et al., “XRP:In-Kernel Stor-
age Functions with eBPF,” in 16th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 22).

[52] S. Park, D. Zhou, Y. Qian, I. Calciu, T. Kim, and S. Kashyap,
“Application-Informed Kernel Synchronization Primitives,” in 16th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022.

[53] Y. He, Z. Zou, K. Sun, Z. Liu, K. Xu, Q. Wang, C. Shen, Z. Wang,
and Q. Li, “RapidPatch: Firmware Hotpatching for Real-Time Em-
bedded Devices,” in 31st USENIX Security Symposium, SEC 2022,
Boston, MA, USA, August 10-12, 2022.

[54] “Cilium - Linux Native, API-Aware Networking and Security for
Containers — cilium.io.” https://cilium.io/. [Accessed 07-Feb-
2023].

[55] “Tracing: Attach eBPF Programs to Kprobes [LWN.net] — lwn.net.”
https://lwn.net/Articles/636224/. [Accessed 06-Feb-2023].

[56] “syzbot — syzkaller.appspot.com.” https://syzkaller.appspot
.com/. [Accessed 06-Feb-2023].

[57] D. Mu, Y. Wu, Y. Chen, Z. Lin, C. Yu, X. Xing, and G. Wang, “An
In-depth Analysis of Duplicated Linux Kernel Bug Reports,” in 29th
Annual Network and Distributed System Security Symposium, NDSS
2022, San Diego, California, USA, April 24-28, 2022.

[58] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. Li, “GREBE:
Unveiling Exploitation Potential for Linux Kernel Bugs,” in 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022.

[59] syzbot, “UBSAN: shift-out-of-bounds in
__qdisc_calculate_pkt_len.” https://syzkaller.appspot.c
om/bug?id=70c77abc177053bca3b6ce82cefe5f05ad67c9f2.

USENIX Association 32nd USENIX Security Symposium 4207

https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://docs.kernel.org/next/dev-tools/kmsan.html
https://docs.kernel.org/next/dev-tools/kmsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://microsoft.github.io/ebpf-for-windows/
https://microsoft.github.io/ebpf-for-windows/
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://lwn.net/Articles/749064/
https://a13xp0p0v.github.io/
https://a13xp0p0v.github.io/
https://lwn.net/Articles/617364/
http://google.github.io/kernel-sanitizers/KTSAN.html
http://google.github.io/kernel-sanitizers/KTSAN.html
https://github.com/xdp-project/xdp-tutorial
https://github.com/xdp-project/xdp-tutorial
https://cilium.io/
https://lwn.net/Articles/636224/
https://syzkaller.appspot.com/
https://syzkaller.appspot.com/
https://syzkaller.appspot.com/bug?id=70c77abc177053bca3b6ce82cefe5f05ad67c9f2
https://syzkaller.appspot.com/bug?id=70c77abc177053bca3b6ce82cefe5f05ad67c9f2

[60] syzbot, “KASAN: use-after-free read in route4_get.” https:
//syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba
26fe7cbd06144bd952.

[61] syzbot, “KMSAN: uninit-value in tcp_recvmsg.” https:
//syzkaller.appspot.com/bug?id=2039c557a4f369ad05ba
f0c6d0c9b9b8caf3acd5.

[62] syzbot, “KCSAN: data-race in tcp_send_challenge_ack /
tcp_send_challenge_ack.” https://syzkaller.appspot.com
/bug?id=f6e95af74472292ab1c50af3d6ac36cd4a683432.

[63] B. Kasikci, C. Zamfir, and G. Candea, “Data Races vs. Data Race
Bugs: Telling the Difference with Portend,”

[64] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding Kernel Race Bugs through Fuzzing,” in 2019 IEEE Sympo-
sium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019.

[65] A. Lenharth, V. S. Adve, and S. T. King, “Recovery Domains: An Or-
ganizing Principle for Recoverable Operating Systems,” in Proceed-
ings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2009,
Washington, DC, USA, March 7-11, 2009.

