
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

PrivTrace: Differentially Private Trajectory Synthesis
by Adaptive Markov Models

Haiming Wang, Zhejiang University; Zhikun Zhang, CISPA Helmholtz Center
for Information Security; Tianhao Wang, University of Virginia; Shibo He,

Zhejiang University; Michael Backes, CISPA Helmholtz Center for Information
Security; Jiming Chen, Zhejiang University; Yang Zhang, CISPA Helmholtz Center

for Information Security
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming

PrivTrace: Differentially Private Trajectory Synthesis by Adaptive Markov Models

Haiming Wang1 Zhikun Zhang2∗ Tianhao Wang3 Shibo He1

Michael Backes2 Jiming Chen1 Yang Zhang2

1Zhejiang University
2CISPA Helmholtz Center for Information Security

3University of Virginia

Abstract
Publishing trajectory data (individual’s movement informa-
tion) is very useful, but it also raises privacy concerns. To
handle the privacy concern, in this paper, we apply differen-
tial privacy, the standard technique for data privacy, together
with Markov chain model, to generate synthetic trajectories.
We notice that existing studies all use Markov chain model
and thus propose a framework to analyze the usage of the
Markov chain model in this problem. Based on the analysis,
we come up with an effective algorithm PrivTrace that uses
the first-order and second-order Markov model adaptively.
We evaluate PrivTrace and existing methods on synthetic
and real-world datasets to demonstrate the superiority of our
method.

1 Introduction
Trajectory data analysis plays an important role in tasks re-
lated to the social benefit such as urban planning and intelli-
gent transportation [4, 47]. The trajectory data used usually
comes from users who carry mobile devices to record their
locations. However, the sensitive nature of the trajectory data
also gives rise to privacy risks when being shared. Recent re-
search demonstrated effective privacy attacks despite aggrega-
tion or anonymization, such as trajectory reconstruction [25],
de-anonymization [11], and membership inference [12, 39].
Without a sufficient privacy protection technique, trajectory
data analysis is not possible since users will refuse to share
their data.

A promising technique to overcome the privacy concern is
differential privacy (DP) [17, 18, 48, 56], which has become
the golden standard in the privacy community. Intuitively, on
a given dataset, DP defines a random transformation process
(algorithm) so that the output of the transformation contains
some “noise” that can “cover” the existence of any possible
record in the dataset. DP can be used by both companies and
government agencies. With DP protection, hopefully, more

∗Zhikun Zhang is the corresponding author.

users will be willing to share their data. From the government
side, agencies can also share more data for the public good.

Most of the previous studies on differentially private tra-
jectory data analysis focus on designing tailored algorithms
for specific tasks, such as community discovering [53], par-
ticipatory sensing [33], and recommendation [50]. Our paper
focuses on a more general approach, where we publish a syn-
thetic trajectory dataset that shares similar properties with the
original one while satisfying DP. While publishing synthetic
datasets would not work better than directly publishing aggre-
gate statistics [42], this paradigm can easily enable any (even
unseen) down-stream data analysis tasks without modifying
existing algorithms and has been adopted in, e.g., the 2020
US Census data publication [10] and a dataset for population
flow analysis [29]. There are several recent studies focusing
on generating data satisfying DP, and they are typically com-
posed of two steps: model learning and generation [36,54,57].
In the scenario of trajectory data, because the information is
typically continuous, existing works [25,28] also need to first
discretize the data upfront.
Existing Work. The first work to generate synthetic trajecto-
ries with DP is DPT by He et al. [28]. It uses a set of uniform
grids with different granularities to discretize the space and es-
tablishes multiple differentially private prefix trees [13] (each
with a different grid) to model transitions; then generates data
by random walk on the prefix trees. More recently, Gursoy et
al. [25] proposed AdaTrace. It discretizes the geographical
space into two kinds of grids using different granularities.
Then a first-order Markov chain model and other three impor-
tant features are learned based on the discretization results.
Then the data is generated by random walk on the first-order
Markov chain model with help of extracted features. The
drawback of AdaTrace is that information contained in the
first-order Markov chain model is not enough to generate data
of high quality.
Our Contributions. Existing approaches either get only
the first-order Markov chain model, which fails to obtain
enough transition information, or get a high-order Markov
chain model, which introduces excessive noise due to DP. Our

USENIX Association 32nd USENIX Security Symposium 1649

idea is to reach a middle ground between DPT and AdaTrace.
To this end, we employ only the first and second-order Markov
chain model, for three reasons. First, previous studies have
shown that the second-order Markov chain model can achieve
promising accuracy for next step prediction [22, 32, 41]. Sec-
ond, Markov chain model of higher order is too space and
time-consuming. A k-order Markov chain model with m states
needs mk+1 transition probability values. When m is 300, and
k is 3, this requires 30GB of storage. Third, to satisfy DP,
building more models will introduce more noise. Although
more information is extracted, the amount of noise also grows.
As a result, after some specific order of the Markov chain
model, the overall information quality will decrease. In prac-
tice, we observe the threshold is between the second-order
and third-order.

To generate high-quality trajectories, we use both the first-
order model and the second-order model in our random-walk-
based generation process. Every time to predict a state as
the next step, we select between the first-order model and
the second-order model. The selection principle contains two
aspects of considerations: the effect of noise on different
models and the confidence ability of models.

The standard Markov chain model does not have the infor-
mation about where the trajectory starts and ends. We add
virtual start and end in every trajectory to record this informa-
tion. However, due to some actions to bound the sensitivity,
the recorded information is biased. To reduce the bias, we
propose an optimization-based method to estimate the trip
distribution. The optimization problem is built based on the
observation that a trajectory only contributes one to the count
related to the virtual start and end. The experimental results
show that our estimation method is effective, especially when
the privacy budget is small.

We conduct empirical experiments on both synthetic and
real-world trajectory datasets to compare PrivTrace with the
state-of-the-art. PrivTrace consistently outperforms the ex-
isting methods for a variety of metrics. We further conduct
comprehensive ablation studies to illustrate the effectiveness
of the three main components of PrivTrace. One limitation
of our approach is that the accuracy of the generated long
trajectories is worse than that of the short trajectories. This
is due to the fact that long trajectories are more complicated
and more challenging to generate correctly.

To summarize, the main contributions of this paper are
two-fold:

• We propose a new trajectory data synthesis method
PrivTrace. Its key insight is to exploit both the first-order
and second-order Markov chain models. PrivTrace is built
with a new method to choose between the first-order and
second-order transition information for next-step predic-
tion, and a new method to estimate the trip distribution
from the first-order Markov chain model without consum-
ing extra privacy budget.

• We conduct extensive experiments on both synthetic and
real-world trajectory datasets to validate the effective-
ness of PrivTrace. Our code is open-sourced at https:
//github.com/DpTrace/PrivTrace.

Roadmap. In Section 2, we give the definition of the prob-
lem and present background knowledge of DP. Then we show
the framework of trajectory data generation Section 3. Fol-
lowing this framework, we provide the design of our method
in Section 4. The experimental results are presented in Sec-
tion 5 with discussions in Section 6. Finally, we discuss
related work in Section 7 and provide concluding remarks in
Section 8.

2 Preliminaries
2.1 Problem Definition
In this paper, we consider a dataset consisting of a set of tra-
jectories. Each trajectory is composed of a sequence of points.
We are interested in the following question: Given a sensitive
trajectory dataset Do, how to generate a synthetic trajectory
dataset Ds that shares similar properties with Do while satisfy-
ing DP. Generating the synthetic trajectory dataset facilitates
down-stream data analysis tasks without modifications.

Following prior work [25], we use four statistical metrics
to measure the similarity between Ds and Do: length distribu-
tion, diameter distribution, trajectory density, and transition
pattern. The trajectory length is the total distance of a tra-
jectory, which can be used to study the commute distance
of people. The trajectory diameter measures the largest Eu-
clidean distance between any two points in a trajectory, which
gives information about the range of the individual’s activi-
ties. The length distribution and diameter distribution capture
the frequency of different trajectory lengths and trajectory
diameters in a trajectory dataset, respectively. We use Jensen-
Shannon divergence (JSD) [34] to measure the similarity of
distributions between Do and Ds. A smaller JSD means the
generated dataset Ds is more similar to the original Do.

The trajectory density calculates the number of trajectories
that pass through a given area on the map, which can be a
good indicator for urban planning, such as estimating the flow
of traffic in a specific area. The transition pattern captures the
frequency of transiting from one place to another, which can
help solve problems like next location prediction. We use the
average relative error (ARE) of different randomly generated
queries of trajectory density and transition pattern to measure
their similarity between Do and Ds. A smaller ARE implies
Ds is more similar to Do.

2.2 Markov Chain Model
To generate a synthetic dataset, a commonly used method is
the Markov chain model. A Markov chain model is a stochas-
tic model describing a sequence of possible events in which
the probability of each event depends only on the state at-
tained in the previous events. It is frequently used to analyze

1650 32nd USENIX Security Symposium USENIX Association

https://github.com/DpTrace/PrivTrace
https://github.com/DpTrace/PrivTrace

sequential data such as location trajectories [5, 15, 22, 24, 35]
and natural language [19, 31, 38, 44]. Formally, the Markov
chain model is defined as follows:

Definition 1 (Markov Chain Model). Given a finite set
of discrete states Σ = {σ1,σ2,σ3, . . . ,σk}, a sequence T =
(λ1,λ2,λ3, . . .λs) is said to follow a kth-order Markov process
if k ≤ i≤ s−1,∀λ ∈ Σ

Pr [λi+1 = σ j|λi . . .λ1] = Pr [λi+1 = σ j|λi . . .λi−k]

where Pr [λi+1|λi . . .λ1] is called the transition probability
from λi . . .λ1 to λi+1.

Given a dataset D , if r is a subsequence of any T ∈D , the
empirical transition probability Pr [σ|r] is defined as

Pr [σ|r] =
∑
∀T∈D

NT (rσ)

∑
∀T∈D

∑
∀x∈Σ

NT (rx)
=

ND(rσ)

∑
∀x∈Σ

ND(rx)
(1)

Here rx is a sequence where r is followed by x. NT (rx) is
the total number of occurrences of rx in T , and we denote

∑
∀T∈D

NT (rx) as ND(rx).

