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Abstract
Nowadays millions of Ethereum smart contracts are created

per year and become attractive targets for financially moti-

vated attackers. However, existing analyzers are not sufficient

to analyze the financial security of a large number of con-

tracts precisely. In this paper, we propose and implement

FASVERIF, an automated inference system for fine-grained

analysis of smart contracts. FASVERIF automatically gener-

ates models to be verified against security properties of smart

contracts. Besides, different from existing approaches of for-

mal verifications, our inference system also automatically gen-

erates the security properties. Specifically, we propose two

types of security properties, invariant properties and equiva-

lence properties, which can be used to detect various types of

finance-related vulnerabilities and can be automatically gener-

ated based on our statistical analysis. As a result, FASVERIF

can automatically process source code of smart contracts, and

uses formal methods whenever possible to simultaneously

maximize its accuracy. We also prove the soundness of ver-

ifying our properties using our translated model based on a

custom semantics of Solidity.

We evaluate FASVERIF on a vulnerabilities dataset of 549

contracts by comparing it with other automatic tools. Our

evaluation shows that FASVERIF greatly outperforms the

representative tools using different technologies, with respect

to accuracy and coverage of types of vulnerabilities. We also

evaluate FASVERIF on a real-world dataset of 1700 contracts,

and find 13 contracts with bugs that can still be leveraged by

adversaries online.

1 Introduction

Smart contracts on Ethereum have been applied in many fields

such as financial industry [3], and manage assets worth mil-

lions of dollars [57], while the market cap of the Ethereum

cryptocurrency, i.e., ethers, grows up to $177 billions on July
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27, 2022 [14]. Unfortunately, this makes smart contracts be-

come attractive targets for attackers. The infamous vulner-

ability in the DAO contract led to losses of $150M in June

2016 [1]. In July 2017, $30M worth of ethers were stolen

from Parity wallet due to a wrong function [4]. Most recently,

there were $27M worth of ethers stolen from the Poly Net-

work contract in August 2021 [13]. It is therefore necessary

to guarantee the financial security of smart contracts, i.e., the

ethers and tokens of contracts are not lost in unexpected ways.

Nevertheless, existing analyzers are not sufficient to ana-

lyze the financial security of numerous contracts accurately.

Current security analyzers for smart contracts can be di-

vided into the following three categories: automated bug-

finding tools, semi-automated verification frameworks, and

automated verifiers. The bug-finding tools [44] [35] [38] sup-

port automated analysis on a great amount of smart contracts,

motivated by the fact that 10.7 million contracts are created in

2020 [41]. However, the analysis is based on pre-defined pat-

terns and is not accurate enough [54]. The verification frame-

works target to formally verify the correctness or security of

smart contracts, with the requirement of manually defined

properties [54] or user assistance in verification [48] [29]. It

is therefore difficult for these analyzers to analyze a large

number of contracts. The automated verifiers try to provide

sound and automated verification of pre-defined properties

for smart contracts. To the best of our knowledge, there are

three automated verifiers eThor [52], SECURIFY [60] and

ZEUS [40]. However, eThor does not aim for the financial

security of smart contracts, and only detects reentrancy vulner-

abilities [9] and checks assertions automatically. SECURIFY

does not support solving numerical constraints and cannot

detect numerical vulnerabilities, e.g., overflow. ZEUS has

soundness issues [52] in transforming contracts into IR and

thus cannot analyze smart contracts accurately.

We propose and implement FASVERIF, a system of au-

tomated inference [51] [34], i.e., a static reasoning mecha-

nism where the properties are expected to be automatically

derived, for achieving full automation on fine-grained finan-

cial security analysis of Ethereum smart contracts. Firstly,
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FASVERIF automatically generates two kinds of finance-

related security properties along with the corresponding mod-

els for verification. Secondly, FASVERIF can verify these

finance-related security properties automatically. Overall, the

goal of FASVERIF is to analyze the financial security of nu-

merous contracts accurately, whereby the security properties

are generated automatically based on our statistical analysis,

the soundness of modeling is proven and the verification is

implemented using the formal tools Tamarin prover [46] and

Z3 [26]. Moreover, FASVERIF generates properties based on

the financial losses caused by vulnerabilities instead of known

vulnerability patterns, thus covering various vulnerabilities

and suitable for the analysis of financial security.

We collect a vulnerabilities dataset consisting of 549 con-

tracts from other works [38] [53] [42] [36], and evaluate

FASVERIF on it with other automatic tools. Our evaluation

shows that FASVERIF greatly outperforms the representative

tools using different technologies, in which it achieves higher

accuracy and F1 values in detection of various types of vul-

nerabilities. We also evaluate FASVERIF on 1700 contracts

randomly selected from a real-world dataset. FASVERIF finds

13 contracts deployed on Ethereum with exploitable bugs, in-

cluding 10 contracts with vulnerabilities of transferMint [7]

that can evade the detection of current automatic tools to the

best of our knowledge.

In summary, this paper makes the following contributions:

1) We propose a novel framework for achieving automated

inference, where finance-related security properties and cor-

responding models are generated from the source code of a

smart contract and used for automated verification.

2) We propose a method for property generation based on

a statistical analysis of 30577 smart contracts. We design two

types of properties, financial invariant properties and trans-

actional equivalence properties, which correspond to various

finance-related vulnerabilities such as transferMint [7], and

we abbreviate them as invariant properties and equivalence

properties, respectively.

3) We propose modeling methods for our invariant proper-

ties and equivalence properties and prove the soundness of

verifying these two types of properties using our translated

model based on a custom semantics of Solidity [39].

4) We implement FASVERIF for supporting property gen-

eration, modeling and verification, where we embed Z3 into

Tamarin prover, the state-of-the-art tool for verifying security

protocols, to use trace properties of reachability and numerical

constraint solving for verifying finance-related properties.

5) We evaluate the effectiveness of FASVERIF and find 13

contracts with exploitable vulnerabilities using FASVERIF.

2 Preliminaries

2.1 Smart contracts on Ethereum
Ethereum is a blockchain platform that supports two types

of accounts: contract accounts, and external accounts. Each

account has an ether balance and a unique address. A contract

account is associated with a piece of code called a smart

contract, which controls the behaviors of the account, and a

storage that stores global variables denoting the state of the

account. External accounts are controlled by humans without

associated code or global variables.

Functions in the smart contracts can be invoked by trans-

actions sent by external accounts. A transaction is packed

into a block by the miner and when that block is published

into the blockchain, the function invoked by the transaction is

executed. Functions can also be invoked by internal transac-

tions sent by contract accounts and the sending of an internal

transaction can only be triggered by another transaction or

internal transaction.

2.2 Solidity programming language

Figure 1: Core subset of Solidity

Figure 2: Example contract Ex1.

The most popular programming language for Ethereum

smart contracts is Solidity [24]. We take the smart contracts

written in Solidity as the object of study in this paper. For

brevity, we focus on a core subset of Solidity as shown in

Fig. 1. Taking the contract Ex1 in Fig. 2 for example, a con-

tract consists of declarations of global variables (Line 2) and

functions (Line 3 to 12). Here, constructor is a special func-

tion used to initialize global variables. The function bodies
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consist of atom statements stmtA and conditional statements.

Taking the function transfer as an example, stmtA can be a

declaration statement on Line 7, an assignment statement on

line 9, or a return statement on line 11, etc. Specially, there is

a kind of atom statements ec which are used to invoke official

functions of Solidity or custom functions of contracts. The

variables used in contracts fall into the following types: 1)

basic types τB. 2) τB �→ τ denoting a mapping from variables

of type τB to variables of type τ, e.g., balances in Fig. 2.

3) nc denoting a contract. Additionally, there are some spe-

cial built-in variables of Solidity that cannot be assigned: 1)

block.timestamp denoting the timestamp of the block that

contains the current transaction. 2) c.balance expressing the

ether balance of contract in address c. 3) msg.sender de-

noting the address of the sender of the current transaction.