[66] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “ASSURE: Automatic Software Self-healing Using Res-
cue Points,” in Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2009, Washington, DC, USA, March 7-11, 2009.

[67] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” in Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2013,
Houston, TX, USA, March 16-20, 2013.

[68] R. Smith and S. Rixner, “Surviving Peripheral Failures in Embedded
Systems,” in 2015 USENIX Annual Technical Conference, USENIX
ATC ’15, July 8-10, Santa Clara, CA, USA.

[69] T. Gu, C. Sun, X. Ma, J. Lü, and Z. Su, “Automatic Runtime Re-
covery via Error Handler Synthesis,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2016, Singapore, September 3-7, 2016.

[70] K. Boos, E. D. Vecchio, and L. Zhong, “A Characterization of State
Spill in Modern Operating Systems,” in Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Bel-
grade, Serbia, April 23-26, 2017.

[71] P. authors, “Open Sourced Implementation.” https://github.com
/purplewall1206/PET.

[72] “Add Code-generated BPF Object Skeleton Support [LWN.net] —
lwn.net.” https://lwn.net/Articles/806911/. [Accessed 06-
Feb-2023].

[73] “GitHub - Markakd/LLVM-O0-BitcodeWriter: patch for LLVM to
generate O0 bitcode — github.com.” https://github.com/Marka
kd/LLVM-O0-BitcodeWriter. [Accessed 07-Feb-2023].

[74] A. Popov, “CVE-2017-2636: Exploit the race condition in the n_hdlc
Linux kernel driver.” https://a13xp0p0v.github.io/2017/03/24
/CVE-2017-2636.html.

[75] J. Jorn, “Issue 2247: Linux: unix GC memory corruption by resur-
recting a file reference through RCU.” https://bugs.chromium.o
rg/p/project-zero/issues/detail?id=2247.

[76] “UBSAN: shift-out-of-bounds in dummy_hub_control.”
https://syzkaller.appspot.com/bug?id=b5b251b9bcc465
3c39164dfee969dafb903ae25e.

[77] syzbot, “KASAN: slab-out-of-bounds write in
watch_queue_set_filter.” https://syzkaller.appspot.com/b
ug?id=797c55d2697d19367c3dabc1e8661f5810014731.

[78] syzbot, “KASAN: use-after-free read in vb2_mmap.” https://syzk
aller.appspot.com/bug?extid=be93025dd45dccd8923c.

[79] syzbot, “KASAN: stack-out-of-bounds write in bitmap_from_arr32.”
https://syzkaller.appspot.com/bug?id=2c09122a1f7edf61
aa6fb5dbb6cd19766b5daaa1.

[80] “google-sheet More Evaluation Results.” https://tinyurl.com/y
v9spkpp. [Accessed 07-Feb-2023].

[81] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xMP: Selective Memory Protection for Kernel and User
Space,” in 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020.

[82] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and
W. Aiello, “Shuffler: Fast and Deployable Continuous Code Re-
Randomization,” in 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016.

[83] Z. Zhang, H. Zhang, Z. Qian, and B. Lau, “An Investigation of the
Android Kernel Patch Ecosystem,” in 30th USENIX Security Sympo-
sium, SEC 2021, August 11-13, 2021.

[84] R. Shariffdeen, X. Gao, G. J. Duck, S. H. Tan, J. Lawall, and A. Roy-
choudhury, “Automated patch backporting in Linux (experience pa-
per),” in ISSTA ’21: 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, Denmark, July 11-
17, 2021.

[85] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux Bug Fixing
Patches,” in 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland.

[86] “Applying Patches To The Linux Kernel x2014; The Linux Kernel
documentation — kernel.org.” https://www.kernel.org/doc/htm
l/v4.10/process/applying-patches.html. [Accessed 07-Feb-
2023].