The kth-order Markov chain model is the Markov chain
model that can provide Pr [σ|r] for any state σ and any sub-
sequence r with length k. By calculating all ND(rx) for all
possible length-k subsequence r and all x ∈ Σ, we can learn a
kth-order Markov chain model from the dataset.

2.3 Differential Privacy
Definition 2 (ε-Differential Privacy). An algorithm A satis-
fies ε-differential privacy (ε-DP), where ε > 0, if and only if
for any two neighboring datasets D and D ′, we have

∀O⊆Range(A) : Pr [A(D) ∈ O]≤ eεPr
[
A(D ′) ∈ O

]
,

where Range(A) denotes the set of all possible outputs of the
algorithm A .

In this paper, we consider two datasets D and D ′ to be
neighbors, denoted as D 'D ′ if and only if D = D ′

+S or
D ′

= D +S, where D +S denotes the datasets resulted from
adding one trajectory S to the dataset D .
Laplacian Mechanism. The Laplace mechanism computes
a function f on input dataset D while satisfying ε-DP, by
adding to f (D) a random noise. The magnitude of the noise
depends on GS f , the global L1 sensitivity of f , defined as,

GS f = max
D'D ′

|| f (D)− f (D ′)||1

When f outputs a single element, such a mechanism A is
given below:

A f (D) = f (D)+L
(

GS f
ε

)

where L (β) denotes a random variable sampled from
the Laplace distribution with scale parameter β such that
Pr [L (β) = x] = 1

2β
e−|x|/β.

When f outputs a vector, A adds independent samples of
L (GS f /ε) to each element of the vector. The variance of each
such sample is 2GS2

f /ε2.

2.4 Composition Properties of DP
The following composition properties are commonly used
for building complex differentially private algorithms from
simpler subroutines.
Sequential Composition. Combining multiple subroutines
that satisfy DP for ε1, · · · ,εk results in a mechanism that sat-
isfies ε-DP for ε = ∑i εi.
Post-processing. Given an ε-DP algorithm A , releasing
g(A(D)) for any g still satisfies ε-DP. That is, post-processing
an output of a differentially private algorithm does not incur
any additional privacy concerns.

3 Existing Solutions
Before diving into the descriptions of existing methods that
use Markov chain model to generate synthetic trajectories,
we first present a general recipe that we observe in all these
solutions.

3.1 A Framework for Markov-based Trajec-
tory Synthesis

To generate synthetic trajectories using the Markov chain
model, there are three major components: Geographical space
discretization, model learning, and trajectory generation. We
integrate all the components in a general framework:

• Discretization. The purpose of discretization is to create
discrete states for the Markov chain model. We discretize
the continuous geographical space into one or more grids
where each grid partitions the geographical space. After
discretization, each area in the grid is regarded as a state in
the Markov chain model.

• Model Learning. Given a set of geographical states and a
trajectory dataset, we need to learn some models that can
capture the transition pattern of the trajectory dataset. Here,
the model can be a Markov chain model and other informa-
tion (e.g., trip distribution) extracted from the dataset. To
train the Markov chain model, we calculate all ND needed
in Equation 1 and then add noise to achieve DP.

• Generation. After the model is learned, we can generate
the synthetic trajectory (e.g., by random walk on the model).
The trajectory generation component is a post-processing
step in the context of DP, thus does not have an additional
privacy concern.

USENIX Association 32nd USENIX Security Symposium 1651

Table 1: Summary of existing methods on different steps.

Method
Step

Discretization Model Learning Generation

AdaTrace [25] Adaptive partition First-order Markov chain model Markov sampling + auxiliary info
DPT [28] Reference system Multiple Prefix Trees Markov sampling
PrivTrace Adaptive partition First-/second-order Markov chain model Random walk

3.2 Existing Methods

Table 1 summarizes these three phases of existing work. In
what follows, we review these steps for previous studies.

AdaTrace. This method extracts the first-order Markov chain
model, trip distribution, and length features from the sensitive
dataset with DP, and then generates private trajectories accord-
ing to these features. In discretization, AdaTrace proposes to
discretize the geographical space into grids twice with two
different granularities. It first uniformly discretizes the geo-
graphical space into a coarse-grained grid. For the cells in the
first grid with a large number of trajectories passing through,
AdaTrace further discretizes them into finer-grained grids.

In model learning, AdaTrace learns a first-order Markov
chain model using the first grid. To better capture the inherent
patterns of the dataset, AdaTrace also extracts the length dis-
tribution and trip distribution (count of pairs of starting and
ending point in the trajectory). Noise is added to achieve DP.

In generation, AdaTrace first samples a starting state and
an ending state from the trip distribution, and samples a trajec-
tory length |T | from the length distribution. Then, AdaTrace
generates the trajectory from the starting state, and repeatedly
generates the next state by random walking on Markov chain
model. After |T |−1 steps, the trajectory directly jumps to the
ending state. Finally, for each generated state, AdaTrace uni-
formly samples a location point from the corresponding cell.
If the cell is further partitioned, the location point is sampled
according to the density of the second-layer grid.

DPT. In order to capture more precise information, DPT
uses multiple uniform grids with different granularities. When
discretizing trajectories, DPT will choose the most coarse-
grained grid for which there exists a transition for two consec-
utive points of the trajectory (i.e., using a more coarse-grained
grid, the two locations in the trajectory will be in the same
cell). A trajectory will be transformed into multiple segments
of transition, where transitions in the same segment are on
the same grid.

Now for each grid, DPT establishes a differentially private
prefix tree [13] to model the transitions using the transition
segments. A trajectory will be generated following the path
on the prefix tree. Note that there are also transitions to allow
a state in one prefix tree to move to another prefix tree with
different granularity.

4 Our Proposal
Both AdaTrace and DPT adopt Markov chain model to cap-
ture the transition pattern of the trajectory dataset. But they
work in two extremes: AdaTrace mostly uses the first-order
Markov chain model to reduce the amount of noise. The draw-
back is that the first-order Markov chain model only captures
a limited amount of information, and thus the result is not
accurate. On the other hand, DPT uses high-order Markov
chain model, but this leads to excessive noise being added,
and also makes the result inaccurate.

Intuitively, there is a trade-off between the amount of in-
formation we can extract and the amount of noise we have
to add due to the constraint of DP. Our insight is to work in
the middle ground between the two extremes of AdaTrace
and DPT, where we use the Markov chain model in a way
that is neither too coarse-grained nor too fine-grained. In par-
ticular, we employ the first-order and second-order Markov
chain models and select useful information in the two mod-
els for generation. To this end, we propose PrivTrace, which
achieves a good trade-off between accuracy and noise.

4.1 Method Overview
PrivTrace follows the general framework for generating syn-
thetic trajectory data described in Section 3, which consists
of three major parts: geographical space discretization, model
learning, and trajectory generation.
Step 1: Discretization. To better capture the transition in-
formation of the trajectories, we rely on the observation that
the places with more trajectories passing through should be
discretized in a finer-grained manner. To this end, we use a
density-sensitive two-layer discretization scheme. The core
idea is to first discretize the map into a coarser-grained uni-
form grid (or first-layer grid), and the cells in the first-layer
grid with many trajectories passing through are further dis-
cretized into finer-grained (second-layer) grid. The details of
this step are in Section 4.2.
Step 2: Model Learning. Our model learning step contains
two components: the Markov chain models learning and trip
distribution estimation.

Markov Chain Models Learning. We first estimate the
first-order and second-order models in a differentially pri-
vate manner. The details of this component are discussed in
Section 4.3.

Trip Distribution Estimation. We estimate the trip distribu-

1652 32nd USENIX Security Symposium USENIX Association

① Two-layer Grid Discretization

Discrete Trajectories

First-order
Markov Model

Second-order
Markov Model

Trip Distribution
Estimation Model Selection

②Model Learning

③ Trajectory Generation

A

C B

A

AB CB

A

AB B

Markov Chain Models

100 120 80 0.2

0.3

0.5 0.2 0.3

Figure 1: Method overview. PrivTrace is composed of three parts: discretization, model learning, and trajectory generation.
The discretization step first partitions the space into a coarse-grained uniform grid, and then the density of the cells with DP to
determine which cells need to be expanded. For model learning, we learn both the first-order and second-order Markov chain
models with differential privacy, and obtain the trip distribution from the two models. The trajectory generation process is a
random-walk-based algorithm to generate a synthetic trajectory. We propose a method to select from the two models during the
generation of synthetic trajectories.

tion to obtain the frequency of the starting and ending points
of the trajectories. The Markov chain model already contains
this, but it is biased due to a normalization step when training
the Markov chain model. To this end, we propose a method
to obtain an accurate estimation of the distribution estimation.
The details of this component are referred to Section 4.4.
Step 3: Generation. We use a random-walk-based method
to generate trajectories, which starts at a random state and pre-
dict the next state by using either first-order or second-order
Markov chain model. Concretely, we first sample a pair of
starting and ending states from the estimated trip distribution
and random walk with the two Markov chain models. The
details of this step are referred to Section 4.5.

Note that we use two Markov chain models to predict the
next step in the synthetic trajectory. In the prediction process,
the first-order and second-order Markov chain models have
different prediction abilities. To take advantage of both two
models, we propose two criteria to choose between them,
which will be described in Section 4.6.

4.2 Geographical Space Discretization
We borrow the idea of Qardaji et al. [40] to discretize the geo-
graphical space. In particular, we first divide the geographical
space into K×K cells (we call them the first-layer cells) of
equal size. For each cell, we further calculate the number of
trajectories that passes through this cell, and if the number is
large, we further partition it.

To estimate the occurrences of trajectories for all first-layer

cells, we use the Laplacian mechanism with parameter ε1.
Here one challenge is that the sensitivity is unbounded, since a
trajectory can have an arbitrary number of occurrences in cells.
This introduces infinite DP noise. To address this issue, we
normalize the trajectory (the normalization method introduced
in [25]) to bound the sensitivity (proved in Appendix B.1).
For example, in Figure 1, we first discretize the space into
four cells C1,C2,C3, and C4. Consider a trajectory that occurs
in C1 and C2, its total number of occurrences in all cells is 2.
After we normalize the occurrence of the trajectory in C1 and
C2 by the total occurrence, the trajectory contributes to the
trajectory occurrence in C1 and C2 by 1/2 and 1/2 instead of
1 and 1.