Note that the functions of different visibilities are handled

in similar ways, so we only introduce how to process public

functions in this paper for brevity while FASVERIF supports

analysis of all kinds of them.

Currently, there is no official formal semantics of Solidity

to the best of our knowledge. Instead, we design FASVERIF

and prove the soundness of our translation based on a custom

semantics of Solidity, named KSolidity [39]. KSolidity is de-

fined using K-framework [50], and the definition of KSolidity

consists of 3 parts: Solidity syntax, the runtime configuration,

and a set of rules constructed based on the syntax and the con-

figuration. Configurations form of cells that store information

related to the executions of contracts, e.g., the variables of

contracts. The rules specify the transitions of configurations.

2.3 Multiset rewriting system
FASVERIF leverages the multiset rewriting system in

Tamarin prover [46] to model smart contracts and attack-

ers. Each state of a multiset rewriting system is a multiset of

facts, denoted as F(t1, . . . , tn), where F is a fact symbol, and

t1, . . . , tn are terms. The transitions of states are defined by

labeled rewriting rules. A labeled rewriting rule is denoted

as l − [a]→ r, where l, a and r are three parts called premise,

action, and conclusion, respectively. The rule is applicable to

state s, if a ground instance lσ (where σ is a substitution [45])

to be a subset of s. To obtain the successor state s′, the ground

instance lσ is removed and rσ is added. The action a is also a

multiset of facts representing the label of the rule. Meanwhile,

global restrictions on facts in a can be made such that the

execution of the protocol can be further restrained.

3 OVERVIEW

3.1 Design of FASVERIF
As shown in Fig. 3, FASVERIF contains 4 modules:

Independent modeling: given the source code of a smart

contract as input, the module generates a partial model of the

Figure 3: Design of FASVERIF.

contract, which gives the initial state of the running contract

and general rules for state transitions. It translates the con-

tract, as well as the possible behaviors of adversaries, into the

model, which is independent of specific security properties.

Note that this partial model cannot be verified directly.

Property generation: FASVERIF then generates a set of

security properties that the smart contract should satisfy.

Complementary modeling: the module outputs additional

rules for each property to complement the partial model, and

tries to reduce the size of the model for different properties.

Verification: we finally design the method of verification

to determine whether the properties are valid. We also modify

the code of Tamarin prover for supporting the verification

where numerical constraint solving is additionally required.

3.2 Adversary model
We assume that the adversaries can launch attacks by leverag-

ing the abilities of three types of entities: external accounts,

contract accounts and miners. The concerned attacks on a

smart contract are processes that affect the variables related to

the smart contract and thus the results of the smart contract ex-

ecutions. The variables that can be changed by the adversary

fall into two categories: some global variables of contracts

and block.timestamp. An external account or a contract ac-

count needs to invoke functions in victim contracts to change

the values of their global variables, while a miner can ma-

nipulate block.timestamp in a range [2] [22]. In summary,

we assume that the adversary can perform the following op-

erations: C1. Sending a transaction to invoke any function

in victim contracts with any parameters. C2. Implementing

a fallback function to send an internal call message. This

message can invoke any function in victim contracts with any

parameters. C3. Increasing the timestamp of a block by up to

15 seconds [2] [22]. Besides, the changes in exchange rates

between tokens and ethers are not considered in FASVERIF.

4 INDEPENDENT MODELING

Given a smart contract, the module of independent modeling

automatically outputs general rules for modeling the execu-

tions of the contract and the behaviors of external accounts

and the adversaries. The rules in the multiset rewriting system

correspond to the sequences of transitions of the configura-

tions of KSolidity. Therefore, we firstly define the terms used

in the rules, and sequences using the terms. Then, we show the
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processes of modeling the behaviors using the terms. Finally,

a comprehensive example is given to illustrate the usage of

the rules, and discussions are made on technical challenges

of property generation and complementary modeling based

on the independent modeling.

4.1 Terms and sequences
The terms in multiset rewriting system are translated from

the names in Solidity language. There are two types of terms:

constant terms and variable terms. Correspondingly, as shown

in Fig. 1, a name v in Solidity may represent a contract, a

function, a variable, or a constant. Therefore, given a name v,

we compute a tuple 〈name, type,range,ether〉. Here, name is

a term used in multiset rewriting system, which corresponds

to v. Term type ∈ {Tv,Tc}. If v is a variable, type = Tv; oth-

erwise, type = Tc. Term range ∈ {Rg,Rl,Ro}. If v is a global

variable and a local variable, i.e., a variable defined inside a

function, range = Rg and Rl, respectively; otherwise, e.g., v
is a constant, range = Ro. If v is a variable representing the

ether balance of an account, ether = Ey; otherwise ether = En.

Note that we consider the variables denoting ether balances as

global. Since value of v is unchanged if type=Tc, in this case

name is assigned with the value of v; otherwise, name = v.

Denote �e1,e2, ...,en� as a sequence, where each element

ei has the same type, i.e., a term, a name, or the aforemen-

tioned tuple. T1 ·T2 represents the concatenation of sequence

T1 and T2. T | t
t ′ is a sequence obtained by replacing element t

of sequence T with another element t ′. T1\T2 represents a new

sequence by removing all the elements in sequence T1 that are

the same as those in sequence T2. We additionally define oper-

ations for a tuple sequence ω. Here, ω[ j] indicates name of the

jth tuple in ω. σ(ω) outputs a term sequence consisting of all

name in ω. g(ω), e(ω) outputs a term sequence by obtaining

the name of all tuples in ω whose range = Rg and ether = Ey,

respectively. The order of terms in σ(ω),g(ω),e(ω), are in

accordance of the order of terms in ω.

Furthermore, to translate names into terms, we define and

implement two functions σv,σa. σv translates a variable name

into a variable term, and σa translates a name that represents

a contract, a function, or a constant into a constant term.

4.2 Modeling the behaviors
Based on the above notations, we propose to model the ini-

tialization of contracts and transitions of configurations of

KSolidity. Specifically, given a contract account of address c,

we will introduce how to model the executions of functions in

the contract codes of the account. For brevity, we will refer to

the account of address c as account c in the following paper.

Modeling the initialization. Assume that the contract of

account c is deployed on blockchain and the following data

will be initialized in the corresponding configuration of KSo-

lidity: 1) the ether balances of account c; 2) the global vari-

ables of account c. Besides, the ether balances of other ac-

counts also need to be initialized since they may be modified

during the executions of codes of account c. We use ω0 to

model the configuration of KSolidity after initialization of

account c. There are three kinds of tuples in ω0 in order: 1)

〈σa(c),Tc,Ro,En〉 that represents the address of account c;

2) tuple sequence g(ω0)\e(ω0) denoting the global variables

of account c except the variable denoting the ether balance

of c; 3) tuple sequence e(ω0) denoting the ether balance of

account c and the ether balances of all accounts who have

ether exchanges with c. Therefore, ω0[1] = σa(c). The tuples

in ω0 are then used to determine the order of parameters of

facts in generated rules. Hence we define the following rules

to model the initialization:

[FR(e(ω0))]− [InitE()]→ [Evar(e(ω0))] (init_evars)

[FR(g(ω0)\e(ω0))] − [InitG(ω0[1])] → [Gvar(�ω0[1]� ·
g(ω0)\e(ω0))] (init_gvars)

Here, Evar represents the current ether balances of all ac-

counts on blockchain in initialization. Gvar represents the

current global variables of account c. For brevity, we use

FR(e(ω0)) to denote a sequence that consists of Fr(t) for all

elements t in e(ω0). Fr(t) here is a built-in fact of Tamarin

prover [46] that denotes a freshly generated name, we use it to

denote that term t is with arbitrary initial values. In practice,

the ether balances of all accounts can be initialized once and

the global variables can be initialized once for every contract

account. Thus, the restrictions requiring that init_evars

and init_gvars can be only applied once are added.