[87] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic Rebootless
Kernel Updates,” in Proceedings of the 2009 EuroSys Conference,
Nuremberg, Germany, April 1-3, 2009.

[88] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu, “Au-
tomatic Hot Patch Generation for Android Kernels,” in 29th USENIX
Security Symposium, SEC 2020, August 12-14, 2020.

[89] “Randomizing structure layout [LWN.net] — lwn.net.” https://lw
n.net/Articles/722293/. [Accessed 06-Feb-2023].

[90] “mm: SLUB Freelist randomization [LWN.net] — lwn.net.” https:
//lwn.net/Articles/688749/. [Accessed 06-Feb-2023].

[91] “Function Granular KASLR [LWN.net] — lwn.net.” https://lw
n.net/Articles/824307/. [Accessed 06-Feb-2023].

[92] “slub: Improve bit diffusion for freelist ptr obfuscation - Patch-
work — keescook.” https://patchwork.kernel.org/project/l
inux-mm/patch/202003051623.AF4F8CB@keescook/. [Accessed
06-Feb-2023].

[93] “Kernel Self Protection Project - Linux Kernel Security Subsystem
— kernsec.org.” https://kernsec.org/wiki/index.php/Kernel_
Self_Protection_Project. [Accessed 06-Feb-2023].

[94] “grsecurity - How AUTOSLAB Changes the Memory Unsafety
Game — grsecurity.net.” https://grsecurity.net/how_autos
lab_changes_the_memory_unsafety_game. [Accessed 06-Feb-
2023].

[95] “Hardened Usercopy [LWN.net] — lwn.net.” https://lwn.net/A
rticles/695991/. [Accessed 06-Feb-2023].

[96] “grsecurity — grsecurity.net.” https://grsecurity.net/. [Ac-
cessed 07-Feb-2023].

[97] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking Kernel Isolation,” in Proceedings of the 23rd USENIX
Security Symposium, SEC 2014, San Diego, CA, USA, August 20-22,
2014.

[98] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger,
and A. Burtsev, “RedLeaf: Isolation and Communication in a Safe
Operating System,” in 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event, Novem-
ber 4-6, 2020.

[99] J. Criswell, N. Dautenhahn, and V. S. Adve, “Virtual Ghost: Protect-
ing Applications from Hostile Operating Systems,”

4208 32nd USENIX Security Symposium USENIX Association

https://syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952
https://syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952
https://syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952
https://syzkaller.appspot.com/bug?id=2039c557a4f369ad05baf0c6d0c9b9b8caf3acd5
https://syzkaller.appspot.com/bug?id=2039c557a4f369ad05baf0c6d0c9b9b8caf3acd5
https://syzkaller.appspot.com/bug?id=2039c557a4f369ad05baf0c6d0c9b9b8caf3acd5
https://syzkaller.appspot.com/bug?id=f6e95af74472292ab1c50af3d6ac36cd4a683432
https://syzkaller.appspot.com/bug?id=f6e95af74472292ab1c50af3d6ac36cd4a683432
https://github.com/purplewall1206/PET
https://github.com/purplewall1206/PET
https://lwn.net/Articles/806911/
https://github.com/Markakd/LLVM-O0-BitcodeWriter
https://github.com/Markakd/LLVM-O0-BitcodeWriter
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=2247
https://bugs.chromium.org/p/project-zero/issues/detail?id=2247
https://syzkaller.appspot.com/bug?id=b5b251b9bcc4653c39164dfee969dafb903ae25e
https://syzkaller.appspot.com/bug?id=b5b251b9bcc4653c39164dfee969dafb903ae25e
https://syzkaller.appspot.com/bug?id=797c55d2697d19367c3dabc1e8661f5810014731
https://syzkaller.appspot.com/bug?id=797c55d2697d19367c3dabc1e8661f5810014731
https://syzkaller.appspot.com/bug?extid=be93025dd45dccd8923c
https://syzkaller.appspot.com/bug?extid=be93025dd45dccd8923c
https://syzkaller.appspot.com/bug?id=2c09122a1f7edf61aa6fb5dbb6cd19766b5daaa1
https://syzkaller.appspot.com/bug?id=2c09122a1f7edf61aa6fb5dbb6cd19766b5daaa1
https://tinyurl.com/yv9spkpp
https://tinyurl.com/yv9spkpp
https://www.kernel.org/doc/html/v4.10/process/applying-patches.html
https://www.kernel.org/doc/html/v4.10/process/applying-patches.html
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/688749/
https://lwn.net/Articles/688749/
https://lwn.net/Articles/824307/
https://lwn.net/Articles/824307/
https://patchwork.kernel.org/project/linux-mm/patch/202003051623.AF4F8CB@keescook/
https://patchwork.kernel.org/project/linux-mm/patch/202003051623.AF4F8CB@keescook/
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://lwn.net/Articles/695991/
https://lwn.net/Articles/695991/
https://grsecurity.net/