If a cell has many trajectories passing over it, we expand it
using a more fine-grained cell so that we can understand that
area with more details. In Figure 1, step 1, the right bottom
cell is expanded into four cells.

Difference from AdaTrace. AdaTrace [25] adopts a similar
two-layer discretization scheme as PrivTrace; however, the
use of two-layer grids is different. In AdaTrace, the cells
in the first layer are used as states for Markov chain model,
while the cells in the second layer are used for sampling in
the generation phase. On the other hand, in PrivTrace, the
cells from both the first-layer grid (if not divided again in the
second layer) and the second-layer grid are used as states. The
advantage of using cells from all layers as states is that it can
capture finer-grained transition information.

USENIX Association 32nd USENIX Security Symposium 1653

4.3 Markov Chain Models Learning
After the two-layered discretization, the whole space is split
into disjoint areas, denoted by {Ci}. To learn the Markov
chain models, we calculate the counts of each possible transi-
tion P. As our goal is to train the first-order and second-order
Markov models, we only consider P of length 2 or 3. Note that
for the purpose of sampling, there should be a virtual starting
and an ending states in the Markov models. To incorporate
this, we augment each trajectory with a start and an end state.

Similar to the case of occurrence estimation in discretiza-
tion, here the sensitivity of the transition counts is also un-
bounded (since a sequence can be long and lead to a large
change in transition counts), and we also use a length nor-
malization method to bound the sensitivity (by dividing the
counts by the length of the trajectories) to 1. Concretely, de-
noting the occurrence of transition P in the trajectory T as
NT (P), the transition count of P in the Markov chain model is
defined as the length-normalized value ∑∀T∈D

NT (P)
|T | . Using

such a definition, every trajectory contributes to the transition
count of P in the Markov chain model by NT (P)

|T | , which is at
most 1. Therefore, the change of one trajectory will change
the counts in the Markov chain model by at most 1 (see de-
tails in Appendix B.2). We then add Laplace noise to the
transition counts (we spend ε2 and ε3 for the length-2 and
length-3 transitions, respectively) and use the noisy transition
counts to build the Markov chain models.

Note that adding noise might make the transition count
negative, which makes the sampling of trajectory infeasible.
To deal with this issue, we adopt the postprocessing method
NormCut [49, 57] to handle the negative values. We refer the
readers to Appendix B.6 of [46] for the details of NormCut.

4.4 Trip Distribution Estimation
The normalization operations in Section 4.3 introduce bias
to the transition counts (intuitively, we over-count short tra-
jectories and under-count long trajectories because they have
equal weights after normalization) used in the Markov mod-
els. In this subsection, we propose a novel method to reduce
bias. The key idea is to leverage the spacial structure and the
assumption that people tend to follow the shortest path when
traveling. Therefore, for trajectories starting from location i
and ending at j, the normalization factor is the length of the
shortest path from i to j. Building on this assumption, we
estimate the distribution of trips between any pair of i and j.

Specifically, denote ti j as the number of trajectories from i

to j, such that
m
∑

i, j=1,i6= j
ti, j equals the number of trajectories in

the original dataset. From the Markov model, we know the
normalized transition counts from the virtual starting point to
any first location i, denoted by bi, and from any last location
j to the virtual ending point, denoted by q j. Moreover, we
know the shortest paths from i to j, denoted by li j. Ideally, we

have

bi '
m

∑
j=1

ti j

li j
and q j '

m

∑
i=1

ti j

li j

which captures the intuition that the number of normalized
trajectories starting from i should equal the summation (over
the ending location j) of all normalized trajectories starting
from i, and similarly for the normalized trajectories ending at
j. Now we have 2m approximate equations with m2 unknown
variables (the ti j’s). We cannot directly solve the unknowns.
Instead, we build an optimization problem to estimate approx-
imate values for them. In particular, we use existing solvers
to find ti j’s that can minimize the following quantity:

min
ti, j

m

∑
i=1

(
m

∑
j=1

ti j

li j
−bi

)2

+
m

∑
j=1

(
m

∑
i=1

ti j

li j
−q j

)2

s.t.
m
∑

i, j=1
ti, j= |D|

ti, j≥ 0, i, j = 1,2,3, . . . ,m

More details of the optimization problem are given in Ap-
pendix B.3. Given the trip distribution, next, we will then
describe how to use it in the final generation process. We
empirically show in Section 5.3 that using the trip distribution
estimated by our method can achieve better accuracy than
that of directly extracting from the original dataset, especially
when the privacy budget is small.

4.5 Trajectory Generation
Our trajectory generation algorithm relies on random walking
on the first- or second-order Markov models. The workflow
of the trajectory generation algorithm is illustrated in Algo-
rithm 1. It takes as input the first-order and second-order
Markov chain models M1 and M2, and the trip distribution
{ti j}, and works in three steps as follows:
Step 1: Initialization. We first set Tstate as an empty se-
quence of states. Then a start-end state pair (λstart , λend) is
sampled from the trip distribution {ti j}. The predicted real
end state λend will not be used in the generation process. We
estimate it mainly to make the optimization problem in Sec-
tion 4.4 more accurate. We then set λlast as the λstart and λnow
as M1(λstart) (Line 4-Line 6).
Step 2: Random Walk. We first add λnow to the end of
Tstate. Then the next state prediction is conducted. Before
predicting the next step, we select a proper model to use.
The model selection method will be explained in Section 4.6.
Concretely, if M2 is the chosen model, then the next state
λnext is M2(λnow,λlast) (Line 18). Otherwise, M1 is the cho-
sen model, λnext is M1(λnow) (Line 20). M1(λnow) represents
predicting λnext only relying on the current state λnow, and
M2(λnow,λlast)) represents predicting λnext relying on both

1654 32nd USENIX Security Symposium USENIX Association

Algorithm 1: Synthetic Trajectory Generation
Input: Noisy first-order and second-order transition

models M1 and M2, trip distribution {ti j};
Output: Synthesis trajectory Dataset Ds;

1 Set Ds as an empty set;
2 for |Ds| ≤ nsyn do
3 Step 1: Initialization
4 Set Tstate as an empty sequence of state;
5 Sample state λstart from the trip distribution {ti j};
6 λlast ← λstart ; λnow←M1(λstart) ;
7 Step 2: Random Walk
8 Add λstart to Tstate;
9 while λnow is not virtual end do

10 Tstate← Tstateλnow;
11 Step 2-1: Model Selection.
12 if Nnow,sum < θ1 or Nnow,1/Nnow,2 ≥ θ2 then
13 M1 is selected
14 else
15 M2 is selected
16 Step 2-2: Model Prediction.
17 if M2 is selected then
18 λnext ←M2(λnow,λlast);
19 else
20 λnext ←M1(λnow);
21 λlast ← λnow; λnow← λnext ;
22 Step 3: Location Point Sampling
23 Tsyn← sampling a location for every state in Tstate;

24 Ds←Ds∪{Tsyn};

the current state λnow and the previous state λlast . After ac-
quiring λnext , we set λlast as λnow. Then value of λnext is given
to λnow. The above process is repeated until λnow is the virtual
end.
Step 3: Location Point Sampling. After the random walk
process, we obtain the discrete version trajectory Tstate. It is a
state sequence. We first set the synthetic trajectory sequence
Tsyn as an empty sequence. Then we sample locations for all
states in Tstate and add all these locations into Tsyn (Line 23).
Specifically, for every state, we sample a location from the
geographical area corresponding to it uniformly. Tsyn is the
output synthetic trajectory.

4.6 Markov Chain Models Selection
Given M1 and M2, one core question in random walk is how
to choose between them in the trajectory generation process.
Without loss of generality, supposing we have already gen-
erated i states (λ1, . . . ,λi), we need to determine whether to
predict the next state λi+1 relying on the first-order model
M1(λi) or relying on the second-order model M2(λi−1,λi).
Selection Rationales. To determine which model to select,
we need to consider two important factors: One is the noise

error introduced by the Laplacian noise, and the other is the
prediction confidence of the two models. Intuitively, if the
noise has a significant impact on both models, we select the
model with less noise. Otherwise, we select the model with
higher prediction confidence.
Selection Principles. The model selection is mainly based
on the count of transitions in γ1(D). Given the current state
λi, the count of transitions from λi to any possible state is
denoted as Ni = {ND(λiλ j),∀λ j ∈ Σ}. For the sake of brevity,
we denote the largest and the second largest count value in
Ni as Ni,1 and Ni,2, and the sum of all counts as Ni,sum. We
analyze the advantages and disadvantages of M1 and M2 from
two aspects:

1. Count vs. Noise. If Ni,sum is smaller than a threshold θ1,
we use M1 as the model to predict the next step; otherwise
we will consider the next principle.

The reason for this rule is that noise has a larger impact on
the second-order model than the first-order model since the
true counts in the second-order model are always smaller
than or equal to those in the first-order model. Thus, the
first-order model has a larger signal-to-noise ratio, and will
more likely to bring better performance when the counts
are small.

2. Existence of Dominant State. If the counts are not too
small, we will compare Ni,1

Ni,2
to a threshold θ2. If Ni,1

Ni,2
≥ θ2,

we use M1 as the model to predict the next step, otherwise
we will use M2.

Here, we use the term Ni,1
Ni,2

as an indicator of whether there

is a dominant state. If Ni,1
Ni,2
≥ θ2, the state corresponds to

Ni,1 is much more likely to be chosen as the next state than
any other states in M1.

In summary, when the state count is large enough (Ni,sumθ1)
and the largest count (Ni,1) is not dominant, we prefer to
choose M2; otherwise, we prefer to choose M1.

The values of θ1 and θ2 are hyperparameters, which we
will discuss and verify in the evaluation (see Appendix F
of [46]).

4.7 Algorithm Analysis
DP Guarantee. Here we show that PrivTrace theoretically
satisfies ε-DP.

Theorem 1. PrivTrace satisfies ε-differential privacy, where
ε = ε1 + ε2 + ε3.

We refer the readers to Appendix C for the detailed proof of
Theorem 1.
Computational Complexity Analysis. Due to space limita-
tion, we refer the readers to Appendix A for the detailed time
and space complexity analysis of PrivTrace, AdaTrace, and
DPT. We also empirically evaluate the time and space con-
sumption of different methods. We also discuss the practical
time consumption in Section 6.