Translation of functions. After initialization, external ac-

counts can send transactions to invoke any function in the

contract of c. To model the invocation of functions, we define

R partly shown in Fig. 4 to recursively translate a function in

the contract into rules. Generally, in each recursive step, R
translates a fragment of codes into a rule or multiple rules and

leaves the translation of the rest in the next steps. The first

argument of R represents the codes to be translated. If the

first argument is a sequence of statements, the second argu-

ment i is a string encoding the position of the sequence in its

function and i◦a denotes a string obtained by concatenating

i and a string a; otherwise, if the first argument is a function,

the second argument is an empty string ∅. The third argument

is a tuple sequence ω.

In the following, we introduce how R translates a function

into rules using the function add in Fig. 5 as an example.

Since function add does not modify the ether balance of any

account, we omit Evar fact in the rules.

First, R (function add(uint v2){stmt},∅,ω0) is ap-

plied and two rules are output, which correspond to ext_call
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R (function f (d){stmt},∅,ω0) = R (stmt,1,�〈σa( f ),Tc,Ro,En〉 ,〈σv(cb),Tv,Rl,En〉 ,〈σv(calltype),Tv,Rl,En〉 ,〈σv(depth,Tv,Rl,En〉�
·ω0 · seq(d))∪{[Fr(σv(cb)),FR(σ(seq(d)))]− []→ [Calle(�ω0[1],σa( f ),σv(cb)� ·σ(seq(d)))], (ext_call)

[Calle(�ω0[1],σa( f ),σv(cb)� ·σ(seq(d))),Evar(e(ω0)),Gvar(�ω0[1]� ·g(ω0)\e(ω0))]− []→ [Var1(�σa( f ),σv(cb),EXT,0� ·σ(ω0) ·σ(seq(d)))], . . .}
(recv_ext)

R (v1 ← v2;stmt, i,ω) = R (stmt, i◦1,ω)∪{[Vari(σ(ω))]− []→ [Vari◦1(σ(ω)|σv(v1)

σv(v2)
)]} (var_assign)

R (τ v1 ← v2;stmt, i,ω) = R (stmt, i◦1,ω · �〈σv(v1),Tv,Rl,En〉�)∪{[Vari(σ(ω))]− []→ [Vari◦1(σ(ω) · �σv(v2)�)]} (var_declare)

R (return, i,ω) = {[Vari(σ(ω))]− [Pred_eq(ω[3],EXT)]→ [Gvar(�ω[5]� ·g(ω)\e(ω)),Evar(e(ω))], . . .} (ret_ext)

Figure 4: Parts of the translation of functions and statements.

Figure 5: Example contract Ex2.

and recv_ext in Fig. 4, respectively:

[Fr(σv(cb)),Fr(σv(v2))]− []→ [Calle(σa(c),σa( f ),σv(cb)

,σv(v2))]

[Calle(σa(c),σa( f ),σv(cb),σv(v2)),Gvar(σv(v1))]− []

→ [Var1(σa( f ),σv(cb),EXT,0,σa(c)σv(v1),σv(v2))]

The first rule denotes an event that an external account cb
sends a transaction to invoke add. Here seq(d) = �σv(v2)�
is a term sequence generated according to the parameter of

add. According to C1 in adversary model, cb and σv(v2)
are initialized by using Fr facts. The second rule denotes

the reception of a transaction. The Var1 fact represents all

the values required in executing add, whereby terms in Calle,
Gvar are merged into terms in Var1. Therefore, R also updates

ω0 with a sequence of the corresponding tuples. Here, calltype
∈ {EXT, IN} indicates whether cb is an external account or a

contract account and depth denotes current call depth.

Then, R translates the statements in the function into rules

for modeling the execution of the function add. The assign-

ment statement in line 4 is translated into the following rule,

which corresponds to var_assign in Fig. 4:

[Var1(σa( f ),σv(cb),σv(calltype),σv(depth),σa(c),σv(v1),

σv(v2))]− []→ [Var11(σa( f ),σv(cb),σv(calltype),σv(depth)

,σa(c),σv(v1)⊕σv(v2),σv(v2))]

The term σv(v1) is replaced by σv(v1)⊕σv(v2) when apply-

ing the rule. Here ⊕ is translated from the operator + and

introduced in the complete version of our paper [27].

Additionally, the return statement in line 5 is translated into

the following rule corresponding to ret_ext:

[Var11(σa( f ),σv(cb),σv(calltype),σv(depth),σa(c),σv(v1),

σv(v2))] − [Pred_eq(σv(calltype),EXT)]→ [Gvar(σv(v1))]

Figure 6: The execution that models an attack on Ex1.

The term σv(v1) denoting the global variable of contract

Ex2 is put into Gvar facts. The local variables will no longer

be used and the corresponding terms will not be maintained.

Here, Pred_eq is a fact denoting equality between terms [46].

We use it to determine whether σv(calltype) is equal to EXT,

corresponding to the case that the function is invoked by

external accounts. Similarly, this statement can be translated

into a rule denoting the case that the function is invoked by

contract accounts as shown in [27].

Adversaries. Here we introduce the modeling of the capa-

bility C1 and C2 of adversaries mentioned in Section 3.2, and

the modeling of C3 is introduced in [27].

C1: The operation that an adversary, besides normal partic-

ipants, sends transactions can also be modeled by ext_call.

Therefore, no additional rules for the operation are provided.

C2: For each function f in the contract of account c, multi-

ple rules are generated to indicate that if the fallback function

of the adversary is triggered by the execution of the contract

of c, the adversary can send an internal transaction to invoke

any function f in the contract of c. The details of these rules

are shown in [27].
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4.3 An illustrative example

Fig. 2 shows a simplified version of a practical smart contract,

which is with a vulnerability of transferMint [7]. The global

variable balances denotes the token balances of accounts.

When the function transfer is invoked, the token balance of

msg.sender is supposed to decrease when the token balance

of to increases. However, assume that the account on ad-

dress 0x12 invokes transfer with the parameter to = 0x12,

balances[0x12] will increase while the balance of no other

account will decrease. By exploiting this vulnerability, the ac-

count on address 0x12 can mint tokens for profit or eventually

make this type of tokens valueless through repeated attacks.

An execution of the model that corresponds to the at-

tack is shown in Fig. 6. We use the contract name

Ex1 to denote the address of the account who owns

this contract. Since function transfer does not mod-

ify the ether balance of any account, we omit Evar fact

in the figure. Hence, in the execution, the initial state

is {Gvar(σa(Ex1),σa(100))} where ω0[1] = σa(Ex1) and

g(ω0)\e(ω0) = �σa(100)�. Next, an external account invokes

transfer whereby the rule ext_call is applied such that

Calle(σa(Ex1),σa(transfer),σv(cb),σv(to),σv(value)) is

added to the new state. Since σv(cb), σv(to) and σv(value)
can be arbitrary values, in this execution, they can be in-

stantiated as σa(0x12), σa(0x12) and σc(100) respectively.

In the following steps, the state is updated in similar ways.

When the transaction invoking transfer finishes, the state is

Gvar(σa(Ex1),σa(200)), which implies that balances[0x12]
changes into 200 in an unexpected way. Note that the numeri-

cal instantiation cannot be supported by the original Tamarin

prover. Moreover, the independent model cannot be verified

directly to find an attack as shown in Fig. 6, since several

technical challenges need to be addressed.

4.4 Technical challenges and main solutions

Since the module of independent modeling only provides

a framework that automatically generates models of smart

contracts partially, we have to address the following technical

challenges to complement the model for the verification.

Challenge 1: recognizing security requirements. Given

an execution shown in Fig. 6, a corresponding property is

still needed for the verifier to recognize this execution as an

instance of some vulnerabilities. However, there is no uniform

standard for the security requirements of contracts in practical

scenarios, which makes the precise generation of security

properties difficult. There are automated bug-finding tools and

verifiers defining patterns or properties according to known

vulnerabilities [60] [38] [40]. However, the vulnerabilities

covered by these tools are limited to known ones, and a variant

of a known vulnerability may evade their detection [49].