[100] J. Criswell, N. Dautenhahn, and V. S. Adve, “KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels,”
in 2014 IEEE Symposium on Security and Privacy, SP 2014, Berke-
ley, CA, USA, May 18-21, 2014.

[101] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. S. Adve,
“Nested Kernel: An Operating System Architecture for Intra-Kernel
Privilege Separation,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-
18, 2015.

[102] N. Roessler, L. Atayde, I. Palmer, D. P. McKee, J. Pandey, V. P. Ke-
merlis, M. Payer, A. Bates, J. M. Smith, A. DeHon, and N. Daut-
enhahn, “µSCOPE: A Methodology for Analyzing Least-Privilege
Compartmentalization in Large Software Artifacts,” in RAID ’21:
24th International Symposium on Research in Attacks, Intrusions and
Defenses, San Sebastian, Spain, October 6-8, 2021.

[103] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No Need to Hide: Protecting Safe Regions on Commodity Hard-
ware,” in Proceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017.

[104] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for Generalized Transient Execution Gadgets in
the Linux Kernel,” in 29th Annual Network and Distributed System
Security Symposium, NDSS 2022, San Diego, California, USA, April
24-28, 2022.

[105] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos, “Lock-in-Pop:
Securing Privileged Operating System Kernels by Keeping on
the Beaten Path,” in 2017 USENIX Annual Technical Conference,
USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017.

[106] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Con-
fine: Automated System Call Policy Generation for Container Attack
Surface Reduction,” in 23rd International Symposium on Research in
Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain,
October 14-15, 2020.

[107] S. Ghavamnia, T. Palit, and M. Polychronakis, “C2C: Fine-grained
Configuration-driven System Call Filtering,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022.

[108] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
System Call Specialization for Attack Surface Reduction,” in 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020.

[109] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “FACE-CHANGE:
Application-Driven Dynamic Kernel View Switching in a Virtual Ma-
chine,” in 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2014, Atlanta, GA, USA, June
23-26, 2014.

[110] Z. Zhang, Y. Cheng, S. Nepal, D. Liu, Q. Shen, and F. A. Rabhi,
“KASR: A Reliable and Practical Approach to Attack Surface Reduc-
tion of Commodity OS Kernels,” in Research in Attacks, Intrusions,
and Defenses - 21st International Symposium, RAID 2018, Herak-
lion, Crete, Greece, September 10-12, 2018, Proceedings.

[111] M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “SHARD: Fine-
Grained Kernel Specialization with Context-Aware Hardening,” in
30th USENIX Security Symposium, SEC 2021, August 11-13, 2021.

[112] K. Nohl and J. Lell, “BadUSB On accessories that turn evil.” Black-
Hat, 2014.

[113] syzbot, “KASAN: slab-out-of-bounds write in sha512_final.”
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777
d69a9e3e20bc7b708ee8f82c.

