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Abstract
The increasing popularity of mobile applications (apps) has

led to a rapid increase in demand for backend services, such as
notifications, data storage, authentication, etc., hosted in cloud
platforms. This has induced the attackers to consistently target
such cloud services, resulting in a rise in data security incidents.
In this paper, we focus on one of the main reasons why cloud
services become increasingly vulnerable: (over-)privileges
in cloud credentials. We propose a systematic approach to
recover cloud credentials from apps, infer their capabilities in
cloud, and verify if the capabilities exceed the legitimate needs
of the apps. We further look into the security implications of
the leaked capabilities, demonstrating how seemingly benev-
olent, unprivileged capabilities, when combined, can lead to
unexpected, severe security problems. A large-scale study of
∼1.3 million apps over two types of cloud services, notification
and storage, on three popular cloud platforms, AWS, Azure,
and Alibaba Cloud, shows that ∼27.3% of apps that use cloud
services expose over-privileged cloud credentials. Moreover, a
majority of over-privileged cloud credentials (∼64.8%) poten-
tially lead to data attacks. During the study, we also uncover
new types of attacks enabled by regular cloud credentials,
such as spear-phishing through push notification and targeted
user data pollution. We have made responsible disclosures
to both app vendors and cloud providers and start seeing the
impact—over 300 app vendors already fixed the problems.

1 Introduction
The ever increasing popularity of mobile applications (apps)
has led to a rise in demand for scalable backend services,
such as user authentication, push notification, data storage,
and so on. Modern cloud platforms have become the natural
home for such backend services due to their high availability,
scalability, and low cost. This change in paradigm has also
prompted the attackers to shift their focus to cloud services.
The overwhelmingly huge amount of data generated by mobile
app users, the value of the data, combined with the open nature
of cloud services has kept attackers’ interest level alarmingly
high. As a result, incidents such as leaks and theft of users’
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personally identifiable information (PII) ([55, 60, 68]) and
corporate/government secrets ([41, 59]) are on the rise.
Implications of cloud credential exposure. Cloud service
providers have often gone extra miles to secure their services,
but the clients of those services (e.g., the mobile apps) are
often seen as the weaker links. A number of previous studies
([29, 67, 71, 74]) have reported identification of residual cloud
credentials that may lead to insecure cloud access. Particularly,
Zuo et al. [75] have conducted a systematic study on cloud
service credentials embedded in mobile apps, and concluded
that the misuse of root credentials is the major reason behind
the data leakage problems in clouds. As a result of these
findings, major cloud service providers, such as Google Cloud,
Amazon Web Services (AWS) and Microsoft Azure, updated
their security guidelines to prevent the use of root credentials in
mobile apps [13, 16]. Instead, they encourage app developers
to adopt regular cloud user credentials (e.g., IAM user) when
accessing cloud services in order to restrict the data access
capabilities from apps. However, the effectiveness of this
approach depends entirely on the app developers’ ability to
correctly tailor the capabilities of the regular user credentials,
which, if history is any indication, is often a daunting task.
In particular, cloud services have notoriously complex sets
of capabilities and even minor mistakes may result in severe
data leaks on app users. Even worse, such data leakage can
be more subtle and harder to detect, compared with the usage
of root credentials. Hence, there is a need for analyzing the
capabilities owned by cloud service credentials at a finer
granularity and better understanding the security implications
of the capabilities when they are exercised by apps even
though they are regular cloud user credentials.
Analyzing exposed cloud capabilities. In this paper, we
report a systematic study on exposed cloud credentials. By
answering three key questions, we aim to contribute to the
better understanding of how mobile apps use cloud credentials
(especially regular ones) and its security implications: first,
what capabilities do mobile app developers grant to cloud
credentials when accessing a cloud service? Second, do
developers often grant more-than-needed capabilities (i.e.,
over privileged1)? Third, when would more-than-needed

1To a large extent, the root credential studied in previous work [75] is a
special type of over privileged credential
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capabilities be harmful and how (i.e., can one non-privileged,
extra capability lead to large scale attacks on clouds when
combined with other seemingly benevolent capabilities)?

To answer these questions, we need to address several chal-
lenges. First, unlike the prior studies that evaluate app permis-
sions on their host operating systems ([9, 33, 40, 56, 57, 69]),
how to identify capabilities that apps own on remote cloud ser-
vices remains largely under-addressed. Lack of visibility into
cloud services leaves analysis of mobile apps the only viable ap-
proach, but analyzing an app alone can hardly draw a complete
picture of all the capabilities the app owns on remote cloud. Sec-
ond, identifying capabilities at fine granularity is instrumental
in identifying subtle attacks involving misuse of individual
capabilities. However, accurately inferring such capabilities is
difficult due to the complexity in cloud access control models
and the opacity of their policies. Finally, due to the large num-
ber of mobile apps available today, the analysis must be highly
scalable and automated. To address the first challenge, we com-
plemented static app analysis with a dynamic probing approach
where we dynamically probe cloud services and analyze their
responses. Specifically, we leverage a novel approach called
induced transaction failure (Section 3.6) to indirectly
infer capabilities on remote cloud services without risking
access or modification to actual users’ data. To address the sec-
ond challenge, we eliminated the abstraction of specific access
control models and policies of cloud services by building the
list of capabilities owned by a cloud credential represented in
the most basic form of access control — a tuple expressed by
the combination of < sub ject,ob ject,operation>. Combin-
ing these ideas with a suite of program analysis techniques, we
built a tool named PrivRuler that allows us to systematically
investigate cloud credentials used in mobile apps and identify
the ones that may lead to user data compromises in the cloud.

Our findings. We evaluated PrivRuler against two popular
types of mobile backend service, storage and notification, on
three popular cloud platforms: AWS [2], Microsoft Azure [46],
and Alibaba Cloud [1]. Our empirical study consists of
1,358,057 mobile apps crawled from Google Play [34], out of
which 11,891 apps are identified to be using aforementioned
mobile backend services. We found that 2,572 apps contain
cloud credentials with more-than-needed capabilities (i.e., over
privileged). Majority of these apps are relatively new (with
70.0% updated on Google Play after April 2019), confirming
our hypothesis that simply encouraging app developers to
not use cloud root credentials would not solve the problem.
We further identified 1,667 apps (out of 2,572, 64.8%) whose
extra capabilities can potentially lead to large scale attacks
on mobile app users. Examples of such high profile attacks
include spear phishing attacks where an attacker can target
any or all mobile app users with a crafted in-app notification
message, large scale data leakage where an attacker can
harvest user PIIs, personal photos, legal recordings, travel logs
and so on, and data pollution attacks where an attacker can
distribute malicious content to mobile app users. In total, these

apps have been downloaded over 765 million times.
Responsible disclosure and ethical research. We have
made responsible disclosures to mobile app developers, cloud
vendors and Google Play, and started seeing the impact of
the work — 317 apps were already updated to newer versions
with changes to their cloud credentials and 56 mobile app
developers formally acknowledged our efforts via email (see
more details online [5]).

During the course of this research, ethics has been our top
priority. In particular, we conducted a thorough risk-benefit
analysis of the dynamic cloud probing approach and ensure
from design that we do not access or modify any users’ data,
nor impact the operation of cloud services. Refer to Section 3.6
and Section 6 for more details.
Contributions. To summarize, we make the following
contributions:
• We build PrivRuler, an automated tool that combines static
app analysis and dynamic probing to accurately infer cloud
capabilities owned by mobile apps. We have open sourced
PrivRuler [5].
• We conduct a large-scale, empirical study on cloud capabili-
ties owned by mobile apps and their security implications. The
findings indicate the pervasiveness and seriousness of security
risks caused by excessive cloud capabilities, particularly the
risks posed by combination of regular credentials.
• We propose several heuristics for identifying mobile apps
that may enable large scale attacks against mobile app users.
This approach reveals a number of novel attacks, such as spear
phishing attacks, large scale data leakage, data pollution, etc.

2 Background
Cloud services and cloud identities. Backend cloud services
are typically integrated into mobile apps in the forms of mobile
SDKs, which in turn are composed of a number of cloud
service APIs corresponding to a variety of cloud operations.
App developers perform cloud operations (e.g., store/retrieve
data) by invoking the APIs, similar to the use of other libraries
in mobile apps. On the cloud side, app developers need to
configure cloud identities and grant these identities capabilities
to operate on the cloud resources. They will need to generate
credentials for the identities from their cloud management con-
sole, and deliver them to the apps in order for the apps to be able
to authenticate and authorize themselves for performing cloud
operations. Since the cloud identities are owned by app devel-
opers instead of individual app users, the app users typically
share the same set of cloud credentials and capabilities.

There are two types of cloud identities. One is root (i.e.,
account owners), who basically own full access to all cloud
resources under the same cloud account. Previous study [75]
has found that misuse of root cloud credential is one of the
major causes for data leaks in cloud. Since then, cloud vendors
have been discouraging usage of root credentials in mobile
apps [13, 16]. The other type is regular user identity (e.g.,
IAM users [17] in AWS), for whom app developers need to
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Figure 1: Overview of PrivRuler

properly configure its capabilities. In this work, we focus on
investigating excessive capabilities granted to regular user
identities, but our approach applies to root identities as well.