To address this challenge, we perform statistical analysis on

30577 real-world smart contracts and obtain an observation:

most of the smart contracts (91.11%) are finance-related, i.e.,
the executions of these contracts may change the cryptocur-

rencies of themselves and others. Therefore, we divide the

smart contracts into different categories according to the cryp-

tocurrencies that they use and propose security properties to

check whether the cryptocurrencies may be lost unexpectedly.

Challenge 2: contract-oriented automated reasoning.
Given an independent model, the rule ext_call can be ap-

plied repeatedly, which is corresponding to the practical sce-

narios that a function can be invoked any times. This may lead

to non-termination of verification. Besides, the independent

model is insufficient for verifying 2-safety properties [31].

We address the challenge based on the fact that a transac-

tion is atomic and cannot be interfered by other transactions.

Therefore, the independent model can be reduced for different

types of properties: (1) the properties that should be main-

tained for a single transaction; (2) the properties that may

be affected by other transactions. For the first type, we pro-

pose to automatically generate invariant properties and the

corresponding reduced model that the behaviors of other trans-

actions are ignored. For the second type, since a transaction is

atomic, the rest way to trigger an attack is to leverage differ-

ent results of a sequence of transactions caused by different

orders of the transactions or different block variables. Hence,

we propose the equivalence properties and also the modeling

method to achieve effective automated reasoning. We also

modify the code of Tamarin for supporting the verification

where numerical constraint solving is additionally required.

5 PROPERTY GENERATION

To address Challenge 1, we divide finance-related smart con-

tracts into three categories according to the type of cryptocur-

rencies they use: ether-related, token-related, and indirect-

related. An ether-related contract may transfer or receive

ethers, i.e., the official cryptocurrency of Ethereum. Simi-

larly, a token-related contract may send or receive tokens, i.e.,
the cryptocurrency implemented by the contract itself. An

indirect-related contract is used in the former two contracts

to provide additional functionality. Hence, to check whether

the cryptocurrencies may be lost in unexpected ways, we fo-

cus on generating security properties for ether-related and

token-related contracts. We propose to recognize the category

and key variables related to cryptocurrencies from the codes

of smart contracts and use the information to generate the

security properties. Note that we analyze the indirect-related

contracts in an indirect way and do not generate properties

for the indirect-related contracts. For example, given a token

contract C1 and an indirect-related contract C2, assume that

C1 implements authentication by invoking functions in C2. In

this case, we can specify C1 to be analyzed and then generate

a model for it, which considers the interaction of C1 and C2.
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5.1 Recognizing categories and key variables

Ether-related contracts. The ethers can be transferred by

using official functions, e.g., transfer, send and call. The

modifier payable is only used in ether-related contracts for

receiving ethers. Therefore, FASVERIF recognize an ether-

related contract by determining if there are keywords, i.e.,
transfer, send, call or payable in the contract. If a con-

tract is recognized as an ether-related contract, then we use the

built-in variable balance as the key variable, which denotes

the ether balance of an account.

Token-related contracts. The token-related contracts can

be divided into token contracts and token managing contracts.

A token contract is used to implement a kind of customized

cryptocurrency, i.e., tokens, which can be traded and have

financial value. A token managing contract, e.g, an ICO con-

tract [5], is used to manage the distribution or sale of tokens.

We propose a method to recognize token contracts based on

another observation from our statistical result in Section 7.2:

developers tend to use similar variable names to represent

the token balance of an account. Therefore, a contract is

identified as a token contract, if there is a variable of type

mapping(address=>uint) with a name similar to two com-

monly used names: balances or ownedTokenCount. Specifi-

cally, we calculate the similarity of names using Python pack-

age fuzzywuzzy [8]. When the similarity is larger than 85,

we consider two names similar. The threshold 85 is set based

on our evaluation in Section 7.2. For the contracts using un-

common names for token balances, FASVERIF also supports

the users to provide their own variable names. In addition

to balances, we observe that some token-related contracts

define a variable of uint type to record the total number of

tokens. Similarly, we use the most common variable name

totalSupply to match the variables representing the total

amount of tokens. This kind of variables are not used to recog-

nize the token contract, but rather for the subsequent genera-

tion of properties. After the recognition of token contracts, we

search for contracts instantiating token contracts and regard

them as token managing contracts.

5.2 Generating security properties

As mentioned in Section 4.4, we propose two kinds of proper-

ties: invariant properties and equivalence properties.

Invariant properties. The invariant property requires that

for any transaction a proposition (a statement that denotes

the relationship between values of variables) φ holds when

the transaction finishes, if φ holds when the transaction starts

executing. Since a transaction is atomic, FASVERIF checks

invariant properties in single transactions instead of the total

executions to achieve effective automated reasoning. Here,

we design the invariants to ensure that the token balances

in token-related contracts are calculated in an expected way.

Note that we do not design invariant properties for ether-

related contracts, since the calculation of ether balances is

performed by the EVM and its correctness is guaranteed [25].

For a token contract with key variable balances, the follow-

ing invariant is generated:

∑a∈A1
balances(a) =C1 (token_inv)

Since a transaction can only affect a limited number of

accounts, A1 is the set of addresses of the accounts whose

token balances may be modified in the transaction. C1 is an

arbitrary constant value and the invariant implies that the

sum of token balances of all accounts should be unchanged

after a transaction. If the invariant is broken, it indicates an

error in the process of recording token balances, which would

make this kind of tokens worthless [6]. Here, balances can be

replaced by any variable name denoting the token balances.

If there are multiple variables denoting token balances of

different types, all of them will be used. Specially, if there is a

key variable totalSupply denoting the total amount of tokens

in the token contract, the constant C1 in token_inv will be

replaced by totalSupply. For a token managing contract, the

invariant token_inv is generated for the token contract that

it manages. FASVERIF also supports the users to provide

customized invariants to check the security of contracts.

Equivalence properties. We define the equivalence prop-

erty as follows: The equivalence of a global variable v holds

for a transaction sequence T , if the value of v after T ’s execu-

tion is always the same. Here we study the equivalence of the

token or ether balance of the adversary. Given two sequences

TA and TB that have the same transactions, we propose the

following property:

balancesA(cadv) = balancesB(cadv)∧
balanceA(cadv) = balanceB(cadv) (equivalence)

Here, denote balancesA(cadv) and balanceA(cadv) as the

token balance and ether balance of the adversary after ex-

ecution of TA, respectively. Similarly, balancesB(cadv) and

balanceB(cadv) represent the corresponding balances for TB.

equivalence requires that the adversary cannot change its

own balances by changing the orders of transactions or other

conditions; otherwise, the difference of the balances may be

the illegal profit of the adversary.

5.3 Relationship between properties and com-
mon vulnerabilities

Figure 7: An example with reentrancy vulnerability.

The properties of FASVERIF are designed with a basic

idea: leveraging the phenomenon that the loss of ethers and

tokens is one of the popular intentions of attackers [33].

FASVERIF generates properties based on key variables denot-
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ing the token balances or ether balances. We aim to cover vul-

nerabilities causing financial losses. As a result, FASVERIF

covers 6 types of vulnerabilities, including transferMint not

supported by existing automatic tools, through the two prop-

erties. Note that these vulnerabilities do not necessarily cause

financial loss and those that do not are ignored by FASVERIF

as they do not affect the financial security of contracts.

To explain the usage of our properties, we provide examples

of several common vulnerabilities, detailing how contracts

with these vulnerabilities violate the above two properties.

Gasless send. During the executions of official functions

send and call, if the gas is not enough, the transaction will

not be reverted and a result will return. If a contract does not

check the execution results of send or call, it may mistak-

enly assume that the execution was successful. Given two

sequences of same transactions that invoke functions with

gasless send vulnerability, one with sufficient gas and one

without sufficient gas, the results of them will be different.