[114] syzbot, “KMSAN: kernel-infoleak in _copy_to_iter (6).”
https://syzkaller.appspot.com/bug?id=e476b01dd5a107
5a281c26069ebf677b019bf6d8.

[115] syzbot, “KCSAN: data-race in netlink_recvmsg / netlink_recvmsg
(5).” https://syzkaller.appspot.com/bug?id=cb2264a0f3b3
03a24e4c4a88752d551e35bae757.

• OSBench • Git
40.0%

• perf-bench • MP3 Encoding

• OpenSSL • XZ Compression

• GIMP • Apache

30.0% • SQLite Speedtest • Nginx

• WireGuard Stress • Average

20.0%

Optimal
10.0%

0.0%

Figure 5: Impact of configuration for entire-sweeping mode in
the use-after-free policy with CVE-2021-4154 as the testbed. The
optimal configuration is scanning 256 MB per 8s.

[116] syzbot, “KCSAN: data-race in netlink_getname / netlink_insert (4).”
https://syzkaller.appspot.com/bug?id=a834b993b63ed439
38194af3accb08c0a5042877.

A More Implementation Details

eBPF Programs. In the prevention policy for use-after-free errors, the
sweeper periodically scans physical memory for dangling pointers. Al-
though all physical memory is mapped in the kernel, there are some un-
mapped holes in between such as 0xffff8880c0079000 in Zone_Normal
and accessing these holes can cause kernel panic. Therefore, the sweeper
only scans mapped pages using for_each_zone instead of straightly
traversing all page frames. Besides, to avoid the sweeper from mistak-
enly treating object addresses stored in the BPF map as dangling pointers,
we negate every bit in the object address in the BPF maps. For instance,
0xffffffff80123456 is negated to 0x000000007fedcba9. Since all ker-
nel object addresses are larger than 0xffffffff80000000, the negated ad-
dress won’t be treated as a valid kernel pointer value.

Static Analysis. To optimize the sweeper, PET only selects slab caches that
potentially contain dangling pointers for sweeping. Our static analysis in-
cludes: (1) use GetElementPtr instruction to extract the type of allocated
objects at the allocation site, (2) add kernel structures that contain a field in
the pointer type of the allocated objects into our candidate set - these fields
are potential dangling pointers, (3) analyze Cast instructions to identify ad-
ditional structures that can be cast to or from structures in the candidate set,
and add them to the set, (4) repeat above steps until the candidate set reaches
a fixed point. With all the candidate structures determined, we further deter-
mine which slab caches can store them and only these caches are selected
for sweeping. This analysis is sound. In the worst case where all slab caches
are swept, the sweeper is degraded to the entire-sweeping mode.

B More Evaluation Results
The optimal configuration for the use-after-free sweeper is to scan 256 MB
per 8s which is obtained from Figure 5. More complete effectiveness results
can be found in Table 4.

C More eBPF Templates
Due to the space limit, we only showed the partial eBPF template for integer
underflow/overflow in Section 5.1. More detailed eBPF templates are in
[71].

USENIX Association 32nd USENIX Security Symposium 4209

https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=e476b01dd5a1075a281c26069ebf677b019bf6d8
https://syzkaller.appspot.com/bug?id=e476b01dd5a1075a281c26069ebf677b019bf6d8
https://syzkaller.appspot.com/bug?id=cb2264a0f3b303a24e4c4a88752d551e35bae757
https://syzkaller.appspot.com/bug?id=cb2264a0f3b303a24e4c4a88752d551e35bae757
https://syzkaller.appspot.com/bug?id=a834b993b63ed43938194af3accb08c0a5042877
https://syzkaller.appspot.com/bug?id=a834b993b63ed43938194af3accb08c0a5042877

CVE/SYZ ID Sites for eBPF Installation Action & Triggering Condition Effectiveness
(PET/[30])

Time Window
(days)