USENIX Association 32nd USENIX Security Symposium 1655

Table 2: Dataset Statistics.

Dataset Type Area Scale

Brinkhoff Synthetic California 30,000
Taxi Real Porto 200,000

Geolife Real Beijing 17,621

5 Evaluation
In this section, we first conduct an end-to-end experiment to il-
lustrate the superiority of PrivTrace over the state-of-the-arts.
We then conduct comprehensive ablation studies to illustrate
the effectiveness of different components of PrivTrace. Fi-
nally, we compare the utility of the synthetic trajectories with
different lengths.

5.1 Experimental Setup
Datasets. We run experiments on one synthetic and two real-
world trajectory datasets. The statistics of the datasets are
summarized in Table 2.

• Brinkhoff [9]. Brinkhoff is a popular network-based tra-
jectory generator in the field of traffic research. Given the
road network of a certain area, it can generate the trajecto-
ries residing in the roads. We use the road network data of
California bay area to generate trajectories.

• Taxi [37]. It contains more than 1.7 million trajectories
from 442 taxis in Porto, Portugal. We randomly select
200,000 trajectories to conduct our experiment.

• Geolife [58]. This dataset is collected from volunteers
recruited by Microsoft Research Asia carrying GPS devices.
It contains 17,621 trajectories, with a total distance of more
than 1.2 million kilometers and a total time of more than
48,000 hours. Most trajectories are in Beijing, China.

Metrics. We adopt four metrics to measure the similarity
between the original dataset Do and synthetic dataset Ds:
Length distribution, diameter distribution, trajectory density,
and transition pattern. Due to space limitation, we refer the
readers to Appendix B.4 for the detailed description of these
metrics.

Note that AdaTrace also uses these metrics in their experi-
ments; however, our parameter settings are different, which
might lead to inconsistent values for the AdaTrace method
with those reported in their paper. Our parameter settings aim
for more fine-grained information. For the length and diame-
ter distribution metrics, AdaTrace uses 20 bins to obtain the
distribution while we use 50 bins. For the trajectory density
metric, AdaTrace considers the query areas with a constant
radius, while we consider random radii. For the transition
pattern metric, AdaTrace uses a 6×6 uniform grid to obtain
the transition patterns, while we use a 20×20 uniform grid.

Competitors. We compare PrivTrace with DPT and
AdaTrace discussed in Section 3.2. We use their open-
sourced implementations to conduct our experiments, i.e.,
AdaTrace [26] and DPT [51]. We also use the recommended
parameters from their papers. It is worth noting that, after
carefully checking the code snippet of the length extraction
process of AdaTrace, we find that some steps do not satisfy
differential privacy. For a fair comparison, we modify the
corresponding code snippets to make them differentially pri-
vate and run the experiment using the modified code. Due to
space limitation, we refer the readers to Appendix B.5 for the
modification of the code.

Parameter Settings. PrivTrace has two groups of parame-
ters: discretization parameters K, κ in Section 4.2 and model
selection parameters θ1, θ2 in Section 4.6.

The choice of K is related to whether the trajectories are
uniformly or concentratedly distributed on the map and the
number of trajectories. A dataset with more concentratedly
distributed trajectories should have fewer first-layer cells to
reduce states which are unrelated to trajectories. Therefore,
K is set as (|D|/c)

1
2 , where c is a parameter related to the

distribution of trajectories. We set c as 5000, 1200, and 500 for
Brinkhoff, Taxi, and Geolife, respectively. The corresponding
K are 3, 13, 6. One the other hand, κ is calculated by (di×K×
pop/2×107)

1
2 , where pop is the population of the area where

the trajectories are residing in. We obtain the information of
pop from the Internet. We verify the effectiveness of the
parameter setting of K and κ in Appendix E of [46].

For θ1, the standard deviation of the noise added to the
transition counts of each state is (

√
2

ε2
) ·m, where

√
2

ε2
is the

standard deviation of Laplace noise, m is the total number of
states. Therefore, we set θ1 to (

√
2

ε2
) ·m to choose states with

transition counts comparable to noise. On the other hand, θ2
is used for choosing states with dominant transition states.
We empirically find that setting θ2 as 5 works well since
we believe when the largest transition count is 5 times the
second-largest transition count, the transition state with the
largest count dominates other transition states. We verify the
effectiveness of these parameter settings Appendix F of [46].

For AdaTrace and DPT, we use their default parameter
settings in experiments.

Implementation. We use different ε in our experiments,
ranging from 0.2 to 2.0. We set ε1 = 0.2ε,ε2 = 0.4ε, and
ε3 = 0.4ε (see Appendix G of [46] for the empirical results
of the effectiveness of this privacy budget allocation). Each
experiment is repeated 10 times with mean and standard devi-
ation reported.

We implement PrivTrace with Python 3.6 and NumPy
1.19.1. All experiments are run on an Intel E5-2680 server
with 128 GB memory and Ubuntu 20.04 LTS system.

1656 32nd USENIX Security Symposium USENIX Association

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Br
in

kh
of

f

Diameter Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.02

0.04

0.06

0.08

Length Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Trajectory Density
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Transition Pattern
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ta
xi

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

G
eo

lif
e

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0

1

2

3

4

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.8

1.0

1.2

1.4

1.6

PrivTrace AdaTrace DPT

Figure 2: End-to-end comparison of different trajectory synthesis methods. Rows and columns stand for different datasets and
different metrics respectively. In each subfig, the y-axis stands for the error of the generated trajectories, and the x-axis stands for
the privacy budget ε.

(a) Real (b) PrivTrace (c) AdaTrace (d) DPT

Figure 3: Density visualization for different trajectory synthesis methods on the Taxi dataset.

5.2 End-to-end Evaluation
In this section, we provide an end-to-end evaluation to illus-
trate the effectiveness of PrivTrace from two perspectives:
quantitative evaluation and visualization.
Quantitative Results. We first quantitatively compare
PrivTrace with the state-of-the-art methods using the met-
rics discussed in Section 5.1. Figure 2 illustrates the experi-
mental results on three datasets. In general, we observe that
PrivTrace consistently outperforms AdaTrace and DPT for
all settings.

For the length and diameter distribution, we observe that
PrivTrace reduces the JSD by more than 50% in most of the
cases. When the privacy budget is low, PrivTrace can even
achieve 1 order of magnitude performance improvement over
the state-of-the-art.

With respect to the trajectory density and transition pattern,
PrivTrace can also reduce the error by at least 50% in most
settings. We attribute this result to the benefit of the two-layer
grids in the discretization process in Section 4.2. Note that
AdaTrace also uses two-layer discretization. As discussed
in Section 4.2, the main difference is that PrivTrace treats
the second-layer cells as states while AdaTrace only uses
the second-layer grid for sampling. The experimental results
further validate that using the second-layer grid as states can
capture more transition information, leading to better-quality
synthetic trajectories.

Interestingly, comparing AdaTrace and DPT on all
datasets, we observe that AdaTrace performs better on the
Brinkhoff and Taxi datasets, while DPT performs better on
the Geolife dataset. Furthermore, we observe that the abso-

USENIX Association 32nd USENIX Security Symposium 1657

Table 3: Details of ablation studies. In the first study (Figure 4), we evaluate component (a) and considers ablation 1-3; In the
second study (Figure 5), we evaluate component (b) and considers ablation 3 and 4; In the last study (Figure 6), we evaluate
component (c) and considers ablation 4 and 5.

Ablation study Component (a) Component (b) Component (c)

Ablation1 First-order Markov model - -
Ablation2 Second-order Markov model - -
Ablation3 Adaptive model - -
Ablation4 Adaptive model Using second-layer cells as state -
Ablation5 Adaptive model Using second-layer cells as state Trip distribution estimation

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.025
0.030
0.035
0.040
0.045
0.050

Br
in

kh
of

f

Diameter Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055

Length Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

Trajectory Density
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.65
0.70
0.75
0.80
0.85

Transition Pattern
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.03
0.04
0.05
0.06
0.07
0.08

Ta
xi

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.2
0.4
0.6
0.8
1.0
1.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.60

0.65

0.70

0.75

0.80

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.10
0.15
0.20
0.25
0.30

G
eo

lif
e

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ablation1 Ablation2 Ablation3

Figure 4: Effectiveness of component (a). Ablation1 stands for the first-order model, Ablation2 stands for PrivTrace with the
second-order model, and Ablation3 stands for PrivTrace with the adaptive model. All three methods are without components (b)
and (c).

lute error values of DPT are similar for all datasets, while
AdaTrace performs extremely poorly on Geolife. After care-
fully checking the characteristics of all datasets, we find that
the trajectory is concentrated in a small area on Geolife, while
the trajectories in the other two datasets are more evenly dis-
tributed. This observation indicates that AdaTrace is not good
at handling the datasets with trajectories concentrating in a
small area on the map. This can be explained by the fact
that AdaTrace only uses the first-layer cells as states, making
most of the trajectories discretized into very short sequences
of states. Furthermore, since most of the trajectories are con-
centrated in a small number of cells, the transition patterns
of trajectories lack diversity. In this case, the Markov chain
model and the trip distribution cannot learn useful informa-
tion.

Visualization Results. To better illustrate the superiority of
our proposed method PrivTrace, we further provide a visu-
alization comparison of the trajectory density in Figure 3.
We experiment on the Taxi dataset and divide the map into
an 80× 80 uniform grid. We use heatmaps to visualize the

number of trajectories passing through each cell in the grid.
Darker cells mean there are more trajectories passing through
them. The visualization results show that the trajectories gen-
erated by PrivTrace have higher fidelity, while AdaTrace and
DPT cannot preserve the density information.