Therefore, the equivalence property is violated.

Reentrancy. Taking the contract in Fig. 7 as an example,

suppose that the adversary sends a transaction to invoke f and

the statement on line 4 sends ethers to the adversary. Accord-

ing to Section 3.2, the adversary can then send an internal

transaction through the fallback function to call f again, and

since the code on line 5 is not executed, the check on line 3

will still be passed, allowing the adversary to get ethers one

more time. Assume that there are two sequences T1 and T2, T1

consisting of two transactions invoking f and T2 consisting of

one transaction invoking f and one internal transaction invok-

ing f through a reentrancy vulnerability. We treat the internal

transaction sent by the adversary as a transaction and consider

T1 and T2 as consisting of the same transactions. In this case,

the ether balances of adversary after T1 and T2 are different,

which means that the equivalence property is broken.

TD&TOD. When some statements are control dependent

on the block.timestamp, the adversary can control the exe-

cution of these statements by modifying block.timestamp
in a range, which is called TD. Given two same sequences

of transactions that invoke a function with TD, the execution

results may be different with different block.timestamp,

which violates the equivalence property. Similarly, the con-

tracts with TOD vulnerability violate our equivalence property

when the order of transactions changes.

Overflow/underflow. Overflow/underflow is a kind of

arithmetic error. Since the goal of FASVERIF is to analyze

the financial security of contracts, FASVERIF detects over-

flow/underflow vulnerabilities that can change the number of

tokens. For the remaining overflow/underflow vulnerabilities,

FASVERIF can also support them through custom invariants.

Certain new vulnerability can be detected directly by

FASVERIF if it is covered by our properties, such as the

transferMint vulnerability. If the vulnerability is not covered,

we need to propose new properties or modify the rules in our

models to support more features. For example, the airdrop

hunting vulnerability [61], which is used by attackers to col-

lect bonuses from airdrop contracts, is not currently supported

by FASVERIF. To extend FASVERIF to cover airdrop hunt-

ing, we can propose a new invariant requiring the number of

contract accounts to remain zero. However, it is challenging

to model the identification of contract accounts. We would

like to study the extension of FASVERIF in our future work.

6 COMPLEMENTARY MODELING AND
VERIFICATION

In this section, we introduce how we address Challenge 2.

According to different properties of a contract, we propose the

method of complementary modeling to generate customized

models built upon the independent models with rules replaced

or added. Besides, we propose a solution to check whether a

customized model satisfies the corresponding property.

6.1 Complementary modeling
The goal of complementary modeling is to generate a cus-

tomized model, which satisfies that the invariant property or

equivalence property is not valid in the KSolidity Semantics,

only if there exists an execution in the model that breaks

the property. Besides, to support automated verification, the

model is added with more constraints such that each execution

that reaches a certain state breaks the property. Then, the prop-

erty is not valid if and only if the state is reachable. Hence,

we design the method for invariant property and equivalence

property as follows.

Invariant properties. The generated model for invariant

properties has the following features:

i) The invariant holds at the beginning of any execution. ii)
An execution simulates the execution of one transaction. iii)
The invariant is assumed to be broken at the end of any execu-

tion, which corresponds to the state that breaks the property.

To make the generated model conform to feature i), we first

replace the rule init_gvars with rule init_gvars_inv. In

rule init_gvars_inv, a fact θe(φ) is added to denote that

the invariant φ holds after the initialization. Here, φ is the

invariant token_inv in Section 5.2 and θe(e) is a function

translating mathematical expressions into numerical facts in

rules. Numerical facts denote the relationships between nu-

meric variables and are processed in the verification module.

Similarly, we define θne(e) to translate the negation of e.

Then we replace the rule ext_call with ext_call_inv,

added with an action and a restriction requiring that the rule

can be applied only once, to achieve feature ii).

Finally, we modify the rule ret_ext into ret_ext_inv.

ret_ext_inv has additional facts θne(φ) and End() com-

pared to ret_ext, which together achieve feature iii). End()
serves as an indicator that an execution of the model reaches

the end of the transaction if rule ret_ext_inv is applied, and

θne(φ) means that invariant φ is broken at the same time.
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Equivalence properties. The generated model for equiva-

lence properties has the following features: i) An execution

of the model simulates the executions of two sequences TA
and TB consisting of the same transactions but possibly with

different orders. ii) Before the executions of TA and TB, the

values of global variables and ether balances of all accounts

are the same. iii) The ether or token balances of the adversary

are assumed to be different at the end of any execution, which

corresponds to the state that breaks the equivalence property.

Firstly, to achieve feature ii), we replace init_evars and

init_gvars with init_evars_AB and init_gvars_AB, re-

spectively. In init_gvars_AB, the Gvar fact is duplicated

into GvarA and GvarB facts, which indicates that the global

variables are the same before TA and TB. Similarly, the Evar
fact is duplicated in init_evars_AB.

Then, we replace ext_call with ext_call_AB, in which

Calle fact is duplicated, indicating that two transactions with

same parameters and same sender are sent.

Except rules init_evars, init_gvars, ext_call, each

of the remaining rules in the model is replicated into two

rules, and the facts of the two rules are added with different

subscripts A and B to represent the execution of transactions

in sequences TA and TB, respectively. For example, the rule

recv_ext is replaced with recv_ext_A and recv_ext_B.

Specially, actions and restrictions are added into recv_ext_A

and recv_ext_B to achieve feature i). The complete form of

the above rules is shown in [27].

Finally, to achieve feature iii), we add a rule compare_AB

to compare the ether balances and token balances of the ad-

versary, where θne(φequ) and End() are added for subsequent

verification. φequ is property equivalence in Section 5.2.

6.2 Verification
The verification module is implemented by modifying the

source code of Tamarin prover [46] to achieve modeling using

multiset rewriting rules with additional support for numerical

constraint solving by Z3 [26]. Taking a generated property

and the corresponding model as input, the workflow of this

module is as follows: 1) Search for an execution that reaches

End() without considering the numerical constraints. 2) If

the search fails, the module terminates and outputs that the

property is valid; otherwise, go to step 3). 3) Collect the

numerical constraints that the execution must satisfy and solve

the constraints by Z3. 4) If the set of constraints is satisfied,

which indicates that the execution that violates the property

exists, the module terminates and outputs the execution as a

counterexample; otherwise, add a constraint to the model that

the execution does not exist, and go to step 1).

6.3 Formal guarantee
We prove the soundness of translation from Solidity language

to our models based on KSolidity [39], which is claimed to

fully cover the high-level core language features specified

by the official Solidity documentation and be consistent with

the official Solidity compiler. However, the completeness of

our translation is not guaranteed due to two reasons: 1) the

initialization of global variables and ether balances in rules

init_evars and init_gvars assumes the initial values of

global variables and ether balances to be arbitrary, which may

over-approximate the range of values for these variables. 2)

the specific values of the block timestamps are not consid-

ered. Specifically, we prove Theorem 1 (informal description).

Note that Theorem 1 only holds for the contracts supported

by FASVERIF (See Section 9). The precise description of

Theorem 1 is presented in [27].

Theorem 1 (Soundness). If an invariant property (or equiv-
alence property) holds in the complementary model of
FASVERIF, it holds in real-world transactions interpreted
by KSolidity semantics.

Proof Please refer to [27].

7 EVALUATION

In this section, we firstly make preparations on the experimen-

tal setup, including the types of vulnerabilities, datasets, and

representative tools that we choose. Then, we report the exper-

imental results and analyze the effectiveness of FASVERIF.

Finally, we verify real-world contracts using FASVERIF and

demonstrate the exploitable bugs that FASVERIF finds.