Integer Underflow/Overflow
70c77ab [59] __qdisc_calculate_pkt_len $eax>>$cl == $rax>>$cl & $cl<32 ? false : true / G# 415

b5b251b [76]
dummy_hub_control+0x3f (spinlock)
dummy_hub_control+0x225

lock_map[pid] = $rdi

$eax<<$edx == $rax<<$edx & $edx<32 ? false : true
 / G# 79

Out-of-bound Access on Stack
2022-1015 nft_do_chain+0x243 $rdi ∈ [$rsp+0x50, $rsp+0xa0)? false : true / G# 147
2c09122 [79] ethnl_parse_bitset+0x45f $rdi+$rdx ∈ [$rdi, $rdi+0x40*8)? false : true / G# 104

Out-of-bound Access on Global and Static Region
2017-18344 show_timer+0x81 $rdx ∈ [0xffffffff822479c0, 0xffffffff822479d8)? false : true / G# 90

Out-of-bound Access on Buddy System Heap
2017-7308 tpacket_rcv+0x2ff $rdi+$rsi*$rcx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 1015
2022-27666 null_skcipher_crypt+0x4b $rdi+$rdx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 17

Out-of-bound Access on vmalloc Heap

2020-14386
tpacket_rcv+0x21a (spinlock)
tpacket_rcv+0x6f6

lock_map[pid] = $rdi

%rax ∈ [start($r10), start($r10)+len($r10))? false : true
 / G# 39

Out-of-bound Access on SLAB/SLUB Heap
2010-2959 bcm_sendmsg.cold+0x568 $rdi ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 13
2021-22555 xt_compat_target_from_user.cold+0x23 $rdi+$rdx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 86
2021-43276 tipc_crypto_msg_rcv.cold+0x6d $rdi+$rdx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 12
2022-34918 nft_set_elem_init+0x3e $rdi+$rcx ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 38
2016-6187 apparmor_setprocattr+0x8f $rdi ∈ [start($rdi), start($rdi)+len($rdi))? false : true / G# 111
2017-7184 xfrm_replay_advance+0x250 $rbx+0x18 ∈ [start($rbx), start($rbx)+len($rbx))? false : true / G# 108
2022-0185 legacy_parse_param+0x27e $rbp ∈ [start($r12), start($r12)+len($r12))? false : true / G# 0

797c55d [77]
watch_queue_set_filter+0x81 (alloc)
watch_queue_set_filter+0x78d

alloc_map[pid]=$rdi

$r15+0x8 ∈ [start($r15), start($r15)+len($r15))? false : true
 / G# 344

e4be308 [113] sha512_final+0x34a/0x3e0 $r12+$rax ∈ [start($r15), start($r15)+len($r15))? false : true / G# 30
Use-After-Free

__vb2_queue_free+0x13e (free) map ∪ $rdi; full_sweep(0, 16GB)2019-18683
vid_cap_buf_queue+0x49 (use) $rbp+0x3a8 ∈ map ? true: false

 / G# 29

nfc_llcp_local_put (free) map ∪ $rdi; full_sweep(0, 16GB)2021-23134
nfc_llcp_sock_unlink (use) $rdi ∈ map, ? true: false

 / G# 201

put_fs_context+0xec (free) map ∪ $rdi; full_sweep(0, 16GB)2021-4154
filp_close (use) $rdi ∈ map ? true: false

 / G# 233

nft_obj_destroy+0x3f (free) map ∪ $rdi; selective_sweep(kmalloc-256, 0x20)2022-2586
nf_tables_fill_setelem.isra.0+0x140 (use) $rbx+$rax ∈ map ? true: false

 / G# 97

ccid_hc_rx_delete+0x2e (free) map ∪ $rsi; selective_sweep(DCCPv6, 0x628)2017-8824/
2020-16119 ccid_hc_rx_delete+0x2e (use) $rdi ∈ map ? true: false