5.3 Ablation Study
There are three main components in PrivTrace: (a) the adap-
tive Markov models (b) taking the second-layer cells as states,
and (c) the trip distribution estimation. We conduct three ab-
lation studies to evaluate the effectiveness of each of them in
an incremental way, i.e., we first evaluate the effectiveness of
(a), and then with the best option for (a), we evaluate (b), and
then (c).
Effectiveness of the Adaptive Markov Models. First, we
verify the effectiveness of the adaptive model with three vari-
ants called Ablation1, Ablation2, and Ablation3, which stand
for three versions of PrivTrace differing in component (a).
Specifically, Ablation1, Ablation2, and Ablation3 use the first-
order Markov model, the second-order Markov model, and

1658 32nd USENIX Security Symposium USENIX Association

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400
0.0425

Br
in

kh
of

f

Diameter Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.015

0.020

0.025

0.030

0.035

Length Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46

Trajectory Density
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76

Transition Pattern
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

Ta
xi

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.010
0.015
0.020
0.025
0.030

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

G
eo

lif
e

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.04

0.06

0.08

0.10

0.12

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850

Ablation3 Ablation4

Figure 5: Effectiveness of taking the second layer cells as states of PrivTrace. Ablation3 stands for PrivTrace without second
layer cells, and Ablation4 stands for PrivTrace with second layer cells. Both methods assume the adaptive model in component
(a) but without component (c).

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.015

0.020

0.025

0.030

0.035

Br
in

kh
of

f

Diameter Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.010

0.015

0.020

0.025

0.030

Length Distribution
(JSD)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450

Trajectory Density
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750

Transition Pattern
(ARE)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.015
0.020
0.025
0.030
0.035
0.040
0.045

Ta
xi

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.000

0.005

0.010

0.015

0.020

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.04
0.05
0.06
0.07
0.08
0.09

G
eo

lif
e

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ε

0.66
0.68
0.70
0.72
0.74
0.76
0.78

Ablation4 Ablation5

Figure 6: Effectiveness of the trip distribution estimation of PrivTrace. Ablation1 stands for PrivTrace with adaptive model and
(b), but without (c). Ablation5 stands for PrivTrace with the adaptive model, (b), and (c).

the adaptive model, respectively. Meanwhile, all Ablation1,
Ablation2, and Ablation3 are without (b) and (c). The results
in Figure 4 show that Ablation3 outperforms the other two
algorithms, which indicates that the adaptive model is the best
choice among the three ways of using the Markov models.

Effectiveness of Second-layer States. Next, using the adap-
tive model in (a), we study the effectiveness of (b): How much
do the second-layer cells help? We have two methods, Abla-

tion3 (without the second layer, from the last experiment) and
Ablation4 (with the second layer), and the results are shown in
Figure 5. The results show that (b) is effective since Ablation4
outperforms Ablation3 for most datasets and metrics.

Effectiveness of Trip Distribution. The last evaluation is
for component (c). Similar to the last group, Ablation5 differs
from Ablation4 by considering component (c) trip distribu-
tion estimation. The results are shown in Figure 6. From the

USENIX Association 32nd USENIX Security Symposium 1659

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Le
ng

th
 s

ub
gr

ou
p

ra
tio

Brinkhoff

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Taxi

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Geolife

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

D
ia

m
et

er
 s

ub
gr

ou
p

ra
tio

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.4 0.8 1.2 1.6 2.0
ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

PrivTrace AdaTrace DPT

Figure 7: Ratio of subgroup in different generation algorithms
for different levels of ε. The lines closer to 0.5 indicates less
bias.

results, we can conclude that (c) has a contribution to the
accuracy since the performance of Ablation5 is better than
Ablation4 in general.

For better reference, we include all the ablation variants in
Table 3.

5.4 Impact on Subgroups
Georgi et al. [23] focus on the impact of DP on the subgroups,
and show that DP can affect the distribution and data utility
of subgroups (more explanations about [23] can be found
in Appendix D of [46]). Following the settings of [23], we
conduct two groups of evaluation to show the impact of DP
trajectory data generation algorithms on subgroups.
Subgroup Ratio. First, we evaluate the impact of DP on the
subgroup distribution for PrivTrace, AdaTrace, and DPT. In
trajectory data, there is no data attribute or other demographic
information such as gender that can be used in dividing sub-
groups directly. Thus, we partition the trajectory data based on
two common attributes: length and diameter. We first calcu-
late the median of the trajectory length in the original dataset,
and then partition the dataset into the long subgroup Rl>lm
and short subgroup Rl≤lm based on the median value lm (thus
50% trajectories are long and 50% are short). The diameter
subgroups are defined similarly.

We compare the ratio of the short-length subgroup and
the ratio of the short-diameter subgroup in the whole dataset
for the synthetic data generated by PrivTrace, AdaTrace, and
DPT. Figure 7 illustrates the experimental results (each ex-
periment is repeated 10 times). In general, we observe that
PrivTrace has the least bias for the ratio of the subgroup.
Subgroup Utility. Second, we evaluate the impact of
PrivTrace on the data utility of subgroups. We use the me-

0.4 0.8 1.2 1.6 2.0
ε

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Tr
aj

ec
to

ry
 D

en
si

ty
 (A

R
E)

Brinkhoff

0.4 0.8 1.2 1.6 2.0
ε

0.15
0.20
0.25
0.30
0.35
0.40

Taxi

0.4 0.8 1.2 1.6 2.0
ε

0.1

0.2

0.3

0.4

0.5
Geolife

0.4 0.8 1.2 1.6 2.0
ε

0.50

0.55

0.60

0.65

0.70

0.75

Tr
an

si
tio

n
Pa

tte
rn

 (A
R

E)

0.4 0.8 1.2 1.6 2.0
ε

0.55

0.60

0.65

0.70

0.75

0.4 0.8 1.2 1.6 2.0
ε

0.55

0.60

0.65

0.70

0.75

0.80

All data Long subgroup Short subgroup

Figure 8: Errors of the long subgroup and the short subgroup
on the trajectory density and transition pattern metric.

dian of length to divide subgroups and get four subgroups:
The long subgroup from the original dataset Rl>lm , the short
subgroup from the original dataset Rl≤lm , the long subgroup
from the synthetic dataset Sl>lm , and the short subgroup from
the original dataset Sl≤lm . We choose two metrics, i.e., the
trajectory density metric and the transition pattern metric,
to show the data utility. In Section 5.2, these two metrics
compare synthetic data with the original data. However, it
does not make sense if we compare the data in a subgroup
with the whole original data directly. Instead, we compare
the subgroup from the original data and the synthetic data
(such as Rl>lm and Sl>lm), regarding the subgroup from the
original dataset as the original data. For a fair comparison, we
sample the larger subgroup before comparison to make the
two subgroups equal in size.

We conduct the experiments on two metrics and the con-
clusions for other metrics are consistent. The experimental
results in Figure 8 show that the utility of the long subgroup
is worse than that of the short subgroup. We suspect this is
due to the fact that long trajectories are more complicated
and thus are more challenging to generate correctly. The un-
balanced utility between different subgroups is a limitation
of PrivTrace, as well as the limitation of AdaTrace and DPT
(we defer the corresponding results to Appendix D of [46]
due to space limitation).

It is worth noting that our evaluations are only for the utility
of subgroups, while the privacy-protection level is the same
since all subgroups have the same privacy guarantee provided
by DP.

6 Discussion
Time Consumption. Theoretical analysis (Table 4 in Ap-
pendix A) shows that the time complexity of PrivTrace is

1660 32nd USENIX Security Symposium USENIX Association

O(m|D|+ m3), which is larger than AdaTrace (O(m|D|+
m2)). This is a limitation of PrivTrace when m is extremely
large. However, our empirical experiments show that the time
consumption of PrivTrace on real-world trajectory datasets
is acceptable, e.g., less than 10 minutes (see Table 5 in Ap-
pendix A for more details).
Practical Implementation. With PrivTrace (or other mod-
els), we can ensure the trajectories published/shared are pro-
tected by differential privacy. It is possible that given such
a system, the data-miner/advertiser may make more predic-
tions. This is not a limitation of the technique; instead, it is a
consequence of users being attracted to share more data.

7 Related Work
Location Density Estimation. There are a number of previ-
ous studies focusing on estimating the density distribution of a
location dataset while satisfying DP. Most approaches rely on
recursive partitioning, which recursively performs binary par-
titioning on the map. Xiao et al. [52] propose to use KD-tree,
which recursively partitions the map along some dimensions.
In order to minimize the non-uniformity error, the authors use
the heuristic to choose the partition point such that the two
sub-regions are as close to uniform as possible. To improve
the estimation accuracy, Cormode et al. [16] propose several
alternatives based on KD-trees. Instead of using a uniformity
heuristic, they partition the nodes along the median of the
partition dimension. The height of the tree is predetermined,
and the privacy budget is divided among the levels. The key
challenge of the recursive partitioning-based approaches lies
in choosing the right partition granularity to balance the noise
error and the non-uniformity error. To address this issue, Qar-
daji et al. [40] propose a uniform-grid approach, which applies
an equal-width grid of a certain size over the data domain and
then issues independent count queries on the grid cells.
Trajectory Data Publication. Several studies have been
done on finishing certain tasks using trajectory data or publish-
ing trajectory data via perturbing locations. Chen et al. [13]
propose to use differentially private prefix tree to publish tran-
sition data. They established a method to generate transition
data using a differentially private prefix tree. They evaluated
its mechanism by studying the impact of its protection on
range query and sequential pattern mining. Acs et al. [3]
propose a mechanism to publish spatio-temporal trajectory
density data, which is counts of active users within small areas
for given time windows. Jiang et al. [30] propose to protect
ships’ trajectories by location perturbing. They preserve the
endpoints of trajectories while the intermediate locations are
altered by adding some noise satisfying differential privacy
guarantees. Also, there are some recent works focusing on
generating synthetic trajectory data following other privacy
requirements instead of different privacy. One of the most
famous works is SGLT [7]. SGLT uses plausible deniability
as the privacy requirement. It captures both geographic and

semantic features of real traces and uses the real traces are
seeds to generate synthetic trajectories.

Our paper focuses on a more general paradigm that pub-
lishes a synthetic trajectory dataset while satisfying DP.
Differentially Private Tabular Data Synthesis. For the
general tabular data, there exists a number of studies follow-
ing the same paradigm of our paper, i.e., generating tabular
data while satisfying DP. They can be broadly classified into
three categories: graphical model-based methods, game-based
methods, and deep generative model-based methods.