Scope of the study. This research focuses on the mobile
apps that use cloud platforms as their backend services, for the
purpose of analyzing their cloud service usages to determine
whether they expose sensitive cloud capabilities. We assume
that the apps being analyzed are benign, and do not consider
the evasive and malicious apps that deliberately hide cloud
services in their background (e.g., via dynamic code loading).
Instead, we focus on the evaluation of data attacks that can
happen to benign apps and these apps’ legitimate usages of
cloud services to help the developers mitigate the threats to
their data in the cloud.

3 Design of PrivRuler
Overview. Figure 1 presents an overview of PrivRuler. The
first component is the App Dataset, which stores ∼1.3 million
apps crawled from Google Play. PrivRuler scans this raw
dataset to identify apps that use cloud services covered in
this study. After these apps are identified, PrivRuler extracts
cloud credentials from them. To decide whether an app is
over-privileged, PrivRuler first determines the capabilities
that a cloud credential enables. This is done by dynamically
probing cloud services to perform different cloud operations
using the credentials extracted from the app. The output is a
capability map, represented by access control tuples. Next,
our tool identifies the capabilities that are needed by the app. It
statically analyzes the app to find cloud operations performed
and cloud objects accessed, also in the form of access control
tuples. Then it compares the capabilities that an app has with
the capabilities that the app needs to decide whether it is
over-privileged and what the extra capabilities are.

Over-privilege is the root cause for many security issues
and should be avoided whenever possible. However, not
every “extra” capability enables massive scale attacks against
app users. Thus, in the last step, our tool utilizes a set of
vulnerability patterns to decide when over-privilege is likely to
become a vulnerability that an attacker may exploit to launch
attacks at scale against app users. This guides prioritization
of vulnerability confirmation, report, and fix. In the remainder
of this section, we describe each step of our tool in detail.

3.1 Building the App Dataset
We build an app dataset by crawling Google Play [34] with a
crawler using googleplay-api [51]. For this purpose, we firstly
gathered the package names of all apps (3.4 million as of April
2020) with google-play-scraper [53], and randomly shuffled

the package names before downloading apps. Till this work
is done, we were able to download and analyze 1.3 million
apps (See Section 4.1 for more details).

With the raw app dataset, we focus on the apps that use
cloud services as backends. The core challenge is to detect at
scale (i.e., millions of apps) if an app uses a cloud service. To
address this challenge, we adopted a two-stage pipeline design.
In the first stage, we screen the app dataset by simply testing
the presence of cloud service SDKs. We unpack an app and
check if certain packages used for communicating with cloud
backends are present in the unpacked file structure of the app
(e.g., com/amazonaws/). Such package names are often unob-
fuscated which makes the SDK presence detection straightfor-
ward. This stage produces fast but less accurate results.

In the second stage, we detect with more accuracy if a
cloud service is indeed being used by an app by identifying if
specific cloud service APIs are invoked in the app (i.e., as part
of cloud service SDKs). Specifically, we first compile a list of
cloud APIs of our interest from cloud service documentation.
Then we run FlowDroid [8] to construct a global call graph
for the app, and search through the global call graph for the
reachable cloud APIs. One challenge we encounter is app
obfuscation where class and method names are replaced
by random strings. To address this challenge, we built API
signatures, which consist of a series of invariants that are not
changed by the obfuscation tools, including parameter types
and return values, method modifiers, signature of callees, and
constant strings that are referenced on the API sub-graph, etc.
Instead of comparing method invocations by their names, we
compare their API signatures to identify the presence of cloud
APIs in the event that an app is obfuscated.

The output of the pipeline is a much smaller dataset
(∼1%) composed of apps that use cloud services as backends.
Additionally, it tells us the exact cloud APIs that an app is using.

1 public class ProfileService {
2 public static String BUCKET = "profile"; //Container
3 public static String A_K_ID; //AWS Access Key
4 public static String S_K; //AWS Secret Key
5
6 static {
7 StringBuilder sb = new StringBuilder();
8 A_K_ID = sb.append("AKI*").append("7*").toString();
9 StringBuilder sb2 = new StringBuilder();

10 S_K = sb2.append("2M**").append("Tl**").toString();
11 }
12
13 public void deleteProfileImage(...) {
14 AmazonS3Client client = new AmazonS3Client(
15 new BasicAWSCredentials(A_K_ID, S_K));
16 StringBuilder objKey = new StringBuilder();
17 objKey.append(userId).append("/").append(fileName);
18 client.deleteObject(BUCKET, objKey);
19 }
20 }

Figure 2: The code snippet from a real-world mobile app.

3.2 Extracting Credentials from Apps
Next, PrivRuler extracts the cloud service credentials from
the apps. Recall from Section 2 that such credentials are
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required by cloud services to both authenticate and authorize
an app when it performs a cloud operation. To extract these
credentials, we apply a suite of program analysis techniques.

We start with regular expression matching. Cloud cre-
dentials often exhibit certain patterns, e.g., AWS access key
complies with AKIA[0-9A-Z]16 (More credential examples
are available in Table 5). By searching through the decompiled
app code for such patterns, we were able to extract many
credentials that were directly built into the app.

In many cases, credentials are results of transformations,
such as string operations, encryption/decryption procedures,
etc. Regular expression matching is limited in reconstructing
credentials in these cases. Figure 2 shows an example where
credentials A_K_ID and S_K are built from string concatenation
(Line 7-10) before being used to create an AWS S3 client (Line
14-15). To address this problem,we adopted a program analysis
approach that combines program slicing and dynamic execu-
tion. Specifically, we start with the app entry points computed
by FlowDroid, and build a backward program dependency
graph through a whole app analysis [73]. Then, we mark the
credential parameter of a cloud API as the value of interest and
conduct a backward program slicing to identify all instructions
and variables that may impact the credential parameter. An ob-
vious challenge is that once a slice becomes inter-procedural,
the complexity of the analysis increases dramatically or even
becomes untractable. To reduce the complexity, we borrow the
idea of differential analysis from the prior work [21]. The core
of the idea is that since a cloud credential is static and invari-
able, its value should originate from some source of invariants
within the program (e.g., constants, resource and manifest files).
We can thus prune the search paths to remove those unrelated
to the sources of invariants to reduce the analysis complexity.

After the program slices are created, we dynamically
execute the slices to reconstruct the credential. Using our
prototype, we construct a reduced method for each method
on a program slice by re-assembling the program statements
that affect credential construction. Then we create an executor
method to invoke these reduced methods following the order of
the dependency graph. After that, we rewrite the app’s launcher
activity to ensure that the executor method is invoked when the
app is being started. At the same time, we add the cloud APIs as
logging points, and instrument the reduced methods to ensure
that the cloud credentials are logged right before the cloud
APIs. Once the instrumented app is ready, we execute the
program slices by directly launching the app in an unmodified
Android emulator. The advantage of using an Android
emulator is that it can effectively address most of the program
dependencies, such as framework APIs. However, there are
cases that may prevent us from executing the slices and gather-
ing the credentials, e.g., when the slices are dependent on user
input environmental conditions. Fortunately, in our evaluation
(Section 4.5), we found that such cases are rare, so we leave
the development of their solutions to the future research.

Note that we analyze all cloud service APIs in an app in

order to extract a complete set of credentials. We observed in
several cases where different APIs in an app use different cre-
dentials. For example, in a creative service app, we extracted
two credentials, one for testing and one for production. The
test credential is never invoked when the app runs, but it was
embedded in the app by presumably a developer’s mistake.
Interestingly, the test credential is more privileged (i.e., with
more capabilities) than the production one.

3.3 Mapping Credentials to Capabilities
The next step is to decide capabilities, i.e., authorized cloud
operations, of the credentials. Given a credential, recovering
its capabilities in the original policy format is infeasible due
to the blackbox nature of cloud services. To address this
challenge, our solution is to express capabilities in its primitive
form—access control tuples. An access control tuple <OP,
OBJ>2 states what cloud operation (OP) can be performed
over which cloud object (OBJ). It captures a capability at its
finest possible granularity, while treating the specifics of access
control policies as a blackbox. A capability map contains a
list of access control tuples enabled by the credential.

To build the capability map, static app analysis is not
sufficient since the extra capabilities that a credential has but
does not use cannot be recovered from the app. To solve the
problem, we use a dynamic probing technique [50, 72, 75]
that probes cloud services using the credential and inspects
how cloud services respond. There are two major challenges
involved in this technique. First, how to construct the <OP,
OBJ> tuples from probing. Second, how to safely and
ethically probe cloud services without impacting individual
app users. We focus on the first challenge in this section and
discuss solutions to the second in Section 3.6.

Re-constructing operations (OP) is straightforward since
possible cloud operations are simply exposed in forms of the
cloud APIs in mobile SDKs. We could thus enumerate them
by probing if the cloud services authorize the invocations of
the cloud APIs. The more challenging part is to decide which
cloud objects (OBJ) can be accessed by those cloud operations.
Unlike operations, the cloud objects are not known, and with-
out knowing them, the probes will simply fail as probes without
valid objects are considered to be malformed by cloud services.

