
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

No Single Silver Bullet: Measuring the Accuracy
of Password Strength Meters

Ding Wang, Xuan Shan, and Qiying Dong, Nankai University;
Yaosheng Shen, Peking University; Chunfu Jia, Nankai University

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-ding-silver-bullet

No Single Silver Bullet:
Measuring the Accuracy of Password Strength Meters

Ding Wang, Xuan Shan, Qiying Dong
Nankai University

{wangding, shanxuan, dqy}@nankai.edu.cn

Yaosheng Shen
Peking University

ysshen@pku.edu.cn

Chunfu Jia
Nankai University

cfjia@nankai.edu.cn

Abstract
To help users create stronger passwords, nearly every re-

spectable web service adopts a password strength meter

(PSM) to provide real-time strength feedback upon user regis-

tration and password change. Recent research has found that

PSMs that provide accurate feedback can indeed effectively

nudge users toward choosing stronger passwords. Thus, it is

imperative to systematically evaluate existing PSMs to facili-

tate the selection of accurate ones. In this paper, we highlight

that there is no single silver bullet metric for measuring the

accuracy of PSMs: For each given guessing scenario and strat-

egy, a specific metric is necessary. We investigate the intrinsic

characteristics of online and offline guessing scenarios, and

for the first time, propose a systematic evaluation framework
that is composed of four different dimensioned criteria to rate

PSM accuracy under these two password guessing scenarios

(as well as various guessing strategies).

More specifically, for online guessing, the strength mis-

judgments of passwords with different popularity would have

varied effects on PSM accuracy, and we suggest the weighted

Spearman metric and consider two typical attackers: The

general attacker who is unaware of the target password distri-

bution, and the knowledgeable attacker aware of it. For offline
guessing, since the cracked passwords are generally weaker

than the uncracked ones, and they correspond to two disparate

distributions, we adopt the Kullback-Leibler divergence met-

ric and investigate the four most typical guessing strategies:

brute-force, dictionary-based, probability-based, and a combi-

nation of above three strategies. In particular, we propose the

Precision metric to measure PSM accuracy when non-binned

strength feedback (e.g., probability) is transformed into easy-

to-understand bins/scores (e.g., [weak, medium, strong]). We

further introduce a reconciled Precision metric to characterize

the impacts of strength misjudgments in different directions

(e.g., weak→strong and strong→weak) on PSM accuracy.

The effectiveness and practicality of our evaluation frame-

work are demonstrated by rating 12 leading PSMs, leveraging

14 real-world password datasets. Finally, we provide three

recommendations to help improve the accuracy of PSMs.

1 Introduction
Passwords firmly remain the dominant mechanism for user

access control on the Web, ranging from low-value news

portals [1], moderate-value e-commerce and email services

[2] to highly-sensitive genomic data protection [3]. It is well

known that users tend to choose weak passwords which are

prone to guessing attacks [4, 5]. To deal with such vulnerable

behaviors, almost every respectable web service now employs

a password strength meter (PSM) to encourage users toward

strong passwords, see Fig. 1 for examples (i.e., 12306-PSM

and Google-PSM). PSMs with accurate strength feedback can

indeed play a positive role in the password creation stage, but

inaccurate PSMs do more harm than good [6–9]: If a weak

password is rated as strong, it will give users an unrealistic

sense of security and compromise password security [10, 11];

Whereas, if a strong password is evaluated as weak, users

need to spend longer creating their passwords and are prone

to feel frustrated or annoyed [6, 8].

Over the past decades, academia and industry have made

impressive efforts to design PSMs (e.g., rule-based [12, 13],

pattern-based [14, 15], and guessability-based [16–20]) with

accurate strength feedback. Although dozens of PSMs have

been proposed one after another, it is unclear which one

is most suitable for which scenario, especially when there

are various guessing attacks (e.g., online guessing and of-

fline guessing) and application scenarios (e.g., e-banking and

cloud). To answer this question, a more fundamental issue

needs to be first addressed: how to measure the accuracy
of PSMs. At NDSS’12, Castelluccia et al. [16] proposed a

new PSM and the first metric (i.e., the Spearman rank cor-

relation) to measure PSM accuracy, but they only focused

on the online guessing scenario. At IEEE TIFS’17, Galbally

et al. [19] proposed a new multimodal-based PSM, and sug-

gested using the single metric Kullback-Leibler divergence to

measure PSM accuracy, but they only considered the offline

guessing scenario. Like these two works, most existing works

(e.g., [13, 14, 17]) present new PSMs with assertions of the

superior aspects over previous ones, while (unconsciously)

overlooking dimensions on which their schemes fare poorly.