7.1 Experimental setup
Types of Vulnerabilities. First, we introduce the vulnerabili-

ties that FASVERIF currently targets. We divide the 37 types

of vulnerabilities in SWC Registry [10], a library consisting of

smart contracts’ vulnerabilities, into three categories: a) vul-

nerabilities that can be detected through syntax checking, e.g.,
outdated compiler version. b) vulnerabilities that do not have

clear consequences, e.g., dangerous delegatecall. c) vulnera-

bilities that can cause losses of ethers or tokens. FASVERIF

targets the vulnerabilities in category c) as they can cause

financial loss and are difficult to detect. There are 6 types of

vulnerabilities that FASVERIF currently supports: 1) trans-
action order dependency (TOD); 2) timestamp dependency
(TD); 3) reentrancy; 4) gasless send; 5) overflow/underflow;

6) transferMint [7]. The relationship between these vulnera-

bilities and our properties has been mentioned in Section 5.3.

We divide the TOD vulnerabilities into two groups: TOD-eth
changing ether balances of accounts, TOD-token changing

token balances of accounts, since SECURIFY and OYENTE

only support the detection of the former.

Datasets. We use two datasets [20] of smart contracts to

evaluate FASVERIF. The first dataset, called vulnerability
dataset, is used to test the performance of FASVERIF in de-

tecting different types of vulnerabilities compared with other
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Table 1: A comparison of representative automated analyzers for smart contracts. (Acc and F1 outside brackets correpsond to the

finance-vulnerable contracts, while those inside brackets correpsond to the vulnerable contracts, * denote automated verifiers)
Types of

Vulnerabilities

Osiris SECURIFY* Mythril OYENTE VERISMART SmartCheck Slither Manticore eThor* FASVERIF *

Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 U

TOD-eth / / 96.43 0.98 / / 42.86 0.6 / / / / / / / / / / 100 1 10

TOD-token / / / / / / / / / / / / / / / / / / 100 1 0

TD
71.60

(70.37)

0.83

(0.82)
/ /

45.68

(44.44)

0.62

(0.62)

76.54

(75.31)

0.87

(0.86)
/ / / /

16.05

(14.81)

0.26

(0.25)

24.69

(23.46)

0.38

(0.38)
/ /

95.06

(93.83)

0.97

(0.96)
33

reentrancy
66.67

(69.05)

0.79

(0.81)

78.57

(76.19)

0.85

(0.84)

71.42

(69.04)

0.81

(0.8)

73.81

(76.19)

0.85

(0.86)
/ /

73.81

(76.19)

0.85

(0.86)

85.71

(83.33)

0.91

(0.90)

38.09

(35.71)

0.41

(0.40)

83.72

(86.05)

0.92

(0.93)

90.48

(88.10)

0.94

(0.93)
2

gasless send / / 92.19 0.95 82.35 0.67 / / / / 92.19 0.95 85.94 0.91 29.69 0.26 / / 100 1 7

overflow/underflow
81.20

(81.20)

0.89

(0.89)
/ /

95.30

(95.30)

0.97

(0.97)

90.27

(90.27)

0.95

(0.95)

98.99

(98.99)

0.99

(0.99)
/ / / /

19.40

(19.40)

0.11

(0.11)
/ /

99.33

(99.33)

0.99

(0.99)
4

transferMint / / / / / / / / / / / / / / / / / / 100 1 0

automated tools. We collect 611 smart contracts with vulnera-

bilities in category c) mentioned above from public dataset

of other works [38] [53] [42] [36]. We filter out 6 smart con-

tracts whose codes are incomplete and 56 smart contracts

that FASVERIF does not support. We illustrate the number

of contracts unsupported by FASVERIF in the last column

of Table 1, and the reasons that FASVERIF does not support

them will be introduced in Section 9. Finally we get vulnera-
bility dataset with 549 contracts. The second dataset, called

real-world dataset, is used to evaluate the effectiveness of

FASVERIF in detecting real-world smart contracts. We crawl

46453 Solidity source code files from Etherscan [19], and

then filter the contracts to remove duplicates. We calculate

the similarity of two files using difflib [17] package of Python,

and considered two contracts as duplicates when their simi-

larity is larger than 90%. Finally, we obtained 17648 Solidity

files containing 30577 contracts as real-world dataset. We

add 11 smart contracts with the vulnerability of transferMint
from the real-world dataset to the vulnerability dataset, since

the previous datasets have not gathered this type of contracts.

Tools. We compare FASVERIF with the following repre-

sentative automatic tools: OYENTE [44], Mythril [35], SE-

CURIFY (version 2) [60], ContractFuzzer [38], Osiris [58],

Slither [37], SmartCheck [55], VERISMART [53], Manti-

core [23] and eThor [52].

We do not compare FASVERIF with ZEUS [40], another

automated verifier, since it is not publicly available. Besides,

we do not compare FASVERIF with semi-automated verifica-

tion frameworks while they need manual input of properties,

which require certain expertise and is labor-intensive when

evaluating hundreds of contracts. Meanwhile, how to express

the properties in different specification languages equivalently

becomes a problem and may affect the fairness of comparison.

Experimental Environment. We experiment on a server

with 2.50GHz CPU, 128G memory and 64-bit Ubuntu 16.04.

7.2 Statistical analysis

We first perform statistical analysis on real-world dataset. We

manually classify the contract as finance-related or others tak-

ing the following parts of contracts into account and try our

best to avoid misclassification: 1) Contract names. The usage

of some contracts can be shown in their name. 2) Contract

Table 2: The effectiveness of our method for identifying token

contracts.

threshold 70 75 80 85 90

Acc(%) 98.31 98.32 98.32 98.50 98.46

F1(%) 98.13 98.14 98.14 98.31 98.27

annotations. The annotations of contracts can provide us some

information, e.g., the contracts’ usage.3) Inheritance of con-

tracts. The children of token contracts can possibly be token

contracts. 4) Contract creation statements. The contracts creat-

ing token contracts can possibly be token managing contracts.

5) Ether transfer statements. The contracts transferring ethers

are ether-related. Note that the contracts that are difficult to

distinguish their usage are classified as others.

After the above classification, we find 27858 finance-

related contracts, including 6307 ether-related contracts

(20.63%), 7661 token-related contracts (25.05%), 5994 con-

tracts both ether-related and token-related (19.60%) and 7896

indirect-related contracts in total (25.82%). The remaining

contracts account for 8.89%. Hence, finance-related contracts

make up a major portion (91.11%) of the real-world contracts,

which validates the goal of generating properties aiming to

protect cryptocurrencies shown in Section 5.2.

During the classification, we find that since the official

ERC20 [11] standard of Ethereum recommends using vari-

able name balances to denote token balances, most token

contracts use names similar to balances to denote token bal-

ances. Besides, there are also token contracts using names

similar to ownedTokenCount due to ERC721 [18] standard.

To validate our observation and evaluate the effectiveness

of our methods to identify token contracts, we perform an

evaluation on real-world dataset. We search for contracts

with variables of type mapping(address=>uint) that have

names similar to balances or ownedTokenCount, while the

similarity of two names is calculated based on fuzzywuzzy [8],

and the thresholds are set to 70, 75, 80, 85 and 90, respectively.

We collect the following data under different thresholds: 1)

TP: the number of token contracts correctly identified. 2)

FN: the number of token contracts that are missed. 3) FP:

the number of contracts misclassified as token contracts. 4)

TN: the number of contracts that are not token contracts cor-

rectly classified. 5) Accuracy: Acc = T P+T N
T P+T N+FP+FN . 6) F1:

F1 = 2T P
2T P+FP+FN . We only show 5) and 6) in Table 2 due to
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the page limit. According to Table 2, our method achieves Ac-

curacy and F1-score higher than 98% under different thresh-

olds. We choose 85 as our threshold finally.

7.3 Comparison

Unlike other automatic tools, FASVERIF detects the effect

of the vulnerabilities, i.e., whether causing the financial loss.