To solve this problem, we observe that cloud objects
mainly fall into two conceptual categories, containers and
elements [14, 15, 45, 47]. A container object is often statically
created in the cloud by app developers prior to app launch, and
its goal is to “contain” all data produced by the app users (e.g.,
“bucket” in AWS S3). In contrast, element objects are often
dynamically created, accessed and deleted at runtime by indi-
vidual app instances—they belong to individual app users. Ex-
amples of such element objects are the “object” in AWS S3 and
the “platform endpoint” in AWS SNS. This distinction enables
us to treat them separately. For container objects, their static

2We omitted subjects in the tuple as in the app-cloud context, the subject
is always the app itself.
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nature determines that they need to be embedded inside of the
apps. We can therefore extract their values (i.e., object names)
in a way similar to how we extract cloud credentials from apps,
as discussed in Section 3.2. Element objects, on the other hand,
cannot be recovered from apps statically. However, we found
that their values do not impact whether or not an operation is au-
thorized, due to the fact that cloud policies are often specified at
the granularity of container objects. As a result, we could plug-
in invalid element objects with valid cloud operations and con-
tainer objects to construct a valid dynamic probing request. By
sending the probing requests to cloud services and inspecting
their responses, we could thus determine if the credential is au-
thorized to perform the operation, and therefore build the capa-
bility map for the credential (See Section 3.6 for more details).

3.4 Detecting Excessive Capabilities
Next, we decide if the credential is over-privileged by com-
paring the capabilities the credential has with the capabilities
the app requires. We rely on static app analysis to identify
the capabilities that an app requires. Specifically, we use the
cloud APIs identified in Section 3.1 as the set of required
cloud operations. For each operation that the app performs,
we extract the name of the container objects with the dynamic
execution technique. The result is a list of capabilities that an
app requires to function, expressed in access control tuples.

One problem that we did not discuss sufficiently in
Section 3.3 is how do we enumerate container objects that
an app can but does not access. Such objects cannot be
recovered from static app analysis but they are a key to identify
the “over privileges” regarding objects. We combine three
methods to address this problem. First, we utilize the special
“listContainerObjects” APIs (e.g., s3:ListAllMyBuckets)
to get a list of container objects that a credential has access
to. Such APIs take no parameter except the credential itself
and returns a list of container objects associated with a cloud
project. Although straightforward, this method is limited
in practice because the “listContainerObjects” API itself
corresponds to a capability—a particularly powerful one that
many app developers intentionally remove from credentials.

The second method we use is guilt by association where
we gather credentials and container objects from all the apps
of the same developer on Google Play, and cross validate their
accesses. The rationale is that a developer tends to have the
same or associated cloud settings for different apps [6, 70].
As a result, capability escape and misconfiguration are likely
to happen. In practice, we found this method very useful
in identifying many objects that credentials have access to,
which we would never learn by analyzing a single app. As an
example, we identified an over-privileged AWS S3 credential
in a smart doorbell app. The credential not only allows access
to all users’ data of the doorbell, but also users’ data from
other apps in the family, such as indoor and outdoor cameras
(See Section 4.2 for more details).

The third method we use is also based on guilt by association

but from an object’s perspective. Specifically, We build an
undirected graph whose vertices are <app, container
object> pairs. The container objects are added to the
graph as long as their names are non-generic values (i.e.,
strings that contain at least two vocabulary words or contain
non-vocabulary words, such as vioozer-videos-raw instead
of photo or data). We then draw an edge between two vertices
if 1) the vertices have the same container object name; or 2)
the vertices correspond to the same app. After that, we cross
validate accesses to container objects within each connected
subgraph. Not only does this method allow us to find more
hidden capabilities of a credential, it also enables a few
interesting findings where apps that are published by different
developers and have different credentials share access to the
same container objects (See Section 4.2 for more details).

By comparing the capabilities that a credential has with the
capabilities the app requires, we can thus identify mobile apps
that are over-privileged.

3.5 Identifying Vulnerable Apps
We firmly believe over-privilege is a severe security issue
that should be fixed whenever possible. Therefore, we have
provided responsible disclosures to all developers whose
apps are flagged by this study. However, at the same time we
recognize that not all extra capabilities are equally harmful. To
guide prioritization of vulnerability confirmation and patching,
PrivRuler features another component that decides when
over-privilege may lead to a vulnerability that can be exploited
by attackers to launch large scale attacks against app users.

The approach we took is driven by heuristics. Specifically,
we investigated the over-privileged apps to understand how
extra capabilities can be abused (especially when they are com-
bined with other capabilities required by the app) to carry out
attacks against app users and summarize the common attack
patterns into heuristics. We then apply the heuristics to identify
apps that might be vulnerable to similar problems at scale.
Due to limited resources, we have focused on a few high profile
cloud operations and potential attacks around them, e.g., spear-
phishing attack, where attackers can launch large scale (and
targeted) phishing campaign against app users, data leakage
attack, where attackers can harvest app users’ sensitive data at
scale, and data pollution attack where attackers can arbitrarily
modify app data that other app users depend on. Section 4.2 and
Section 4.3 describe attack examples and heuristics in detail.

3.6 Probing with Induced Transaction Failure
While dynamic probing enables us to decide the capabilities
that an app credential owns on cloud services, it creates safety
and ethical concerns. Any cloud operation that reads (or writes
to) a cloud object may lead to data leakage (or pollution)
attacks, especially if the object corresponds to app user’s
personal data. Thus, one significant challenge we face is to
ensure that no data leakage or modifications are made due to
dynamically probing cloud services.
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To address this problem, we introduce a technique called
induced transaction failure to dynamic probing, inspired by
the Zero-data-leakage Vulnerability Verification mechanism
in [75]. The core idea is to model cloud operation(s) as a
transaction. By injecting failures into the transaction, the
cloud operations eventually fail to execute, thus causing no
materialized access or change to app users’ data. However,
through strategically injecting failures, we could indirectly
infer the capabilities of the credential in use by inspecting
the error code of the cloud operation. The reason we could do
this is because, despite looking simple, a cloud operation is
implemented as a series of checks with authorization check
being one of them. Naturally, failing authorization check
(i.e., indicating no capabilities) would return a very different
error code from failing other checks. The actual failure we
inject differs from operation to operation, but they share a
common nature that they are only being evaluated after the
cloud credential clears the authorization check.

We illustrate this idea through two examples. In the first ex-
ample, we show how Get- and Delete-like cloud operations
are protected by the technique. We found that cloud services
typically evaluate Get- and Delete-APIs in the following or-
der3: correct container object name -> authorized credential ->
correct element object name. The reason is that access control
policies in the cloud are often specified at the granularity of con-
tainer objects. Thus the authorization often comes after evaluat-
ing the correct container object but before evaluating individual
element objects. We leverage this artifact to inject failures by
providing correct container objects with non-existent element
objects. For example, in Figure 2, when an non-existent objKey
is given to the deleteObject API (Line 18), the operation fails
silently with no error as long as the credential is authorized, oth-
erwise an Access Denied error will be thrown. We could thus
indirectly infer if the capability is present by simply looking at
the error code. In addition to the obvious benefit that we do not
risk accessing individual user’s data since the operations failed
to execute at cloud side, we also avoid the need to know the
exact element objects that are mostly generated at run time by
individual app instances, as mentioned in Section 3.3. The way
we ensure that the element object is non-existent is quite simple
too. We use a fixed hash value, sha256(author_emails), to
replace the element object name wherever it is needed.

Next, we show that the technique also protects Put-like
cloud operations. For most cloud services (e.g., AWS SNS),
Put needs to operate over a specific endpoint (e.g., publish
a message to a specific phone number). By providing an
non-existent endpoint, the operation would fail in a similar
way as Get and Delete. One notable exception is the storage
service (e.g., AWS S3), where objects can be newly created
if an non-existent name is provided to the Put API. This
could introduce data or state changes to cloud services which
we aim to avoid. The way we inject failure in this case is to

3There are often much more checks implemented as part of a cloud
operation, which gives us even more options to inject failures.

leverage the transaction-aware APIs itself. For example, to
evaluate if a credential has s3:PutObject capability, instead
of performing a PutObject operation, we initiate a multi-part
upload operation by using the initiateMultipartUpload
API. We then immediately abort the upload through
abortMultipartUpload, signaling a failure to the cloud
service, and not uploading any actual data parts. Cloud treats
these two APIs as an non-committing, failed transaction,
cleaning up temporary state changes (if any). We can however
still infer the presence of s3:PutObject capability through
the status return code of initiateMultipartUpload.

Although the specific failures we inject are dependent on
the cloud operations under evaluation, the gist is the same:
we make sure that the dynamic probing would eventually
fail—thus not causing any data leakage or modifications to the
app users in cloud, while gathering the signal if a capability is
present. The signals here look very much like a “side-channel”,
but we note that it is inherent to the cloud API design. Cloud
services are supposed to be informative to authorized users,
in particular when failures and errors happen, but generic and
obscure for unauthorized users. We leverage this artifact to
probe cloud services in-field without risking accessing users’
data or impacting normal cloud operations.
Discussion. We used a semi-automatic approach over a testing
cloud account to study how to introduce transaction failures in
the cloud APIs. Specifically, we first build cloud API models,
such as parameter semantics and related cloud resources, by
manually analyzing related cloud documentations. Then for
each API, we set up the required cloud resources (e.g., buckets),
and create authorized/unauthorized cloud roles to operate on
such resources. In the last step, we curate API parameters with
(in)valid cloud resource information (based on the API model),
and perform automatic API fuzzing with the credentials of
both authorized and unauthorized roles. We then conduct dif-
ferential analysis on the API responses to determine whether
there are failures that will reveal the authorization status.