The graphical model-based methods aim to estimate a
graphical model that approximates the distribution of the orig-
inal dataset in a differentially private manner and generate syn-
thetic data by sampling from it. For instance, PrivBayes [54]
and BSG [8] adopt Bayesian network to approximate the data
distribution, while PGM [36] and JTree [14] use Markov ran-
dom field to approximate the data distribution. PrivSyn [57]
utilizes a number of marginal tables to capture as much as
correlated information in the dataset, which can be regarded
as a dense graphical model. The core idea of game-based
methods is to formulate the dataset synthesis problem as a
zero-sum game [21, 27, 45]. Assume there are two players, a
data player and a query player. MWEM [27] method solves
the game by having the data player use a no-regret learn-
ing algorithm, and the query player repeatedly best responds.
Dual Query [21] switches the role of the two players. The
deep generative model-based approaches rely on the DP-SGD
framework [1] (adding noise in the optimization procedure) to
train a generative model, and use this deep generative model
to generate a synthetic dataset. The most commonly used
deep generative model is the Generative Adversarial Network
(GAN) [2, 6, 20, 43, 55].

8 Conclusion
In this paper, we propose a differentially private algorithm
to generate trajectory data. By employing the first-order and
second-order Markov chain models, we achieve a middle
ground between richness of information and amount of noise.
Besides, we propose an optimization-based method to esti-
mate the trip distribution, which is important information for
generating synthetic trajectory data. Extensive experiments on
real-world and generated datasets are conducted to illustrate
the superiority over the current state of the art.

Acknowledgments
We thank the anonymous shepherd and reviewers for their
constructive feedback. This work is supported by “New Gen-
eration Artificial Intelligence” major project of China under
Grant 2018AAA0101605, National Natural Science Founda-
tion of China (NSFC) under grant NO.61833015, NSF CNS-
2220433, CNS-2213700, CCF-2217071, and the Helmholtz
Association within the project “Trustworthy Federated Data
Analytics” (TFDA) (funding number ZT-I-OO1 4).

USENIX Association 32nd USENIX Security Symposium 1661

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep Learning with Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[2] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thu-
raisingham, and Latanya Sweeney. Privacy Preserving Synthetic Data
Release Using Deep Learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 510–
526. Springer, 2018.

[3] Gergely Acs and Claude Castelluccia. A Case Study: Privacy Preserv-
ing Release of Spatio-temporal Density in Paris. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1679–1688, 2014.

[4] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal
Data Mining: a Survey of Problems and Methods. ACM Computing
Surveys (CSUR), 51(4):1–41, 2018.

[5] Faisal I Bashir, Ashfaq A Khokhar, and Dan Schonfeld. Object
Trajectory-based Activity Classification and Recognition Using Hidden
Markov Models. IEEE transactions on Image Processing, 16(7):1912–
1919, 2007.

[6] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran
Lee, Sanjeev P Bhavnani, James Brian Byrd, and Casey S Greene.
Privacy-preserving Generative Deep Neural Networks Support Clinical
Data Sharing. Circulation: Cardiovascular Quality and Outcomes,
12(7):e005122, 2019.

[7] Vincent Bindschaedler and Reza Shokri. Synthesizing Plausible
Privacy-preserving Location Traces. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 546–563. IEEE, 2016.

[8] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. Plausible
Deniability for Privacy-Preserving Data Synthesis. Proceedings of the
VLDB Endowment, 10(5), 2017.

[9] Thomas Brinkhoff. A Framework for Generating Network-based Mov-
ing Objects. GeoInformatica, 6(2):153–180, 2002.

[10] United States Census Bureau. https://www.census.gov/
programs-surveys/decennial-census/decade/2020/
planning-management/process/disclosure-avoidance/
differential-privacy.html.

[11] Shan Chang, Chao Li, Hongzi Zhu, Ting Lu, and Qiang Li. Revealing
Privacy Vulnerabilities of Anonymous Trajectories. IEEE Transactions
on Vehicular Technology, 67(12):12061–12071, 2018.

[12] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias
Humbert, and Yang Zhang. When Machine Unlearning Jeopardize
Privacy. In ACM CCS, 2021.

[13] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially Private
Sequential Data Publication Via Variable-length N-grams. In Proceed-
ings of the 2012 ACM conference on Computer and communications
security, pages 638–649, 2012.

[14] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. Differentially Pri-
vate High-dimensional Data Publication via Sampling-based Inference.
In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 129–138, 2015.

[15] Yihang Cheng, Yuanyuan Qiao, and Jie Yang. An Improved Markov
Method for Prediction of User Mobility. In 2016 12th International
Conference on Network and Service Management (CNSM), pages 394–
399. IEEE, 2016.

[16] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen,
and Ting Yu. Differentially Private Spatial Decompositions. In 2012

IEEE 28th International Conference on Data Engineering, pages 20–31.
IEEE, 2012.

[17] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling
Ji, Peng Cheng, and Jiming Chen. AHEAD: Adaptive Hierarchical
Decomposition for Range Query under Local Differential Privacy. In
ACM CCS, 2021.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating Noise to Sensitivity in Private data Analysis. In Theory of
cryptography conference, pages 265–284. Springer, 2006.

[19] Shai Fine, Yoram Singer, and Naftali Tishby. The Hierarchical Hid-
den Markov Model: Analysis and Applications. Machine learning,
32(1):41–62, 1998.

[20] Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and
Patrick Duverger. Differentially Private Generative Adversarial Net-
works for Time Series, Continuous, and Discrete Open Data. In IFIP
International Conference on ICT Systems Security and Privacy Protec-
tion, pages 151–164. Springer, 2019.

[21] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth,
and Zhiwei Steven Wu. Dual Query: Practical Private Query Release
for High Dimensional Data. In International Conference on Machine
Learning, pages 1170–1178. PMLR, 2014.

[22] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del
Prado Cortez. Next Place Prediction Using Mobility Markov Chains.
In Proceedings of the first workshop on measurement, privacy, and
mobility, pages 1–6, 2012.

[23] Georgi Ganev, Bristena Oprisanu, and Emiliano De Cristofaro. Robin
Hood and Matthew Effects–Differential Privacy Has Disparate Impact
on Synthetic Data. arXiv preprint arXiv:2109.11429, 2021.

[24] Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muham-
mad Tayyab Asif, Ali Oran, and Patrick Jaillet. Online Map-matching
Based on Hidden Markov Model for Real-time Traffic Sensing Appli-
cations. In 2012 15th International IEEE Conference on Intelligent
Transportation Systems, pages 776–781. IEEE, 2012.

[25] Mehmet Emre Gursoy, Ling Liu, Stacey Truex, Lei Yu, and Wenqi Wei.
Utility-aware Synthesis of Differentially Private and Attack-resilient
Location Traces. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 196–211, 2018.

[26] Mehmet Emre Gursoy, Ling Liu, Stacey Truex, Lei Yu, and Wenqi
Wei. Adatrace-Github. https://github.com/git-disl/AdaTrace,
2019.

[27] Moritz Hardt, Katrina Ligett, and Frank McSherry. A Simple and Prac-
tical Algorithm for Differentially Private Data Release. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems-Volume 2, pages 2339–2347, 2012.

[28] Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia M Pro-
copiuc, and Divesh Srivastava. DPT: Differentially Private Trajectory
Synthesis using Hierarchical Reference Systems. Proceedings of the
VLDB Endowment, 8(11):1154–1165, 2015.

[29] Tomoharu Iwata and Hitoshi Shimizu. Neural Collective Graphical
Models for Estimating Spatio-temporal Population Flow from Aggre-
gated Data. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3935–3942, 2019.

[30] Kaifeng Jiang, Dongxu Shao, Stéphane Bressan, Thomas Kister, and
Kian-Lee Tan. Publishing Trajectories with Differential Privacy Guar-
antees. In Proceedings of the 25th International Conference on Scien-
tific and Statistical Database Management, pages 1–12, 2013.

[31] Biing Hwang Juang and Laurence R Rabiner. Hidden Markov Models
for Speech Recognition. Technometrics, 33(3):251–272, 1991.

1662 32nd USENIX Security Symposium USENIX Association

https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/differential-privacy.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/differential-privacy.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/differential-privacy.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/differential-privacy.html
https://github.com/git-disl/AdaTrace

[32] Mostafa Karimzadeh, Zhongliang Zhao, Florian Gerber, and Torsten
Braun. Pedestrians Complex Behavior Understanding and Prediction
with Hybrid Markov Chain. In 2018 14th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), pages 200–207. IEEE, 2018.

[33] Meng Li, Liehuang Zhu, Zijian Zhang, and Rixin Xu. Achieving
Differential Privacy of Trajectory Data Publishing in Participatory
Sensing. Information Sciences, 400:1–13, 2017.

[34] Jianhua Lin. Divergence Measures Based on the Shannon Entropy.
IEEE Transactions on Information theory, 37(1):145–151, 1991.

[35] Qiujian Lv, Yuanyuan Qiao, Nirwan Ansari, Jun Liu, and Jie Yang. Big
Data Driven Hidden Markov Model Based Individual Mobility Predic-
tion at Points of Interest. IEEE Transactions on Vehicular Technology,
66(6):5204–5216, 2016.

[36] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-
model Based Estimation and Inference for Differential Privacy. In
International Conference on Machine Learning, pages 4435–4444.
PMLR, 2019.

[37] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-
Moreira, and Luis Damas. Predicting Taxi–passenger Demand Us-
ing Streaming Data. IEEE Transactions on Intelligent Transportation
Systems, 14(3):1393–1402, 2013.

[38] Sudha Morwal, Nusrat Jahan, and Deepti Chopra. Named Entity Recog-
nition Using Hidden Markov Model (HMM). International Journal on
Natural Language Computing (IJNLC), 1(4):15–23, 2012.

[39] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro.
Knock Knock, Who’s There? Membership Inference on Aggregate
Location Data. arXiv preprint arXiv:1708.06145, 2017.

[40] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Differentially Private
Grids for Geospatial Data. In 2013 IEEE 29th international conference
on data engineering (ICDE), pages 757–768. IEEE, 2013.

[41] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating Next-
cell Predictors with Extensive Wi-Fi Mobility Data. IEEE transactions
on mobile computing, 5(12):1633–1649, 2006.

[42] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Syn-
thetic Data–Anonymisation Groundhog Day. arXiv preprint
arXiv:2011.07018, 2021.

[43] Uthaipon Tantipongpipat, Chris Waites, Digvijay Boob, Amaresh Ankit
Siva, and Rachel Cummings. Differentially Private Mixed-type
Data Generation for Unsupervised Learning. arXiv preprint
arXiv:1912.03250, 2019.