To fairly compare FASVERIF and other automatic tools, we

run the tools on vulnerability dataset, and collect two sets of

results as shown in TABLE 1. Here we call a contract with a

vulnerability as a vulnerable contract, and call a contract with

a vulnerability causing financial loss as a finance-vulnerable

contract. We regard the number of contracts correctly rec-

ognized as a finance-vulnerable / vulnerable contract as TP,

and regard the number of contracts correctly recognized as a

contract that is not finance-vulnerable / vulnerable as TN. The

calculation formulas of accuracy and F1 are mentioned above.

Due to the page limit, we only show the accuracy and F1 of

tools in TABLE 1. Note that TOD-eth, TOD-token, gasless
send and transferMint always cause financial loss, thus the

two sets of results for them are the same.

Totally, FASVERIF outperforms the representative tools

that it achieves higher accuracy and F1 values in the detection

of vulnerable and finance-vulnerable contracts in vulnerability
dataset. Meanwhile, FASVERIF is the only one that is able to

detect all the types of vulnerabilities in TABLE 1 among the

automated tools mentioned above. Note that we fail to make

ContractFuzzer report any findings. Though being in contact

with the authors, we are unable to fix the issue and both

sides eventually give up. SECURIFY can output alerts for all

contracts using timestamp, but is not targeted to detect TD, so

we do not compare its ability to detect TD with FASVERIF.

We analyze the reason for the false results produced by

different automatic tools shown in Table 1.

TOD-eth,TD, gasless send: The above automatic tools de-

tect these types of vulnerabilities based on their pre-defined

patterns and their accuracy depends on the patterns. On one

hand, progressive patterns can result in false negatives. For

example, SECURIFY decides if a contract is secure against

gasless send by matching the pattern whether each return

value of send is checked. However, a contract checks the re-

sult of send but does not handle the exception, which evades

the detection of SECURIFY. On the other hand, conservative

patterns can lead to false positives. For example, OYENTE

and SECURIFY detect TOD-eth according to the pattern that

when the transaction orders changes, the recipient of ethers

may also change. A contract returns ethers to their senders

and the first sender will be the first receiver. For this case, both

OYENTE and SECURIFY falsely report TOD-eth vulnera-

bility. However, all senders eventually receive ethers, i.e., the

result is not changed with the transaction order, whereas our

equivalence property holds. Besides, the tools using symbolic

execution, e.g., OYENTE and Mythril, may produce false

negatives as they explore a subset of contracts’ behaviors.

reentrancy: EThor defines a property: an internal transac-

tion can only be initiated by the execution of a call instruc-

tion, which over-approximates the property that a contract

free from reentrancy should satisfy. Therefore, eThor gets

more false positives than FASVERIF in detection of reen-
trancy. The reasons for the false reports of the other tools in

the detection of reentrancy are still inaccurate patterns.

Overflow/underflow: OYENTE, Mythril, Osiris assume

that the values of all the variables are arbitrary and output FPs

for this category. Differently, FASVERIF and VERISMART

consider additional constraints of variables, e.g., for the vari-

ables whose values are constant, their values should be equal

to the initial values. VERISMART outputs 2 false positives

due to its assumption: every function can be accessed.

FASVERIF also produces 9 false negatives due to the er-

ror of property generation. Specifically, FASVERIF fails to

detect 2 contracts with overflow. In these two contracts, the

variable allowance may overflow. We currently do not de-

sign the invariants for this variable. So we manually define a

new invariant according to the two contracts and FASVERIF

successfully discovers the vulnerabilities. FASVERIF also

misses 3 contracts with TD and 4 contracts with reentrancy.

These contracts use uncommon variable names to denote to-

ken balances. We manually specify the key variable names

and finally find out the missed vulnerabilities.

To compare the efficiency of the above tools, we calculate

the average time taken by them to analyze one contract in

vulnerability dataset as follows: Slither (2.16 s), SmartCheck

(4.93 s), eThor (11.95 s), OYENTE (20.81 s), Mythril (55.00

s), VERISMART (63.45 s), Osiris (73.52 s), SECURIFY

(222.99 s), FASVERIF (829.61 s).

7.4 Security analysis of real-world smart con-
tracts

To evaluate the effectiveness of FASVERIF in real-world con-

tracts, we conduct an experiment on randomly-selected 1700

contracts from real-world dataset. FASVERIF reports 15 con-

tracts with vulnerabilities, of which 11 violates the invariant

property and 4 violates the equivalence property. We simulate

attacks on these contracts on a private chain of Ethereum and

check the exploitability of the vulnerabilities in them with

on-chain states. We eventually find that among the 15 con-

tracts, there is one contract destroyed and another contract

with non-exploitable vulnerabilities, whereas the vulnerabil-

ities in the remaining 13 contracts are exploitable. Among

the exploitable bugs, there are 10 of transferMint vulnerabili-

ties, which cannot be detected by existing automatic tools as

shown in Table 1. Considering the proportion of vulnerable

contracts found and the vulnerabilities in them causing finan-

cial losses, we hope our work can raise security concerns. The

unexploitable contract is a crowdsale contract selling tokens.

The contract specifies that users who buy tokens within a
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certain time frame can get bonuses. However, the bonuses are

no longer available after September 7, 2017, thus the vulnera-

bility in this contract is not exploitable but misclassified due

to the incompleteness of FASVERIF.

Ethical Considerations. As Ethereum accounts are anony-

mous, we attempt to identify the owners of the vulnerable

contracts by checking the contract code, the addresses of the

contract creators, and 685 bug bounty programs [16]. We also

use a chat software [15] to send messages to the addresses

of the contract creators but do not receive replies after wait-

ing for 40 days. To avoid the abuse of these vulnerabilities,

we do not provide the addresses of the vulnerable contracts

or open-source FASVERIF. Instead, we present a simplified

version of the destroyed contract and provide a website with

an interface to use the restricted version of FASVERIF [21].

Also, our tool is available upon request for researchers with

validated identities for academic purposes.

Example. The contract Ex1 shown in Fig. 5 is a

contract with an exploitable bug. Note that this con-

tract is simplified. In practice there are conditional

statements to avoid numerical operations causing over-
flow/underflow. FASVERIF recognizes Ex1 as a token

contract and chooses the invariant token_inv. Specifi-

cally, assume that the sum of token balances of to and

msg.sender before the transaction, i.e., balances0[to] +
balances0[msg.sender] is value C1, FASVERIF checks

whether the sum after the transaction, i.e., balances1[to]+
balances1[msg.sender] can be different from C1. In the ver-

ification, FASVERIF finds an execution that reaches End()
and has a constraint Pred_eq(to,msg.sender). According

to the constraint, msg.sender in all expressions are re-

placed with to. Moreover, since the rules var_declare

and var_assign are in the execution, balances1[to] is re-

placed by balances1[to] + value. Hence, the constraints

balances0[to] + balances0[to] = C1, balances0[to] +
value+ balances0[to]+ value �= C1 are added to Z3. As

a result, the constraints are satisfied with value �= 0, which

indicates the invariant token_inv is broken and FASVERIF

decides this contract as vulnerable. Comparatively, SECU-

RIFY, OYENTE and Mythril fail to detect this type of vulner-

ability with unknown patterns. VERISMART cannot detect

this vulnerability that does not cause overflow/underflow.

We set the verification timeout as 5 hours but 12 contracts

cannot be verified within that time. The remaining contracts

take an average of 2 hours and 40 minutes to verify. During the

verification, we manually set variable names for 14 contracts

in which FASVERIF cannot find key variables.

Besides, we compare TeEther [43] with FASVERIF on the

1700 real-world contracts. TeEther aims to reveal critical parts

of code that can be abused to get ethers and assumes that if

the attacker as an external account can obtain ethers from a

contract, the contract is vulnerable. TeEther considers two

contracts vulnerable, while FASVERIF considers them non-

vulnerable. For the first contract, the attacker can destroy it

whereby get ethers, but FASVERIF cannot detect this vulner-

ability which is not covered by our properties. For the second

contract, the attacker cannot disrupt its execution and can only

get ethers in normal ways. FASVERIF considers this contract

safe since no ether or tokens will be lost unexpectedly.