We need to manually verify the failures before using them to
probe other cloud accounts. This is a safety measure we need
to take, especially because cloud vendors can use inconsistent
API responses [31] that may cause inaccuracies to our study.
In total, we checked 36 cloud APIs (with ∼90 API variants
see Table 7 for a full list) of the six cloud services, which took
us about one week. While this semi-automatic approach might
be enough for analyzing the small number of cloud services in
the spotlight, we believe that a more automated solution (e.g.,
automatically generate cloud API models with NLP-based
documentation analysis) is necessary to scale our study to the
other cloud services, which we plan to study in future research.

4 Results

4.1 Results Overview
App Dataset (D1.3M). We collected a set of 1,358,057 apps
from Google Play using the method described in Section 3.1.
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The app size ranges from 579KB to 155MB, with an average
size of 26MB. In total, it took us∼1,130 hours to automatically
analyze the apps in D1.3M on a Red Hat Linux Server with an
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB RAM.

We believe the app dataset (D1.3M) represents an approxima-
tion of the entire Google Play store due to random sampling.
To verify this claim, we gathered the meta-data of all apps from
Google Play with google-play-scraper [53], and compared the
app distributions. The distribution shows that D1.3M indeed
shares a similar distribution with the entire Google Play across
all app categories (see [5] for details). Therefore, we can take
D1.3M as a representative set to evaluate how prevalent the
exposed cloud services are in the real world.

In this study, we focus on two general types of cloud
services, notification and storage, on three cloud platforms,
AWS, Azure and Alibaba. Thus, in total we work with six
different cloud services, namely AWS S3 and SNS, Azure
Blob Storage and Notification Hubs, Alibaba Cloud OSS and
Message Service. Table 1 shows the statistics of D1.3M: there
are 24,300 apps (out of 1,358,057, ∼1.8% 4) containing at
least one of the three cloud platform SDKs. However, after the
second stage of filtering described in Section 3.1, the dataset
is reduced down to 11,891 apps. Among them, 1,663 (14.0%)
are found to obfuscate cloud APIs.

Table 1: App dataset (D1.3M)
Total Number of Apps 1,358,057

AWS SDK 18,181
S3 9,336
SNS 1,339
S3 or SNS 10,473

Azure SDK 4,291

Blob Storage 130
Notification Hub 1,031
Blob Storage or 1,161Notification Hub

Alibaba SDK 1,958
OSS 265
Message Service 6
OSS or Message Service 267

Any SDK 24,300 Any Service 11,891

Credential Extraction. We have successfully extracted
10,863 credentials from 9,417 (79.2%) apps. Among them, a
vast majority are valid (10,578 credentials, 97.4%). Note that
there are more credentials than apps due to some apps using
multiple cloud services or having additional credentials em-
bedded. Table 5 shows the number of credentials and container
objects (extracted via the same method as credential) for each
cloud service and sanitized examples from real-world apps.

Although we observe that having the credentials embedded
in the apps is the prevalent way for accessing cloud services, it
is interesting to explore alternative methods in-use, especially
more secure ones. One less common method we observe is
for apps to store credentials at a remote server or cloud token
service (e.g., Alibaba STS [24] and AWS STS [18]) and fetch
them dynamically at app runtime. At its first glance, this seems
to offer additional protection. However, a runtime analysis
shows that in almost all cases (17 out 20 apps we analyzed) cre-
dentials are still shared across app users and can be recovered

4This is in line with the statistics shown in AppBrain [7]

Table 2: Overall results (D1.3M)
Cloud Service # Apps with # Over-

Credentials Privileged Apps

AWS S3 7,410 2,239 (30.2%)
AWS SNS 1,266 438 (34.6%)
AWS S3 or SNS 8,569 2,401 (28.0%)
Azure Blob Storage 118 46 (39.0%)
Azure Notification Hub 664 110 (16.6%)
Azure Blob Storage 779 153 (19.6%)or Notification Hub
Alibaba OSS 75 32 (42.7%)
Alibaba Message Service 3 0 (0.0%)
Alibaba OSS or Message Service 75 32 (42.7%)
Total 9,417 2,572 (27.3%)

through runtime app inspection. This is worth highlighting
because we saw that some cloud vendors are promoting the
design of dynamic credential retrieval (e.g., Alibaba Cloud
asks app developers to distribute cloud tokens via private
application servers [24]). In such cases, it is important for
the cloud vendors to be explicit in their message that without
having separate credentials and cloud identities for different
app users, such design does not significantly improve security.
Rather, it is merely for the convenience of app developers to
manage credentials. During our analysis, we often see such
false sense of security assumed by the app developers.

A more secure but even less commonly used method is
the identity-based cloud policies (e.g., policies associated to
Amazon Cognito users [10]) where each app user is granted
an independent cloud identity with its own credential and
capabilities. In order to onboard to this approach, app vendors
are required to properly configure and orchestrate a number
of cloud services involving authentication, authorization, and
cloud identity and resource management. We hypothesize that
the complexity is one of the main reasons why the method is
not popular among apps—through a study of apps using AWS,
we found that only 312 apps (out of 10,473, 2.9%) are adopting
the identity-based policies. Another possible reason is the
cloud documentation. Many times cloud documentation (e.g.,
[12, 23, 44]) demonstrates bare minimum working examples
for a quick start. App vendors, especially less security con-
scious ones, are not spending additional efforts in working out
a more sophisticated configuration despite being more secure.

Above mentioned two methods, along with other limitations
of the tool (discussed in Section 4.5) represent 20.8% (2474
out of 11,891) of apps where we did not extract cloud
credentials despite using cloud services.
Over-Privileged Apps. We found that 2,572 apps (out of
9,417, 27.3%) are over-privileged, with a total of over 765
million installs. Also, the vast majority (2,297, 89.3%) of these
apps use regular user credentials and only 275 (10.7%) use root
credentials. This finding proves our hypothesis—encouraging
developers to not use root credentials is merely a first step
towards improving security. Additional research that helps
developers to properly configure credential capabilities is nec-
essary to mitigate the root cause. Table 2 (third column) shows
a detailed breakdown of over-privileged apps by cloud services.

Although results from different cloud services should
not represent a direct comparison between clouds, we do
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notice a few interesting things behind the data. First, Azure
Notification Hub has a lower over-privilege rate (16.6%) than
its AWS counterpart SNS (34.6%). We suspect it is because
of the less number of APIs/capabilities that Azure Notification
Hub exposes. Moreover, Azure Notification Hub offers two
different types of credentials—full from listen-only (i.e.,
connectionstring), with semi pre-configured capabilities, and
explicitly asks mobile developers to use the listen-only over
full to avoid over-privilege [44]. As a result, most apps using
Azure Notification Hub use listen-only credentials in their
code. We do believe that in security sometimes more freedom
is not a blessing. A simplified set of APIs/capabilities with a
few pre-configured, commonly used capability combos could
simplify the security decisions to be made by app developers
thus improving security (see our suggestions in Appendix 5).

Another interesting comparison is between Alibaba OSS
and AWS S3. The two services are very close to each other from
all aspects, e.g., similar authorization models ( [11, 25]), an
almost one-to-one mapping of cloud APIs [22]. Therefore, we
would expect similar over-privilege rates. However, Alibaba
OSS had a higher rate than AWS S3 (42.7% vs. 30.2%). By
studying the over-privileged apps on Alibaba OSS, we noticed
that a larger portion (78.1%) of them are capable of performing
any operations on the cloud. We suspect that the difference
is mainly driven by cloud documentation: Alibaba Cloud uses
credentials with full access to cloud storage as a prominent ex-
ample on its official website [25, 26], while AWS recommends
custom IAM roles with only required cloud capabilities.

Additionally, we make a few interesting observations from
the data analysis. First, contrary to the common belief that
newer, popular apps (i.e., apps with more users) are more
secure, we did not observe an inverted correlation between
app popularity and if it is over-privileged, as shown in Figure 4.
Also, we observed that 70.0% of the over-privileged apps were
updated on Google Play within one year of this study, indi-
cating that the risk of excessive cloud capabilities has not been
fully addressed despite of the prior efforts [29, 43, 62, 67, 75].
Second, we found that not all cloud capabilities are abused
equal. We studied the use-to-grant ratio of different capa-
bilities and identified several capabilities that are less often
used but more often granted (Table 7). As an example, the
s3:ListAllMyBuckets capability is only used by 92 apps,
but is granted to another 1,025 apps. As another example, the
sns:ListPhoneNumbersOptedOut is only used by one app,
but is granted to as many as 361 apps. This prompts a security
proposal: if a sensitive capability is rarely used by mobile
apps, cloud vendors may consider removing (i.e., not expose)
it from mobile SDKs to avoid its misuse by the developers.

Vulnerable Apps. Utilizing a few vulnerability patterns, we
further identify over-privileged apps that are more likely to be
vulnerable. As discussed in Section 3.5, we are targeting three
different kinds of attacks: spear-phishing attack, data leakage
attack, and data pollution attack. In total, we have identified
1,667 apps (64.8% of 2,572 over-privileged apps) that are very

likely to be vulnerable to these attacks and disclosed our find-
ings to the app developers. We describe case studies and the
vulnerability patterns in detail in Section 4.2 and Section 4.3.