[44] Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi
Yamagishi, and Keiichiro Oura. Speech Synthesis Based on Hidden
Markov Models. Proceedings of the IEEE, 101(5):1234–1252, 2013.

[45] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven
Wu. New Oracle-efficient Algorithms for Private Synthetic Data Re-
lease. In International Conference on Machine Learning, pages 9765–
9774. PMLR, 2020.

[46] Haiming Wang, Zhikun Zhang, Tianhao Wang, Shibo He, Michael
Backes, Jiming Chen, and Yang Zhang. PrivTrace: Differentially Pri-
vate Trajectory Synthesis by Adaptive Markov Model. arXiv preprint
arXiv:2210.00581, 2022.

[47] Senzhang Wang, Jiannong Cao, and Philip Yu. Deep Learning for
Spatio-temporal Data Mining: a Survey. IEEE transactions on knowl-
edge and data engineering, 2020.

[48] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yue-
qiang Cheng, Zhou Li, Ninghui Li, and Somesh Jha. Continuous Re-
lease of Data Streams under both Centralized and Local Differential
Privacy. In ACM CCS, 2021.

[49] Tianhao Wang, Milan Lopuhaa-Zwakenberg, Zitao Li, Boris Skoric,
and Ninghui Li. Locally Differentially Private Frequency Estimation
with Consistency. In NDSS’20: Proceedings of the NDSS Symposium,
2020.

[50] Jianhao Wei, Yaping Lin, Xin Yao, and Voundi Koe Arthur Sandor.
Differential Privacy-based Trajectory Community Recommendation
in Social Network. Journal of Parallel and Distributed Computing,
133:136–148, 2019.

[51] H. Xi and M. Ashwin. Differentially Private Trajectory Synthe-
sis. https://users.cs.duke.edu/~hexi88/project_dpt/index.
html, 2015.

[52] Yonghui Xiao, Li Xiong, and Chun Yuan. Differentially Private Data
Release Through Multidimensional Partitioning. In Workshop on Se-
cure Data Management, pages 150–168. Springer, 2010.

[53] Changqiao Xu, Liang Zhu, Yang Liu, Jianfen Guan, and Shui Yu. Dp-
ltod: Differential Privacy Latent Trajectory Community Discovering
Services over Location-based Social Networks. IEEE Transactions on
Services Computing, 2018.

[54] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava,
and Xiaokui Xiao. Privbayes: Private Data Release Via Bayesian
Networks. ACM Transactions on Database Systems (TODS), 42(4):1–
41, 2017.

[55] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially Private
Releasing Via Deep Generative Model (technical report). arXiv preprint
arXiv:1801.01594, 2018.

[56] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen.
CALM: Consistent Adaptive Local Marginal for Marginal Release
under Local Differential Privacy. In ACM CCS, 2018.

[57] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael
Backes, Shibo He, Jiming Chen, and Yang Zhang. PrivSyn: Differen-
tially Private Data Synthesis. USENIX Security, 2022.

[58] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining In-
teresting Locations and Travel Sequences from Gps Trajectories. In
Proceedings of the 18th international conference on World wide web,
pages 791–800, 2009.

A Computational Complexity Analysis
In this section, we theoretically analyze the computational
complexity of different methods and then empirically evaluate
their running time and memory consumption.

Here we assume a method discretizes the space into mi
cells in the i-th layer and the total number of cells m = ∑mi.
We also assume that the average length of the trajectory is a
constant.
Time Complexity. The time complexity of PrivTrace can
be analyzed by studying every step of the algorithm. In the
discretization step, PrivTrace discretizes the geographical
space into m cells and translates trajectories from location
sequences to state sequences (i.e., find the cells where a
trajectory has passed for all the trajectories). To find if a
trajectory passes a certain cell takes O(m|D|). The process
of calculating a Markov chain model requires counting the
transitions in every trajectory. Thus, the time complexity of
calculating Markov chain models is O(|D|). The trip dis-
tribution estimation is composed of calculating the shortest
path and solving the convex optimization problem. The time

USENIX Association 32nd USENIX Security Symposium 1663

https://users.cs.duke.edu/~hexi88/project_dpt/index.html
https://users.cs.duke.edu/~hexi88/project_dpt/index.html

Table 4: Comparison of computational complexity for differ-
ent methods.

Methods Time Complexity Space Complexity

AdaTrace [25] O(m|D|+m2) O(m2
1)

DPT [28] O(mg|D|+mh
g) O(mh

g)

PrivTrace O(m|D|+m3) O(m3)

complexities of them are O(m2 ln(m)) using the Dijkstra’s
algorithm and O(m2), respectively. The time complexity of
generating and adding noise for the first-order and second-
order models are O(m2) and O(m3). Finally, generating a
trajectory depends on the transition count distributions in the
Markov chain models, which has time complexity is O(|D|).
Putting all steps together, the time complexity of PrivTrace is
O(m|D|)+O(|D|+m2 ln(m))+O(|D|)+O(m2)+O(m3)=
O(m|D|+m3).

The analysis for AdaTrace is similar to PrivTrace: The
time complexity of discretization is O(m|D|). The time com-
plexity for learning the Markov chain model and estimating
trip distribution are both O(|D|) since it involves scanning all
trajectories. In the length distribution calculating, AdaTrace
scans all trajectories and then chooses a proper distribution for
all possible trips. The time complexity of length distribution
calculating is O(|D|+m2). In the steps above, the Laplacian
noise is added to cell density, the first-order Markov model,
and trip counts, respectively. The time complexity of Lapla-
cian noise adding in AdaTrace is O(m)+O(m2)+O(m2) =
O(m2). As the last step, the random walk process takes
O(m|D|) to generate synthetic trajectories. The total time
complexity of AdaTrace is O(m|D|+m2).

For DPT, the discretization step uses several grids with
different granularities (which are called hierarchical reference
systems) to discretize the geographical space. In DPT, when
the granularity of the division becomes finer, the number of
states increases exponentially. We denote g as the number
of different granularities and mg as the number of states in
the most fine-grained grid. The time complexity of discretiza-
tion step is O(mg|D|). In the prefix tree-building step, the
algorithm takes O(|D|) for scanning all trajectories. After the
prefix trees-building, the Laplacian noise will be injected to
every node of the trees. The noise adding takes time complex-
ity as O(mh

g), where h is the height of the tree with the most
fine-grained grid. In the data generation process, DPT em-
ploys random walk on prefix tree and takes O(|D|). The total
time complexity is O(mg|D|)+O(mh

g) = O(mg|D|+mh
g).

Space Complexity. The memory consumption of all methods
mainly comes from the model building process. PrivTrace
uses the first-order Markov chain model and the second-order
Markov chain model in model building. The space complexity
of PrivTrace is O(m3).

AdaTrace stores the first-order Markov chain model, trip
distribution, and length distribution in memory. For the first-

Table 5: Comparison of running time for different methods.

Datasets Brinkhoff Taxi Geolife

AdaTrace [25] 2 min 30 s 4 min 44 s 1 min 45 s
DPT [28] 18 min 47 s 43 min 51 s 34 min 27 s
PrivTrace 6 min 21 s 8 min 33 s 7 min 24 s

Table 6: Comparison of memory consumption of different
methods. The unit is Megabytes.

Datasets Brinkhoff Taxi Geolife

AdaTrace [25] 0.05 0.04 0.53
DPT [28] 1003.77 111.22 1755.23
PrivTrace 12.96 63.30 193.75

order Markov chain model, there are m2
1 transition count val-

ues to be stored. For trip distribution and length distribution,
information for all possible trips is stored and takes O(m2

1)
space. The space complexity for AdaTrace is O(m2

1).

DPT stores prefix trees in memory. The number of nodes
in the tree of the most fine-grained grid is mg. The memory
consumption of this tree is O(mh

g), where h is the height of
this tree. Since the most fine-grained tree consumes the most
memory, the space complexity of DPT is O(mh

g). Both the
time and space complexity of different algorithms are shown
in Table 4.

Empirical Evaluation. Table 5 and Table 6 illustrate the
running time and memory consumption for all methods on
the three datasets. The empirical running time in Table 5
shows that AdaTrace has the best running time performance.
This is because AdaTrace has relatively low time complexity
as shown in Table 4. PrivTrace is slower than AdaTrace since
it contains a graph-based method and convex optimization in
the trip distribution estimation. For memory consumption in
Table 6, we observe that DPT consumes the most memory
since storing the reference system is space-consuming.

B More Details

B.1 Details of Normalization in Section 4.2
Denote the number of occurrences of trajectory Si in cell
j as δi j, we can represent the trajectory density as a vector
(∑i δi1,∑i δi2, . . .∑i δiK2). The sensitivity of the trajectory den-
sity is the impact of one trajectory on this vector, which is
unbounded since one trajectory could appear in any number
of cells. To bound the sensitivity, we propose to use the length-
normalized density, which is defined by δ

′
i j = δi j/∑ j δi j in-

stead of δi j. Denote the length-normalized density query vec-
tor (∑i δ

′
i1,∑i δ

′
i2, . . .∑i δ

′

iK2) as η(D), we can see

1664 32nd USENIX Security Symposium USENIX Association

GSη = max
Sk∈D
||η(D)−η(D−Sk)||1

= max
Sk∈D
||(δ′k1,δ

′
k2, . . . ,δ

′

kK2)||1

= max
∀Sk∈D

|
K2

∑
j=1

δk j/
N2

∑
j=1

δk j|= 1

B.2 Details of Bounding Sensitivity in Sec-
tion 4.3

In Markov chain model, denote σi as a state corresponding
to Ci, and any trajectory is transformed into a state sequence.
For example, if a trajectory S passes through the following
cells in order: C2,C3,C7, the state sequence it is transformed
into is (σ2,σ3,σ7).

We denote the length-normalized count for transition P
as N

′
D(P) = ∑∀T∈D

NT (P)
|T | , where NT (P) means the appear-

ance of P in trajectory T . And the set of length-normalized
transition counts is defined as γk(D) = {N ′D(P),∀P ∈ Σk+1}.
Applying the length-normalization technique, the kth-order
Markov chain model can be built easily by calculating γk.