USENIX Association 32nd USENIX Security Symposium 947

1.1 Motivations
Accuracy is the most essential property of a PSM, yet few

studies have paid attention to the fundamental accuracy eval-

uation criteria framework that allows for a systematic and

thorough assessment of the accuracy of existing (highly het-

erogeneous) PSMs. Without a systematic methodology, a fair

comparison is unlikely, and there is no basis for diversified

PSM schemes to be rated across a common spectrum. As far

as we know, Golla and Dürmuth’s work [10] at CCS’18 may

be the closest to our paper: They proposed a single metric

(i.e., weighted Spearman correlation coefficient, which is only

applicable to online guessing scenarios) for measuring PSM

accuracy, and compared 45 PSMs on only three English pass-

word datasets. In a nutshell, little existing work pays attention

to the evaluation framework for PSMs, and the following key
research questions (RQs) remain to be answered:
RQ1: Though the characteristics of online and offline guess-

ing scenarios are vastly different (e.g., allowed guessing

attempts), whether PSMs can be evaluated by using the

same criterion under these two guessing scenarios?

RQ2: As attackers in different guessing scenarios have var-

ied knowledge of the targets and suffers from different

constraints (and thus adopts different attacking strate-

gies), should specific evaluation metrics be selected ac-

cordingly? Or, is there a single silver bullet metric?

RQ3: Since the strength misjudgments in different direc-

tions (e.g., weak→strong vs. strong→weak) have varied

impacts on PSM accuracy, how should the evaluation

metric be adjusted accordingly?

RQ4: How will the accuracy of a PSM change when it is

deployed on sites of a different language from which

it is originally designed for? For instance, how will the

widely adopted Zxcvbn [14] perform on Chinese sites,

while it is primarily designed for English sites?

RQ5: How will the accuracy of a PSM change when its non-

binned strength feedback (e.g., entropy or guess number)

is converted to easy-to-understand (and widely used)

bins/scores (e.g., [weak, medium, strong])?

It is imperative to address the above research questions

to facilitate the design, evaluation and selection of a proper

PSM for a given site, and our work takes the first step towards
addressing these questions.

1.2 Contributions
We first investigate the intrinsic characteristics of online and

offline guessing scenarios (and various guessing strategies),

and explicitly reveal that “there is no single silver bullet met-
ric” for evaluating PSM accuracy. Accordingly, we, for the
first time, propose a systematic evaluation framework com-

posed of four different dimensioned criteria to rate PSM ac-

curacy under both guessing scenarios (and various guessing

strategies). The effectiveness and practicality of this frame-

work are demonstrated by rating 12 leading PSMs, leveraging

Figure 1: Inaccurate (see P@ssword123!) and inconsistent (see password
123_) PSM feedback: Google (https://myaccount.google.com/) and

China Railway 12306 (https://www.12306.cn/en/register.html).

218.79 million passwords from 14 high-profile English and

Chinese sites. Note that our evaluation framework can also be

applied to targeted online/offline scenarios with minor adjust-

ments. Though not cast in stone, our framework is expected

to help better evaluate current/future PSMs, and to inform

future PSMs designs. In summary, our contributions are:

• Metrics for online guessing. While the strength rank-

ings of popular passwords can be approximated by their

frequency rankings, the misjudgment of the strength of

passwords with different popularity would have varied

effects on PSM accuracy. Thus, we use the weighted

Spearman correlation coefficient (WSpearman) metric

for online guessing scenarios, and investigate the two

most typical online attackers: 1) The general attacker,

who is unaware of the target distribution and will mainly

traverse common popular passwords [4]; and 2) The

knowledgeable attacker, who is well-informed of the tar-

get password distribution and will give priority to these

most popular passwords (e.g., top-104) [4, 21, 22]. We

also investigate and compare the characteristics of six

WSpearman calculation methods and adopt the best one.

• Metrics for offline guessing. We consider the four

most typical offline guessing attackers: Brute-force,

dictionary-based, probability-based, and the combined

one with the aforementioned three attacking strategies

[23, 24]. We use the Kullback-Leibler divergence met-

ric to measure the differences between the strength dis-

tributions of the cracked passwords and the remaining

(uncracked) passwords. In particular, we propose a new

metric, namely Precision, to measure the accuracy of

a PSM when its non-binned strength feedback (e.g.,

entropy or guess number) is transformed into easy-to-

understand (and widely used) bins/scores (e.g., [weak,

medium, strong]). Further, we design a reconciled Preci-

sion metric (i.e., PrecisionSecurity) that can characterize

the strength misjudgments in different directions (e.g.,

weak→strong and strong→weak) on PSM accuracy.

948 32nd USENIX Security Symposium USENIX Association

• Extensive evaluation. We utilize our evaluation frame-

work to systematically measure 12 state-of-the-art PSMs:

seven foremost academic PSMs (i.e., fuzzyPSM [17],

MultiPSM [19], PCFG-PSM [25], Markov-PSM [16],

RNN-PSM [18], LPSE [13] and CNN-PSM [20]), four

representative commercial PSMs (i.e., Zxcvbn [14],

KeePSM [15], 12306-PSM and Microsoft-PSM [26]),

and our modified ZxcvbnC. We conduct experiments on

139.71 million passwords from seven English sites and

79.08 million passwords from seven Chinese sites, filling

the gap in [10,27] which only focused on how PSMs per-

form on English passwords. Results show that, in online

guessing scenarios, fuzzyPSM [17] is the most accu-

rate PSM, and pattern detection-based PSMs (especially

Zxcvbn [14]) are more accurate than attack algorithm-

based PSMs. In offline scenarios, multimodal-based Mul-

tiPSM [23] performs the best, and Markov-PSM [16]

and Zxcvbn [14] also show good accuracy.