4.2 Case Studies
Spear Phishing in Cloud Notification Services. A rising
amount of apps are using cloud notification services to
send messages to app users (e.g., notify users of an app
update), or collect real time data from them. A credential
with excessive capability will allow an adversary to abuse the
notification services, such as sending a fraudulent message to
app users. As an example, Anonymized Energy is an energy
monitoring app that homeowners use to monitor home energy
consumption through deployed sensors. The app uses AWS
SNS as the cloud backend. We found that the app has a number
of SNS capabilities that it never requires. One excessive
capability is the sns:ListEndpointsByPlatformApplica
tion. This capability allows anyone to list all the users of the
app (represented by endpoints with random UUIDs). Another
excessive capability is the sns:Publish that allows anyone to
send notification messages to a specific endpoint. Combining
these two capabilities allows anyone to list and pick any
endpoint and send it a notification message with arbitrary
content. Moreover, since an endpoint is often created with
custom user data (e.g., email, name), the phishing can be very
targeted (see our attack demo online [5]). We did not launch a
phishing campaign against real app users due to ethical reasons.
However, we want to highlight that such phishing is more
convincing because the messages are delivered by the mobile
OS in the context of the app (see Figure 5 for the screenshot),
instead of generic ways like SMS. Given victims are already
users of the app, they are very likely to fall for these phishing
messages that are from such “trusted sources” [27, 38].

In our analysis, we found that the above excessive capa-
bilities are very common for apps that use cloud notification
services, leading to spear phishing attacks. For example,
Anonymized Smart Building, Home Automation and DVR
apps, just to name a few, all have the similar issue. We have
summarized such capability patterns into a heuristic to help
us better identify potentially vulnerable apps (See Section 4.3
for details). In total, we have identified and reported 96 apps
that are very likely to suffer from the spear phishing attack.
They are installed for over 4.97 million times, representing
a large potentially vulnerable user base.
Data Leakage in Cloud Storage Services. Anonymized
Parenting is an app that allows parents to record and share
baby’s developmental milestones in the form of logs, photos
and videos. The app is very popular—it has been used
by over 13 million families in total (according to the app
description). The app uses AWS S3 as its storage backend.
It creates two separate S3 buckets, one for storing users’
photos (i.e., parenting-photos) and one for videos (i.e.,
parenting-videos). These two buckets are shared across
app users. As discussed in Section 3.3, capabilities in cloud
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Figure 3: Over privileged app distribution
over app update time.

Figure 4: Over privileged app distribution
over app installs.

Table 3: Vulnerability patterns
Vulnerability Patterns # of Apps

P1: Get + Excessive Put 146
P2: Put + Excessive List 1,345
P3: Put + Excessive List + (Excessive) Get 925
P4: Put + Guessable Object + (Excessive) Get 62
Total 1,667

Figure 5: Phishing UIs of Anonymous Home Automation App

are typically set over container objects (i.e., buckets in this
case), and element objects such as individual users’ photos and
videos do not have separate capabilities associated with them.
As a result, credentials embedded in the app have the capability
to read and write any user’s data. This sounds like a broken
design, but with one caveat—an app instance needs to provide
a correct name for the element object that it is trying to access.
Anonymized Parenting leverages this condition to provide
user data isolation. It creates pseudo-random subdirectories
for each user and organizes user’s data under the subdirectory.
Since pseudorandom subdirectories are part of path names
for element objects, one user should not be able to access
another user’s data even though the credential she uses has the
capability to do so. Such design is used widely in practice, and
is considered secure if the pseudorandom subdirectory name
can be kept secret to its own user. However, we found one
excessive capability in credential that broke this assumption
and rendered the whole design pointless. Specifically, the
credential embedded in Anonymized Parenting has the
s3:ListBucket capability. This capability is never used by
the app, but it effectively allows an adversary to enumerate
all the subdirectories under Anonymized Parenting buckets
and thus accessing any user’s data. In our analysis, we
found many apps suffer from a similar problem—excessive
capabilities such as s3:ListBucket causes leakage of all app
users’ data. Some of these apps actually deal with extremely
sensitive data. For example, Anonymized Dictation is an
app that provides transcription services for voice recordings.
The target audiences are, as the app suggests, “research,
medical, legal or any other purpose” which indicates the

sensitivity of the data stored in the cloud.
The problem is even worse for apps whose storage design

is inherently insecure. In our analysis, we found that instead
of creating pseudorandom strings, some apps simply use
guessable strings or even users’ PIIs as subdirectory names.
This, combined with the excessive capabilities such as
s3:ListBucket, allows adversaries to efficiently target
individual users. For example,Anonymized Travel is a travel
log book app for recording car odometer readings, travel routes,
stops, geo-locations, gas/meal receipts, etc. These data are
stored in an AWS S3 bucket directly using users’ emails as sub-
directory and file names. An adversary with some background
knowledge about an user’s email can easily read and write that
users’ data, and not surprisingly, credentials in the app have the
excessive s3:ListBucket capability that allows the adversary
to easily check if a specific user is using the App. What is ironic
is that Anonymized Travel claims itself to be HIPAA com-
pliant (we quote “HIPAA Compliance: Anonymized Travel
encrypts protected health information (PHI) and personally
identifiable information (PII) in a secure environment”).

Data Isolation for 2B Apps. Excessive capability does not nec-
essarily mean additional operations such as s3:ListBucket,
but can also be operations that are applied to a broader scope
than what is required by the app. This is another source
of data leakage in cloud storage services. Although many
poorly designed apps suffer from this problem, we found it
is particularly common among a specific type of apps, i.e.,
to-business (2B) apps, which merits a separate discussion.

2B apps target businesses, but are eventually used by
end users (i.e., employees of businesses). This introduces
another layer of complexity in managing data access as
the apps need to not only provide isolation for users but
also isolation for businesses. Moreover, there are additional
requirements for business owners to access employees’
data, adding more complexity to the access control. Not
surprisingly, we found that a number of credentials in 2B
apps are over-privileged—they allow cloud operations to be
performed on a broader scope of users’ data. The result is often
a broken data isolation across employees or businesses. The
latter is particularly worrisome as different businesses using
the same app are often competitors with a conflict-of-interest.

As an example, Anonymized Deskless is a 2B app that
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provides a reporting platform for deskless workforce (e.g.,
security, janitorial, facility). Deskless employees use the app
to record and report their routine tasks (e.g., area is patrolled/-
cleaned) and their managers (i.e., business owners) can keep
track of the tasks, approve requests, etc. What we found is that
app users’ data is stored in several AWS S3 buckets and the
credential embedded in the app is able to access all of them.
As a result, not only employees of a business can access each
other’s data, one business can access another business’s data
as well. The data under risk here can be extremely sensitive,
e.g., locations of security guards, pictures of facility internals.
Cross App Data Leakage. Using the method discussed in
Section 3.4, we found several cases where over-privileged
credentials in one app allow access to data that is generated
by another app. Such cases largely fall into three categories.

In the first category, the same credential is used by several
different apps developed by the same developer. For example,
Anonymized Barber is an app for helping barber shop owners
to manage their customer base (e.g., manage contacts, auto-
matically send out reminders). The developer of Anonymized
Barber has a whole series of similar apps, customized for
skin salons, nail salons, tattoo shops, etc. All these apps share
the same credential and not surprisingly, the credential is
over-privileged—it enables any of the apps to access data
belonging to other apps. As another example, the largest
group of apps we identified that share the same credential
contains 150 teacher-parent communication apps. This
app group is similar to 2B apps: instead of having a single
app, the app developer decided to provide one app for each
school. The intention of the developer seems to be providing
business isolation, but the effect of using the same credential
invalidated any isolation provided through having different
apps. As a result, one school can access data belonging to any
other schools, despite that they are using “different” apps.

In the second category, different credentials are used by
different apps, but they still lead to cross app data access. As an
example, developer of Anonymized Cam (a home monitoring
camera app) has a family of apps for different types of smart
home devices. All these apps have their own credentials and
data containers in cloud, and most of them are isolated from
each other. However, we found one app, Anonymized Bell (a
smart doorbell), contains a credential that enables data access
to all the other apps in the family. A deeper analysis revealed
that all the app credentials in the family are under the same
cloud account, but they belong to different IAM users that have
different capabilities. This shows that the developer clearly had
isolation in mind and she successfully configured capabilities
for most of the apps in the family. However, a mistake was
made for the credential in Anonymized Bell that it was
granted excessive capabilities to all the other data containers
belonging to other apps. As a result, an Anonymized Bell
user can access data from all the other apps in the family.