8 RELATED WORK

8.1 Automated bug-finding tools for contracts

Automated bug-finding tools fall into two categories: tools

using symbolic execution and tools using other technologies.

Among the tools using symbolic execution, OYENTE [44]

executes EVM bytecode symbolically and checks for vulner-

ability patterns in execution traces. Mythril [35] uses taint

analysis and symbolic execution to find vulnerability patterns.

Osiris [59] is specially designed for detecting arithmetic bugs.

In the tools using other technologies, ContractFuzzer [38]

instruments EVM to search for executions that match patterns.

SmartCheck [56] searches for specific patterns in the XML

syntax trees of contracts. VERISMART [53] generates and

checks invariants to find the overflow in smart contracts.

Compared with the above tools, there are differences be-

tween FASVERIF and them: 1) FASVERIF provides a proof

of our translation and implements the verification using for-

mal tools. 2) The vulnerabilities detected by these tools are

in a particular category or dependent on pre-defined known

patterns. Comparatively, FASVERIF generates security prop-

erties on demand and covers various types of vulnerabilities.

8.2 Verification frameworks for contracts

Verification frameworks formally verify the properties of con-

tracts. SMARTPULSE [54] is used to check given temporal

properties of smart contracts. Similarly, VerX [48] performs a

semi-automatic verification of temporal safety specifications.

ConCert [29] is a proof framework for functional smart con-

tract languages. These tools can verify functional properties

of contracts, which are not currently supported by FASVERIF,

but need human involvement to produce results. Differently,

FASVERIF can generate and verify finance-related properties

for contracts automatically. Besides, according to their litera-

ture, the above tools cannot verify our equivalence properties.

CFF [30] is a formal verification framework for reasoning

about the economic security properties of DeFi contracts.

CFF proposes extractable value (EV), which is similar to our

equivalence property. Specifically, the equivalence property is

used to check whether an adversary can obtain profits through

operations such as reordering transactions, while EV is used

to quantify the profits an adversary can obtain. However, CFF

takes into account more financial features, e.g., changes in

exchange rates, which are not considered in FASVERIF.
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8.3 Automated verifiers for contracts
To the best of our knowledge, there are three automated ver-

ifiers for smart contracts: eThor [52], SECURIFY [60] and

ZEUS [40]. eThor is a sound static analyzer that abstracts the

semantics of EVM bytecode into Horn clauses. As the liter-

ature of eThor states, it can only detect reentrancy or check

assertions automatically. In addition, eThor cannot verify our

equivalence property. SECURIFY detects specified patterns

extracted from control flows of contracts. SECURIFY can-

not solve numerical constraints and thus cannot detect over-
flow and transferMint. ZEUS transforms smart contracts into

LLVM bitcode and uses existing symbolic model checkers.

The transformations are claimed to be semantics preserving

which however are refuted by [52]. Besides, ZEUS uses pre-

defined policies based on known patterns. Thus, ZEUS may

miss unknown vulnerabilities or variants of known vulnera-

bilities, e.g., transferMint supported by FASVERIF.

8.4 Generating properties for other verifiers
We investigate whether our properties can be used by other

verifiers. We study the following verifiers that can verify

properties automatically: ZEUS, VerX, SECURIFY, eThor

and SMARTPULSE. Among them, ZEUS is not publicly

available, and VerX only provides a website that is no longer

maintained. SECURIFY cannot solve numerical constraints

and thus cannot verify our properties. eThor analyzes the

bytecode of contracts, ignoring semantic information like

variable names, so it is non-trivial to convert our properties,

which require variable names as part of them, into a form that

eThor can verify. Besides, we fail to make SMARTPULSE

[12] work by following the instructions on its webpage.

9 LIMITATIONS AND DISCUSSION

Limitations. We summarize limitations of FASVERIF as

follows:

1) The average time to analyze a contract using FASVERIF

is longer than the one using other automated tools. According

to the experiment on vulnerability dataset, FASVERIF take

an average of 829.61 seconds to analyze a contract, while the

most time-consuming one of the other automated tools take

an average of 222.99 seconds.

2) FASVERIF currently cannot detect vulnerabilities that

do not cause financial losses, e.g., the overflow vulnerabilities

that lead to DoS, which is supported by some automated tools.

3) FASVERIF can only support vulnerabilities that are

covered by our properties under our assumptions. Specifically,

we do not consider the exchange rates and focus only on

vulnerabilities that result in abnormal token amounts or that

allow attackers to gain differently with different transaction

orders or block timestamps. Thus, the economical security

property (considering the exchange rates) proposed in [30],

the airdrop hunting and self-destruction vulnerabilities (not

covered by our properties) are unsupported by FASVERIF.

4) Solidity language is not fully supported. Due to the

Turing-completeness of Solidity [24], it is challenging to fully

support its features. Thus, we add the following restrictions

to define a fragment of Solidity supported by FASVERIF:

• Loops. FASVERIF supports unrolling of bounded loops,

i.e., the execution times of loops are constant, where

the loop statement is replaced by equivalent statements

without loops. The unbounded loops, whose execution

times cannot be determined statically, are not supported.

We find 2988 contracts (9.77%) with unbounded loops

in real-world dataset and omit them in our analysis.

• Revert. FASVERIF verifies the properties under the as-

sumption that all transactions can be executed to comple-

tion. For transactions where a revert occurs, we assume

that the executions of the transactions do not result in

the modification of any variables.

• Contract creation. FASVERIF supports the case of static

creation of contracts in the constructors. To trade off

efficiency and coverage for Solidity features, we omit the

contracts creating contracts via function calls. However,

we only find 4.67% (1428/30577) of contracts in real-
world dataset that create contracts via function calls.

• Function call. Given a set of contracts with Solidity

codes, FASVERIF requires them not to invoke functions

in contracts outside the set whose codes are unknown.

FASVERIF can only analyze codes given beforehand,

which is an inherent defect of static analyzers [47]. We

also count the contracts calling unknown codes in real-
world dataset and finally find 1754 contracts (5.74%).

In summary, even with the above restrictions, FASVERIF can

still cover 82.41% (25197/30577) real-world contracts.

5) FASVERIF may get incorrect key variables or invariants.

Though our method of identifying key variables achieves ac-

curacy higher than 98% in real-world dataset, it still may

misidentify some key variables. Additionally, the correctness

of the generated invariants is also not guaranteed. As a re-

sult, incorrect variables or invariants can lead to legitimate

contracts being ruled out. Thus, we offer users the option to

manually set invariants and key variables instead.

6) The incompleteness of FASVERIF may lead to misclas-

sifying safe contracts as vulnerable, e.g., the online contract

that is unexploitable mentioned in Section 7.4.

Discussion. We choose Tamarin due to its well-supported

modeling of concurrent systems [45]. Using Tamarin gives

us the flexibility to add or modify rules in our models to

verify hyperproperties [32] like the equivalence properties

requiring simultaneous reasoning of multiple executions. In

comparison, using other tools may introduce more difficulties

when modeling and verifying hyperproperties [32] [28]. How-

ever, our extensions to Tamarin are specific to finance-related

properties and some features of Tamarin are not used. It is
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interesting to further extend Tamarin in the future.

10 CONCLUSION

We propose and implement FASVERIF, which can automati-

cally generate finance-related properties and the correspond-

ing models for smart contracts, and verify the properties auto-

matically. FASVERIF outperforms other automatic tools in

detecting finance-related vulnerabilities in accuracy and cov-

erage of types of vulnerabilities, and it finds 13 contracts with

exploitable bugs, including 10 contracts evading the detection

of other automated tools to the best of our knowledge.
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