 / G# 128

__route4_delete_filter+0x3c (free) map ∪ $rdi, selective_sweep(kmalloc-192, 0x28)2021-3715/
5d5bb09c [60] route4_get+0x58 (use) $rax+0x40 ∈ map ? true: false

 / G# 59

__vb2_queue_free+0x13e (free) map ∪ $rdi; full_sweep(0, 16GB)

be93025d [78] vb2_mmap+0x52 (mutex)
vb2_mmap+0xa29 (use)

mutex_lock[pid]=$rdi

r8 ∈ map ? true: false

 / G# 73

__route4_delete_filter+0x3c (free) map ∪ $rdi; selective_sweep(kmalloc-192, 0x28)2022-2588
__route4_delete_filter+0x3c (use) $rdi ∈ map ? true : false

 / G# 38

Uninitialized Access
__sys_recvfrom (create) map[$rsp+8-200] = mem($rsp-0xc0, 0x60)2039c557 [61]
tcp_recvmsg+0xb8 (use) map[$r13] == mem($r13, 0x60)? false : true

 (default conservative)G#(aggressive) / G# 248

__alloc_slab+0x237 (create) map[$rdi] = mem($rdi, 0x80)e476b01d [114]
simple_copy_to_iter+0x11 (use) map[$rdi] == mem($rdi, 0x80)? false : true

 (default conservative)G#(aggressive) / G# 111

Data Race
n_hdlc_send_frames+0x118 (write) P($rbp+0x310); V($rbp+0x310)2017-2636 [74]
n_hdlc_tty_ioctl+6b (write) P($rsp); V($rsp)

 / G# 40

unix_stream_read_generic+0xeb (spinlock)
unix_stream_read_generic+0x120 (mutex)
unix_stream_read_generic+0x138 (read)

lock_map[pid]=$rdi

mutex_lock[pid]=$rdi

P($r13); V($r13)

2021-4083 [75] unix_gc+0x33 (spinlock)
unix_gc+0x28e (write)

lock_map[pid]=$rdi

P($rsp+0x38); V($rsp+0x38)

 / G# 224

tcp_send_challenge_ack.constprop.0+0x5d (read) P($rip+0x2108765); V($rip+0x2108765)f6e95af7 [62]
tcp_send_challenge_ack.constprop.0+0x7b (write) P($rip+0x2108765); V($rip+0x2108765)

N/A / G# 178

tcp_send_challenge_ack.constprop.0+0x65 (read) P($rip+0x2108765); V($rip+0x2108765)cb2264a [115]
tcp_send_challenge_ack.constprop.0+0x7b (write) P($rip+0x2108765); V($rip+0x2108765)

N/A / G# 340

netlink_getname+0x44 (read) P($rbp+0x310); V($rbp+0x310]);

a834b99 [116] netlink_insert+0x3c (lock_sock)
netlink_insert+0x87 (write)

lock_map[pid]=$rdi

P($rbp+0x310); V($rbp+0x310]);

N/A / G# 35

Table 4: Complete results for the effectiveness of PET. indicates that all three criteria are satisfied;G#means criteria · (i.e., no false alarm)
is not met; N/A means Proof-of-concept is unavailable.

4210 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Linux Kernel Memory and Errors
	Kernel Sanitizers
	The eBPF Ecosystem

	Threat Model and Assumptions
	Workflow
	Error-dependent Prevention Policies
	Integer Underflow/Overflow Policy
	Out-of-bound Access Policy
	Use-After-Free Policy
	Uninitialized Access Policy
	Data Race Policy

	Error-independent Mechanisms
	Report Processor
	Sanitized-Native Mapper
	Checkpoint-Restore Analyzer
	Library of eBPF Helper Functions

	Implementation
	Evaluation
	Testcase Set
	Effectiveness
	Overhead & Scalability

	Related Works
	Discussion & Future Works
	Conclusion
	More Implementation Details
	More Evaluation Results
	More eBPF Templates