The third category of the apps are owned by different parties,
but use the same cloud storage. An example is the group of

taxi and ride sharing apps: Anonymized Ride, Anonymized
Cab and Anonymized Driver. These apps utilize different
cloud credentials and are submitted to Google Play by three
different companies in India and Bulgaria. However, we
find that they upload passenger data, such as photo, all to the
same bucket “voilacabsproduction” under a common cloud
account. Further inspection of these apps’ code reveals that the
cloud-related component very likely has all been developed
by the same Indian company (i.e., techintegrity.in). This
raises a serious concern since outsourcing cloud service
development may not only result in data leakage across app
developers, which could be completely unaware to them, but
also enable data sharing across the regions (i.e., between India
and Bulgaria in this case) under different privacy regulations.
Data Pollution Attack. The other side of the coin to the data
leakage is data pollution. The essence of the attack is that
an adversary may leverage excessive capability to “pollute”
the data in cloud storage that individual app instances read
from. As an example, Anonymized Santa is an app that
downloads pre-recorded Santa videos from AWS S3 and plays
the videos to children. Credential in the app only requires
s3:GetObject capability to download videos, but it is granted
with s3:PutObject capability that allows it to write to the
cloud storage. As a result, an adversary may deliver any videos
to the app users. Although the attack mechanism is simple, the
effect can be dangerous (i.e., exposing young children to video
messages from random guys on the Internet). Even worse,
since cloud storage can be utilized to distribute executable
objects (e.g., firmware, JavaScript), the potential damage can
be more severe. For example, we found a cryptocurrency trad-
ing app, Anonymized Crypto, that has its webview resources
(e.g., javascripts) hosted in AWS S3. These resources are meant
to be static and only modifiable by the app vendor. However,
credential in the app actually has the s3:PutObject capability
that allows adversaries to modify them in arbitrary ways. More
interestingly, these webview resources are shared with normal
desktop users as well, making the problem even worse.

4.3 Common Vulnerability Patterns
Granting more capabilities than needed should be avoided
whenever possible. However, not all of them may lead to real
vulnerabilities. In this section, we look for more indicating
signals of when an over-privileged app becomes vulnerable.
Specifically, we explore how the combinations of capabilities
lead to severe security issues, and summarize our findings
into a few vulnerability patterns in Table 3. In total, we have
identified 1,667 potentially vulnerable apps, with 913 apps
exhibiting multiple vulnerability patterns.
P1: Get + Excessive Put. The first vulnerability pattern is
the combination of a Get with an excessive Put. Here the Get
and Put are generalized capabilities that allow read and write
operations on any cloud service, respectively. When an app
exercises the Get capability, it means the app actually reads
data from the cloud. In contrast, an excessive Put capability
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means that the app does not write to the cloud although it has
the capability to do so. The combination of these two capabil-
ities is a strong indicator of data integrity vulnerabilities. An
adversary may abuse the excessive Put capability to pollute the
data source where other app instances read from. This type of
attack is found in 146 apps (out of 1,318 apps that use Get but
not Put) where app resources are mainly public and read-only,
like the the data pollution attack mentioned in Section 4.2.
P2: Put + Excessive List. A variant of the above pattern is the
combination of Put and excessive List. Instead of public app
resources, the fact that an app has and uses Put capability indi-
cates that the app produces user-specific data and stores them
in the cloud (the most prevalent pattern used by at least 6,100
apps). The excessive List capability allows an adversary to
enumerate data stores related to all app users, and then pollute
the data of any individual user. We found that this pattern af-
fects the most number of apps (1,345) in our study. One special
case of this vulnerability pattern is the spear phishing attack
in cloud notification services (e.g., AWS SNS). In the attack,
an app creates an endpoint in the cloud service by providing
an app token with Put. An adversary can list all the available
endpoints (i.e., app users) and push notifications to any of them.
P3: Put + Excessive List + (Excessive) Get. Another type of
attack that can happen to the 6,100 apps that store user-specific
data in the cloud is data leakage attack. Assuming the data that
an app produces is private, then any cloud capability that could
potentially enable one app user to access another app user’s
data is a strong signal for data leakage vulnerability. <List,
Get> is exactly such a pair of capabilities. As discussed in
Section 4.2, the prevalent design for cloud storage is to allow
app users to share the same container (e.g., bucket), and rely
on pseudo-random pathnames to isolate users. The excessive
List capability effectively breaks this isolation and allows
adversaries to enumerate pathnames under a container and thus
access individual users’ data with Get. We found 925 apps that
are potentially vulnerable to such a data leakage attack. Note
that the Get capability needs not to be excessive. We found
that 1,527 apps use/require Get to retrieve user data from the
cloud. However, 293 of the apps are potentially vulnerable
since the required capability can still be abused by adversaries.
P4: Put + Guessable Object + (Excessive) Get. Similar to
above, this vulnerability pattern involves Put, which indicates
that an app stores private data in the cloud. However, instead of
using pseudo-random object names for user isolation, the app
uses predictable information, such as phone number and user
birthday. Therefore, an adversary may still access user’s data
by guessing the object names, although List capability is not
granted. To determine whether an app uses guessable object
names, we collected 21 keywords for predictable user data
from previous studies [37, 49], and tracked these keywords
in the app code to determine if the predictable data flows into
object names. Using this method, we were able to identify 62
apps that are vulnerable to this data leakage attack.
Vulnerability Confirmation. Patterns discussed above help

us identify 1,667 different apps that are likely to be vulnerable.
To confirm the result, we try to launch concrete attacks against
these apps in an ethical way. Specifically, we create test users
and perform attacks against dummy data of the test users.
This is largely a manual effort. Till the time of the submission,
we have validated results for a total of 100 apps that are
randomly drawn from the 1,667 apps. Results suggest that
above vulnerability patterns are very indicative: among the
100 tested apps, 98 are confirmed to be vulnerable. The only
2 false positive cases (learning vehicle game and local
business app) are both flagged by the pattern P3 where the
apps produce data and store them in cloud. However, the data
produced by these two apps are not meant to be private (i.e.,
game scores and business cards respectively), thus breaking
the assumption for the vulnerability pattern.

4.4 Vendor Responses
We have made responsible disclosures to app developers, cloud
vendors and Google Play. For app developers, we contacted
them via their registered emails on Google Play. In total, we
have sent out 2,572 emails for all the over-privileged apps,
each with a detailed description of the excessive capabilities,
possible attacks if any, and our suggestions on the fix. Our
emails were opened by 1,347 app developers, bounced from
451 (i.e., email address no longer valid), and remain unopened
for the rest 737. Out of the 1,347 app developers that opened
our email, only 56 of them responded. The rest are either
automatic responses or no response at all.

We were able to make some preliminary observations from
the 56 responses. First, several app developers responded to
us that they feel confused about the capabilities offered by the
cloud services. Second, it often takes multiple rounds of revi-
sions before the issue gets completely fixed. As an example, we
found that the developer of a navigation app has introduced
another credential with limited capabilities in new app versions,
but failed to revoke or restrict the capabilities for the original
credential, leaving the doors open for attackers. In general,
our experience interacting with app developers suggests that
existing cloud services are not really mobile app friendly. This
motivates us to make suggestions as discussed in Appendix 5.
We are also interested in why many app developers (1,291 out
of 1,347) opened but did not respond to our emails. We there-
fore launched another analysis against these apps 30, 90 and
120 days after the initial reach-out. To our surprise, we found
that after 30 days, 161 apps have either made changes to the
credential capabilities directly, or revoked the over-privileged
credentials completely in newer app versions. The number
of fixed apps increases to 228 and 317 after 90 and 120 days,
respectively. This indicates our reports are indeed getting at-
tention from a broader set of app developers. Appendix Table 6
shows a few apps that were patched due to our report. We have
also released some anonymized responses online [5].

We reported our findings to the cloud service providers and
received quick responses from both Azure and AWS. They
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appreciated our effort to secure cloud services, but due to the
fact that they do not own the apps, they recommended reaching
out to app developers directly. We also provided the list of
vulnerable apps to Google Play, and asked their help to contact
the app owners. Google Play is still investigating security risks
of the reported apps and yet to determine their next steps.

4.5 Evaluation
Ground-truth dataset (D200). We randomly sampled 200
apps from the 24,300 apps that contain any cloud SDK, and
used them to build a ground-truth dataset. We conducted both
static and dynamic app analysis to confirm the cloud service
usages. Specifically, we identified the cloud APIs and the
entries (e.g., activities, buttons) to trigger them using JADX [4].
For the apps that have any cloud API, we installed them on
a Nexus 6P phone, activated them and manually interacted
with the apps to cover as many app functions as possible. At
the same time, we hooked the cloud APIs using Frida [3] to
collect the container objects and cloud credentials. In total,
we found that 85 apps use at least one of the six cloud services
(most of the other apps use different services such as AWS
Kinesis and Azure Analytics), with 1,061 cloud API callsites
(including 45 obfuscated ones), 137 cloud credentials, and 88
container objects. Out of the 85 apps, 25 apps are confirmed
to be over-privileged. This process took us around 67 hours.
Effectiveness of PrivRuler. We ran PrivRuler on D200 and
compared the findings to the ground-truth data. Table 4 shows
the results. Below we discuss the false positives (FPs) and false
negatives (FNs) of identifying cloud APIs, cloud credentials
and containers, and the overall results of over-privileged apps.
• Cloud service APIs. PrivRuler successfully identified 1,009
(95.1%) cloud API callsites, with 972 (95.7%) non-obfuscated
and 37 (82.2%) obfuscated ones. It failed to locate 52 call-
sites (FNs) in five apps for a few reasons. First, PrivRuler
failed to discover 24 reachable callsites in two apps due
to the incomplete modeling of system callbacks (such as
onBindViewHolder) in FlowDroid [8]. Second, PrivRuler
missed 19 callsites in another two apps because of the un-
derlying parsing errors in Soot. Moreover, our tool identifies
obfuscated cloud APIs using a list of API signatures generated
from cloud SDKs. Unfortunately, we missed nine callsites for
obfuscated APIs since their API signatures were not included
in our prototype. In addition to FNs, we incorrectly identified
11 cloud invocations (FP) in one app: the cloud APIs will not be
invoked since they appear in a privateService that is never trig-
gered. Nevertheless, they are still flagged because PrivRuler
treats all registered services as entry points regardless of
whether they are launched or not (this is an inherited trade-
off made by FlowDroid to accommodate ICCs in mobile apps).
• Cloud credentials. PrivRuler identified 110 (80.3% of
137) cloud credentials. It failed to extract 27 credentials from
10 mobile apps (FNs) for a few reasons. First, in three apps,
the cloud credentials are first stored in a local storage (e.g.,
shared preference), and later retrieved from the storage and