Here the core idea of bounding sensitivity is to divide the
transition count by the length of the trajectory. By doing this,
the sensitivity of the Markov chain model counting query can
be bounded by 1.

Theorem 2. Define N
′
D(r) = ∑∀T∈D

NT (r)
|T | where r is any

length-k+1 sequence, the sensitivity of outputing all N
′
D(r),

denoted by γk(D) = {N ′D(r),∀r ∈ Σk+1}, is 1.

The theorem can be proved by first showing that a single
sequence T ’s contribution γk is limited by |T |. The following
lemma tells us that ∑r∈Σl NT (r) cannot be larger than |T |.

Lemma 3. Given a set of all possible subsequences of length
l, denoted by Σl , and a sequence T , ∑r∈Σl NT (r)≤ |T |, where
|T | is the length of sequence T .

Proof. The calculating of ∑
r∈Σl

NT (r) is to count all subse-

quences of length l in T . Considering the sequence can only
have no more than |T | continuous subsequences of the same
length, ∑

r∈Σl
NT (r)≤ |T |.

With that, we can prove Theorem 2:

Proof. We denote a dateset of sequences as D . The sensitivity
of γk is max∀T ′∈D γk(D)−γk(D−T

′
). We give an order to all

transitions P of length k+1 and γk is represented as a vector
following the order of transitions. For a transition Pi, the
ith element of γk(D)− γk(D−T

′
) is N

′
D(Pi)−N

′

D−T ′
(Pi) =

N
′

T ′
(Pi). Thus, the sensitivity is,

GS
γk = γ

k(D)− γ
k(D−T

′
)

= max
∀T ′∈D

||(N ′
T ′
(P1)), . . . ,(N

′

T ′
(Pmk+1))||1

= max
∀T ′∈D

|∑
Pi

N
′

T ′
(r)|

= max
∀T ′∈D

∑
Pi

NT ′ (r)
|T ′ |

According to Lemma 3, ∑
r∈Σl

Nr(T)≤ |T |, GSN′ ≤ 1

B.3 Details of Trip Distribution Estimation in
Section 4.4

Calculation for bi. Considering the sets of states
σ1, . . . ,σm, by calculating γ1 we will get N

′
D((σstart ,σi)) and

N
′
D((σ j,σend)) for all σi and σ j. For presentation purpose,

we denote N
′
D((σstart ,λi)) and N

′
D((λ j,σend)) as b

′
i and q

′
j,

respectively. b
′
i and q

′
j are values of bi and q j before adding

Laplacian noise. Relation between φi j and bi can be built
through b

′
i.

Without loss of generality, we first analyze the calculation
of b

′
i (q

′
j can be calculated in a similar way). We denote the

set of all trajectories starting at σi and ending at σ j by φi j.
|φi j |

∑T∈φi j 1/|T | is the harmony average of the sequence length

of trajectory in φi j. With the assumption that people tend to
travel the shortest path, we have li j is very close to the har-
mony average length. In later calculation, we use li j as the
harmony average length. Here we provide how we compute
the relation b

′
i = ∑ j

ti j
li j

: b
′
i is the length-normalized transition

count of transition Ps
i = (σstart ,σi), which is calculated by

b
′
i = N

′
D(Ps

i) = ∑∀T∈D
NT (Ps

i)
|T | = ∑ j ∑i ∑∀T∈φi j

NT (Ps
i)

|T | . Consid-
ering that every trajectory can only belongs to one φ, we can
divide D into two sets:φi j and D−φi j. By this division, we

have b
′
i = ∑ j ∑∀T∈φi j

NT (Ps
i)

|T | +∑ j ∑v6=i ∑∀T∈φv j

NT (Ps
i)

|T | . It can
be concluded that NT (Ps

i) = 1 if T starts at σi and NT (Ps
i) = 0

otherwise, since a trajectory only has one start state. Thus, for
T in φi j, NT (Ps

i)= 1. By the definition of the harmony average
and replacing |φi j| by ti j , we have ∑∀T∈φi j

1
|T | =

ti j
li j

. Replac-

ing ∑∀T∈φi j
1
|T | by ti j

li j
, we have b

′
i =∑ j ∑∀T∈φi j

1
|T |+0=∑ j

ti j
li j

.

Since b is b
′

together with the Laplacian noise, we have

bi '
m
∑
j=1

ti j
li j

.

Estimating li j. Observing that the shortest length trajectory
is similar to the minimum-weight shortest path in a graph, we
design a graph-based method to estimate li j. We construct a
graph whose nodes are states in the Markov chain model. An
edge exists between two nodes if the two cells corresponding
to the two states are neighbors. The weight of an edge is the

USENIX Association 32nd USENIX Security Symposium 1665

geographical distance between the two cells. Then, we use
the minimum-weight shortest path algorithm to calculate li j.

B.4 Details of Evaluation Metrics in Sec-
tion 5.1

• Length Distribution. The length of a trajectory measures
the summation of distances between all two adjacent points.
We bucketize the length into 50 bins and count the number
of trajectories falling into each bin to calculate the length
distribution. We use the Jensen-Shannon divergence (JSD)
to measure the error between Ds and Do.

• Diameter Distribution. The diameter indicates the maxi-
mum distance between any two points in a trajectory. Sim-
ilar to the length distribution, we bucketize the diameter
into 50 bins to obtain the diameter distribution and use JSD
to measure the error.

• Trajectory Density. It measures the number of trajecto-
ries passing through a specific area. We first generate 500
random circle areas with random radius in the map, and
count the number of trajectories passing through each area.
We use the average relative error (ARE) to measure the

error. Denote the set of density queries as Q, the ARE of
all queries is calculated as:

ARET D =
1
|Q|∑i

|Qi(Do)−Qi(Ds)|
max(Qi(Do),ϕ)

where |Q| is the cardinality of Q, ϕ is a factor to bound the
impact of a query of small real value.

• Transition Pattern. It captures the frequency of transiting
from one place to another. We use a 20×20 uniform grid to
discretize the geographical space and count the frequencies
of all transition patterns. In most downstream tasks, only
frequent patterns are considered. We use the ARE of the
top µ frequent patterns to measure the error. The ARE of
the top-µ frequent transition patterns P is calculated as:

ARET P =
1
µ ∑

P∈Ptop

|NP(Do)−NP(Ds)|
max(NP(Do),ϕ)

Here NP means the number of pattern P’s occurrences and
Ptop means the set of the top-µ frequent transition patterns.
In our experiments, we only consider the transition pat-
terns with length between 2 to 5, i.e., the transition patterns
whose number of states is between 2 to 5. Then we rank
these counts and find the top-µ transition patterns since
users usually focus on the frequent patterns. In the experi-
ments, we set µ as 200.

B.5 Details of Competitors in Section 5.1
The AdaTrace code1 chooses between three candidate distri-
butions by comparing the candidate distributions with distribu-
tion in the original dataset without adding noise (in LengthDis-
tribution.java, Line 133 to Line 135). Meanwhile, AdaTrace
1https://github.com/git-disl/AdaTrace

extract mean and median from original dataset using the same
privacy budget (in LengthDistribution.java, line 81 and 86).
For a fair comparison, we fix this problem and report the re-
sults of the fixed version of AdaTrace. That is, we divide the
privacy budget for length distribution extraction in AdaTrace
into three parts equally. The process of extracting mean and
median and choosing a distribution from the candidate con-
sumes one part, respectively.

C Detailed Proof of PrivTrace’s DP Guarantee
Proof. PrivTrace consists of four components: Geographi-
cal space discretization, Markov chain models learning, trip
distribution estimation, and trajectories generation. In the fol-
lowing, we check the privacy budget consumption of each
component.

• Geographical Space Discretization. We first count the
occurrences of trajectories passing through the cells in the
coarse-grained grid. We then add Laplacian noise to the
counts in those cells. To control sensitivity, we normalize
the trajectories so that each trajectory contributes at most
1 to the counts (the sensitivity is bounded to 1, see Ap-
pendix B.1), and the privacy budget consumed is ε1. We
further partition dense cells (cells whose noisy counts are
above a threshold) by a more fine-grained grid, but that step,
by the postprocessing property of DP (see Section 4.2), con-
sumes no privacy budget.

• Markov Chain Models Learning. PrivTrace estimates
the count of state transition to build the first- and the second-
order Markov models (the states of the Markov models are
the cells from the previous step). Similar to the previous
step, we normalize the trajectory so that sensitivity is 1
(refer to Appendix B.2), and then add Laplace noise. The
privacy budget consumed for the first- and the second-order
Markov models are ε2 and ε3, respectively.

• Trip Distribution Estimation. PrivTrace constructs an
optimization problem to estimate the trip distribution. The
data used in the optimization problem is gathered in the dif-
ferentially private Markov models; thus the trip distribution
estimation is a postprocessing operation, and no privacy
budget is consumed.

• Trajectories Generation Trajectory generation uses data
estimated in the previous components; it is also a post-
processing operation. Concretely, the information that we
use to choose between the first- and second-order Markov
models for next step prediction is the noisy counts in the
first-order Markov model; thus, mixing the two Markov
models for prediction is a postprocessing operation and
does not consume extra privacy budget.

By the sequential composition property of DP as discussed
in Section 2.4, PrivTrace satisfies ε-DP, where ε = ε1 + ε2 +
ε3.

1666 32nd USENIX Security Symposium USENIX Association

https://github.com/git-disl/AdaTrace

	Introduction
	Preliminaries
	Problem Definition
	Markov Chain Model
	Differential Privacy
	Composition Properties of DP

	Existing Solutions
	A Framework for Markov-based Trajectory Synthesis
	Existing Methods

	Our Proposal
	Method Overview
	Geographical Space Discretization
	Markov Chain Models Learning
	Trip Distribution Estimation
	Trajectory Generation
	Markov Chain Models Selection
	Algorithm Analysis

	Evaluation
	Experimental Setup
	End-to-end Evaluation
	Ablation Study
	Impact on Subgroups

	Discussion
	Related Work
	Conclusion
	Computational Complexity Analysis
	More Details
	Details of Normalization in Section 4.2
	Details of Bounding Sensitivity in Section 4.3
	Details of Trip Distribution Estimation in Section 4.4
	Details of Evaluation Metrics in Section 5.1
	Details of Competitors in Section 5.1

	Detailed Proof of PrivTrace's DP Guarantee