used in cloud service APIs. PrivRuler falls short in such
cases because it can not accurately model data flows for local
storage. Second, in two apps, PrivRuler incorrectly flagged the
cloud APIs that consume cloud credentials non-reachable, and
thus didn’t initiate the reconstruction of the credentials. Third,
PrivRuler failed to generate fully executable program slices
for reconstructing the cloud credentials in the remaining apps.
This is due to the challenges to accurately build PDG and inter-
acting with the highly sophisticated apps. One typical example
is the app that fetches its credentials from a remote server by
providing a valid userid. Our tool was not able to generate the
userid variable and therefore failed to interact with the server.
Notably, such FNs will only lead to an under-estimation of the
number of over-privileged apps since, without the credentials,
we were not able to report whether the apps are over-privileged.
• Cloud containers. PrivRuler successfully extracted 74
(84.1% out of 88) container objects. It missed 14 container ob-
jects (FNs) almost for the same reasons as in cloud credential
extraction. In the cases where a cloud API is identified while
its corresponding container object is not, we made an over-
estimation that the app requires the cloud capability (repre-
sented by the cloud API) to access all containers. Therefore, the
FNs will not lead to false alarms (but rather under-estimates) of
over-privileged apps. Besides, we noticed that 87 (98.9%) con-
tainer objects are indeed hard-coded in the apps and shared by
app users, and the remaining apphome inspection service
uses random UUIDs as the names of container objects. There-
fore, none of the container objects in our ground-truth dataset
reveals any personally identifiable information (PII) of the app
users. We can use them to construct cloud probes with very
low privacy risks to individual app users.
• Overall results. PrivRuler is highly accurate in identifying
cloud service usages—no FPs for cloud credentials and
container objects, and only 11 FPs (1.1%) for cloud APIs. How-
ever, we indeed missed at least one cloud APIs in five (5.9% of
85) apps. For three of the apps, we failed to extract their cloud
credentials either and therefore were not able to determine
whether they are over-privileged or not. But for the remaining
two apps, we incorrectly reported them as over-privileged
because the cloud capabilities (i.e., APIs) are indeed required
by the apps while we mistakenly marked them as being
excessive. In other words, the FNs in cloud API extraction
leads to 8.0% false alarms of over-privileged apps in D200. We
expect such false alarms to be mitigated by a better app analysis
technique and a more comprehensive list of API signatures.

5 Countermeasures
We believe there are several suggestions that we can make to
both cloud vendors and app developers to help mitigate the
problem.
Cloud Vendors. Perhaps what bothers app developers most
is the complexity in the cloud capability model itself. To date,
there are 83 distinct capabilities in AWS S3 and 34 capabilities
in AWS SNS. In the process of issue disclosure, we noticed
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Table 4: Evaluation results on ground-truth app set D200.
# Apps # Cloud APIs # Credentials # Containers

Groundtruth PrivRuler % Groundtruth PrivRuler % Groundtruth PrivRuler % Groundtruth PrivRuler %
AWS 66 61 92.4% 963 919 95.4% 111 90 81.1% 65 55 84.6%
Azure 16 15 93.8% 74 66 89.2% 20 16 80.0% 19 16 84.2%
Alibaba 3 3 100.0% 24 24 100.0% 6 4 66.7% 4 3 75.0%
Overall 85 79 92.9% 1061 1009 95.1% 137 110 80.3% 88 74 84.1%

that many app developers are confused about when and how to
use these capabilities. One response we quote is “amazon has
too many services I am always getting lost in that console”5.

Fine grained capabilities enable cloud services to support
diverse functions and we do not intend to diminish its value.
However, we want to highlight that many mobile apps, espe-
cially the ones from small/medium vendors, follow a few usage
patterns of cloud services. Instead of relying on app developers
to cherry pick capabilities, it may be better to provide a few
dedicated capability templates for mobile developers. Some
cloud service vendors are already making efforts in this direc-
tion, e.g., AWS provides a few capability templates (termed
Policies [17]). But these templates are mostly for illustration
purposes and they cannot meet functional needs of mobile apps
(as shown in Section 4.3). How to summarize common func-
tional scenarios of mobile apps into well tailored capability
templates and educate developers to pick the most suitable one
represents an interesting research opportunity for the future.

In addition, we observed that many cloud ca-
pabilities are barely used in mobile apps, e.g.,
ListPhoneNumbersOptedOut in AWS SNS (See Table 7 for
more examples). Given that these APIs may lead to potential
security/privacy issues, it might make sense to consider
removing them from the offering of mobile cloud SDKs to
eliminate the possibility of being misused by app developers.
App Developers. The first and foremost task for app
developers is to review the cloud service usages and only
grant the minimal required capabilities to their apps. In
particular, for apps that handle user personal data in the
cloud services, the developers should consider app user
isolation, e.g., requesting users to authenticate to the cloud
services, and create isolated cloud resources and credentials
for different users. This helps to mitigate the cross-user data
leakage/pollution attacks. Additionally, we observed many
cases where apps of the same developer share or use associated
cloud resources/credentials, which leads to cross-app (or
cross-business) attacks (Section 4.2). In such cases, it might
be reasonable for app developers to use different cloud service
accounts that provide inherent data isolation.

6 Discussion
Ethical Considerations. We pay special attention to ensure
that we respect legal and ethical boundaries. Our work
was reviewed by IRB, who determined that the work does
not involve human subjects and is exempted from further

5In the context of our interaction, the app developer refers to the different
AWS S3 APIs and capabilities as different “services”.

review. We also made responsible disclosures to all parties
in the ecosystem, including app developers, cloud service
vendors, and Google Play (see Section 4.4 for their responses).
However, due to the nature of the work, there are still several
areas that we would like to invite the community to participate
in the discussion and establish best of practice guidelines.
• Extracting Cloud Credentials. A cloud credential is techni-
cally a “secret” , but it is distributed publicly (i.e., together with
mobile apps in app stores) and with the intention to be used by
the public (i.e., shared by all app users). In our opinion, it is
treated as an integral part of the app, similar to other types of
app meta-data such as API endpoints. Knowledge of such data
can be utilized in testing with good intent, as long as they are
recovered in an ethical way and not prevented by the laws. The
way we recover the credentials, i.e., static and dynamic app
analysis, is similar to manually reverse-engineering mobile
apps. According to our research on related laws and discus-
sions [39, 42, 52, 54, 64, 66], this practice is not unethical/ille-
gal in most regions across the globe (e.g., EU, US, AU). First,
we gathered all the apps from public sources (i.e., Google Play)
lawfully, and reverse engineered them with a benevolent goal
of enhancing their security, rather than infringing on their copy-
right or abusing the cloud services (which are clearly unethical).
Second, while some software includes an End User License
Agreement (EULA) that prevents reverse engineering, Google
Play apps use Google’s Term of Use (ToU) [35] as an EULA
for app users, which does not place any restrictions on reverse
engineering. In fact, reverse engineering has become a popular
choice in mobile security research, and generated significant se-
curity benefits and received numerous positive feedback from
app developers [29, 61, 67, 75]. However, we do want to note
that reverse engineering an app may be against the will of its de-
veloper implicitly. Specifically, we found that around 14% apps
obfuscated the cloud APIs, the intention of which we assume is
to prevent others from gathering knowledge of the app. In this
work, we analyzed these apps following prior practices [74, 75].
But we look forward to feedback from the community.
• Probing Cloud Services. Dynamic probing is a common
practice to find vulnerable or malicious services in the
wild [28, 32, 36, 50, 58, 72, 75]. While in practice there will
always be some form of impact to the service as the result of
probing (e.g., service logging), the ethical guideline we follow
in this work is that the probing should by design not introduce
any materialized state changes to the cloud services, leak any
real users’ data, or impact cloud service operations. Towards
this guideline, in addition to following best practices imple-
mented in prior works, we put in extra efforts to minimize any
potential harm to cloud services or app users. First, we create
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testing accounts on all cloud services involved in this study
and launch a thorough field study to ensure that the behavior
and effect of cloud APIs are fully understood before they are
exercised. Second, the goal of the work is not to fuzz testing
cloud services. We intentionally design the probes in a way that
is lightweight and compliant with cloud service specs to avoid
costs and damages to the cloud services. Third, we introduce
transaction failures to the probes (Section 3.6), and by design
avoid any modifications to individual users’ data, e.g., write-
and delete-like APIs will always fail without being executed
by cloud services. Fourth, we limit the leakage of individual
users’ data by utilizing cloud APIs that require equivalent ca-
pabilities. For example, instead of using the listObjectsAPI
that enumerates all user objects, we evaluate the headBucket
or getBucketInfo API, which requires the same capability
but does not reveal data of user objects. On top of these efforts,
as a safety net, we execute each probe in a dedicated and
isolated environment (i.e., a newly created Android emulator)
and destroy any data residue except the status of the probe.
• Communicating with App Developers. We would like
to obtain explicit (e.g., email approval) or implicit (e.g.,
bug bounty program) consent from app developers before
launching the study. However, bug bounty programs are
extremely rare among apps [20] and the response rate from
app developers is very low (∼2.2% based on our experience).
Given the severity of the problem and the easiness to launch
data attacks, we decide to analyze the apps to find the
vulnerable ones, and make responsible disclosures to the
stakeholders, similar to prior work [6, 75].
Limitations and Future Work. PrivRuler relies on program
slicing and dynamic execution to recover cloud credentials.
This approach handles simple data structures (e.g., strings)
well. However, it is inherently limited in cases where creden-
tials are stored and then retrieved from local storage, in remote
servers that require authentication, and complex data structures
(see Section 4.5 for more details). We are evaluating extensions
to better cover such missed cases. Also, we assume that any
data uploaded by app users is private. This assumption may not
hold for all apps. Therefore, our study could benefit from a com-
ponent that evaluates the nature of the data in the clouds, which
also helps to determine severity of the data attacks. In addition,
although we used heuristics (Section 4.3) to detect potentially
vulnerable apps, confirming a vulnerability is still largely a
manual effort. Completely automating this process incurs both
technical and ethical concerns, which we leave for future work.

Further, our work only focused on a few high profile cloud
services. We believe similar ideas, such as dynamic probing,
can be used to study other cloud services. However, as
discussed in Section 3.6, this task requires a more automated
method to build models and perform safe testing for the cloud
APIs. Besides, in addition to the heuristics, we believe there
are many cloud capabilities that are benign looking, but when
combined with other capabilities, can lead to subtle attacks
to app users. We plan to launch a more comprehensive and

automated study with more cloud services and a richer set of
cloud capabilities to uncover these cases.

7 Related Work
Security of cloud service credentials. Previous studies have
investigated the problem of credential leakage in both source
code repositories [30, 43, 62] and mobile apps [29, 67, 74].
Instead of the leakage of a credential itself, our work focuses on
the capabilities owned by the credential and their implications
on app users’ security. Our work is inspired by LeakScope [75],
which reports cloud credential misuse in mobile apps and
proposes techniques for dynamic cloud probing, a method we
improve to serve our purpose. However, unlike LeakScope
that just determines whether a credential carries root privilege
or regular privilege, our study is meant to understand the
security implications of exposed credentials even after their
capabilities have been significantly limited. As a result, we
have to identify the fine-grained capabilities of the credentials,
and determine whether they exceed the legitimate needs of
apps and how their combinations lead to serious security
hazards. This enables us to not only detect over-privileged
credentials for normal users, but more importantly uncover
new attacks (e.g., spear-phishing) by integrating multiple
seemingly benign capabilities.
Detecting least privilege violations. Principle of least
privilege has been well discussed on different modern systems
in the past decades [19, 48, 63, 65]. Particularly, with the rise
of mobile platforms, many recent studies have focused on
least privilege of mobile apps, e.g., Stowaway [33], PScout [9],
WHYPER [56] and AutoCog [57] report unnecessary
permissions requested by an app based on its APIs and app
descriptions. Our work, compared to above studies, does
not study capabilities (i.e., permissions) that allow access
to on-device resources. Instead, we focus on capabilities to
access cloud resources and report how combinations of such
capabilities may cause security and privacy risks.

8 Conclusion
We propose a systematic approach to recover cloud credentials
from apps, infer their capabilities, and detect those credentials
that grant apps excessive capabilities than the legitimate needs
of the apps. We then study the security implications of the
exposed credentials, and demonstrate how combinations of
cloud capabilities may lead to serious security and privacy
risks. We implement a prototype and run it on two cloud
services across three mainstream cloud providers. Our
large-scale experimental study of more than 1.3 million apps
reveals that from the apps where credentials can be extracted,
27.3% have over-privileged credentials, covering hundreds
of millions of users. Further analysis shows that a majority
of these over-privileged apps are vulnerable to a series of data
attacks. We have made responsible disclosure of our findings
to both cloud providers and app developers, leading to the
fixes of over-privilege issues in hundreds of real-world apps.
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Table 5: Different types of credentials and API parameters extracted from apps.
Cloud Service String Type String Name # Strings # Apps Sample String

AWS

Credential

AccessKey 907 907 AKIA*
SecretKey 1,183 1,183 dPS6*
IdentityPoolId 7,830 7,830 us-west-1:01234567-89ab-cdef-0123-456789abcdef
AccountId 2,726 2,726 123456789012
UnauthRoleArn 461 461 arn:aws:iam::123456789012:role/Cognito_TestUnauth_Role
AuthRoleArn 2,399 2,399 arn:aws:iam::123456789012:role/Cognito_TestAuth_Role

API Parameter

BucketName 36,696 6,247 test-bucket
PlatformAppArn 3,269 2,910 arn:aws:sns:us-east-1:123456789012:app/GCM/TestApp
Region 10,425 10,425 us-east-1
TopicArn 1,076 262 arn:aws:sns:us-east-1:123456789012:TestTopic

Azure
Credential BlobConnectionString 118 118 DefaultEndpointsProtocol=https;AccountName=*;AccountKey=*

NotificationConnectionString 667 664 Endpoint=*;SharedAccessKeyName=*;SharedAccessKey=*

API Parameter ContainerName 162 94 user-pictures
NotificationHubName 209 191 test-hub

Alibaba
Credential KeyId 77 75 LTAI*

KeySecret 77 75 EExRxev*

API Parameter BucketName 121 112 test-bucket
Endpoint 235 163 http://oss-cn-beijing.aliyuncs.com

Table 6: Examples of patched mobile apps.
App Description Cloud Service Vuln. Affected User Data Installs

FM radio app A AWS SNS P2 App notifications 179,000
School automation system app AWS S3 P2, P3 Images and videos from parents and children 100,000
FM radio app B AWS SNS P2 App notifications 25,000
Ride-hailing app AWS S3 P2, P3 User bank details, user vehicle images 10,000
Social networking app for anglers AWS S3 P2, P3 User profile images, fishing pictures 10,000
Sports radio app A AWS SNS P2 App notifications 10,000
Workforce monitoring app AWS S3 P2, P3 Photos uploaded by employees 10,000
Smart teleprompter app AWS S3 P2, P3 Text document of a speech or script 10,000
Private social networking app AWS S3 P2, P3 Photos/videos/text messages among neighbors 10,000
Emergency alert paging app Azure Blob P2, P3 Incident information (e.g., site images) 5,000
Construction project mngmt app AWS S3 P2, P3 Field images, expense images 5,000
Auto dealer mngmt system AWS S3 P2, P3 Images/Vidoes of vehicle inspection 5,000
Live-action sports app AWS S3 P2, P3 User profile images 5,000
FM Radio app C AWS SNS P2 App notifications 3,000
Ride-sharing app AWS S3 P2, P3 User profile image, drive/vehicle documents 2,000
Sports radio app B AWS SNS P2 App notifications 2,000
Church app AWS S3 P2, P3 User profile image, church event videos 1,360
Home inspection mngmt app AWS S3 P2, P3 Home inspection videos, expense images 1,000
Taxi booking app AWS S3 P2, P3 User profile image, driver signup documents 1,000
List building app AWS S3 P2, P3 User created lists (e.g., links, media) 1,000
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Table 7: Cloud service APIs and capabilities.
Cloud Service Capability (Cloud API) Resources Apps That # Apps That Have

Require Capability Extra (Leak) Capability

AWS S3

ListAllMyBuckets * 92 1,025
ListBucket Bucket 539 1,268
GetObject Bucket + Object 2,384 1,022
PutObject† Bucket + Object 5,820 933
DeleteObject Bucket + Object 639 1,625

AWS SNS

ListPlatformApplications * 14 413
ListEndpointsByPlatformApplication * 7 173
ListTopics * 41 389
ListPhoneNumbersOptedOut * 1 360
DeleteTopic Topic‡ 10 352
ListSubscriptions * 9 383
ListSubscriptionsByTopic Topic 8 364
CreatePlatformEndpoint * 1,183 43
CreatePlatformApplication * 13 356
DeleteEndpoint * 92 168
Publish† Topic 75 285
Subscribe Topic 765 307
Unsubscribe * 491 367
DeletePlatformApplication * 12 172

Azure Blob
Storage

ListContainers * 1 46
ListBlobs Container 37 34
Download Container + Object 36 30
Upload† Container + Object 130 7
Delete Container + Object 5 39

Azure
Notification Hub

Register * 1,035 7
SendNotification * 0 110

Alibaba Cloud
OSS

ListBuckets * 10 27
ListObjects Bucket 112 19
GetObject Bucket + Object 387 16
PutObject† Bucket + Object 75 3
DeleteObject Bucket + Object 58 19

Alibaba Cloud
Message Service

CreateQueue * 3 0
CreateTopic * 0 0
PutMessage Queue 0 0
PopMessage Queue 0 0

† Put-like APIs are evaluated based on cloud response exceptions, and they will not introduce new objects in cloud services.
‡ DeleteTopic permission is specific to a topic, but we are only able to test it for all resources for security consideration.
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