• Some insights. We gain a number of insights from our

experiments and provide a few suggestions to help im-

prove PSMs. We find that, adaptive score conversion

methods can be used to facilitate PSM application. Be-

sides offline scenarios, PSMs can also be effectively in-

tegrated to perform better in online scenarios. Through

cross-language evaluations, we also provide the first con-

crete evidence from extensive empirical experiments

that PSMs (and their training sets) need to be adapted

to accommodate different languages/services (e.g., we

modify the English-originated Zxcvbn [14] to construct

a more accurate ZxcvbnC for Chinese sites).

2 Related work

Early password-strength meters (PSMs) are dated back to

the 1990s, and they are named proactive password checkers

(see [28, 29]). Their basic idea is to check each user-chosen

password candidate against a dictionary of weak passwords.

However, Yan [30] pointed out that these checkers often miss

weak passwords (e.g., 12a34b5) that do not fall into the dictio-

nary. Thus, he proposed to adopt entropy-based checking as a

complementary method to improve dictionary-based checking.

In 2006, the influential NIST authentication guideline [12]

followed this idea and suggested a password strength meter

(PSM) based on heuristic estimations of password entropy

(e.g., “a bonus of 6 bits of entropy is assigned for a compo-

sition rule that requires both upper case and non-alphabetic

characters” and “a bonus of up to 6 bits of entropy is added

for an extensive dictionary check”). Because such heuristics

are too coarse to capture users’ highly predictable tricks to

improve password complexity, entropy is unsuitable for as-

sessing user-generated password strength.

Although NIST-PSM [12] has been abandoned by the lat-

est version of NIST SP800-63B since 2017 [31], most high-

profile services (e.g., Google and 12306; see Fig. 1) are still

following the entropy idea of NIST-PSM [2, 27, 32]. We take

Google-PSM as a concrete example. The strength feedback

of Google-PSM is an ad-hoc combination of password length,

character types used, and dictionary checking (see Sec. V-B

of [27] for details). Although their design ideas are similar,

the strength feedback of different sites’ meters has a large

variance. It has been shown that meters of different sites

produce highly inconsistent results when checking the same

password [27, 32] (see Fig. 1 for examples). Inaccurate and

misleading feedback would not only impair security, but also

confuse/frustrate users, defeating the purpose of PSMs [27].

The heuristic entropy metric has been replaced by “guess-

ability”, because the formers on the basis of some simple rules

have been reported are insufficiently reflecting the resistance

of passwords to advanced guessing attacks [33, 34]. Pass-

word guessability measures the ability to withstand guessing

by a particular password cracker, which is generally instan-

tiated by the guess number, the time required for guessing,

and so on. However, it is usually expensive to compute the

exact guess number of an unpopular password. At CCS’15,

Dell’Amico and Filippone [35] introduced the Monte Carlo

sampling method to efficiently and accurately estimate the

guess number of a password. This method applies to a broad

set of probabilistic password models such as probabilistic

context-free grammars (PCFG) [36] and Markov chains [37],

making the guess number a feasible metric in reality.

All these bring out a number of recent academic PSMs (see

more information in Table 3) that are based on “guessability”,

and they all show advantages over existing entropy-based

PSMs (e.g., Microsoft-PSM [26]). For example, Markov-

PSM [16] has a higher Spearman correlation coefficient than

the NIST-PSM [12] and its variations (e.g., Google-PSM and

Microsoft-PSM), when an ideal PSM is adopted as the bench-

mark for strength reference; Wang et al. [17] employed both

the Spearman and Kendall correlation coefficients to empir-

ically demonstrate the superiority of fuzzyPSM [17] over

Markov-PSM [16], Zxcvbn [14] and PCFG-PSM [25], when

considering online guessing attacks (i.e., the guess number

allowed is small, usually<104); Melicher et al. [18] compared

the number of “unsafe errors” (caused by overestimating the

Password strength) produced by RNN-PSM [18], Zxcvbn [14]

and Yahoo-PSM, indicating that RNN-PSM [18] is more accu-

rate due to fewer unsafe errors. Pasquini et al. [20] proposed

a PSM with character-level feedback based on Convolutional

Neural Network (denoted as CNN-PSM), and it was shown to

be more accurate than RNN-PSM [18] and Markov-PSM [16].

A significant drawback of guessability-based PSMs is that

(simulated) guessing algorithms may not be as effective as

those adopted by real attackers, thus introducing a strong

bias in the guessability/strength estimation [11, 38]. In 2017,

Galbally et al. [19] pointed out that no existing PSM can

be applied to all guessing strategies. In response, they pre-

sented a multimodal-based MultiPSM, whose output is a fu-

sion score that heuristically combines four heterogeneous

USENIX Association 32nd USENIX Security Symposium 949

Table 1: Basic information about trawling guessing scenarios.
Guessing

Guessing strategies
Allowed Interact Main Efficacy

scenarios guesses with server constraint metric

Online
Popularity-based ≤104‡ Yes

Detection, Cracked%,
[33, 39, 42] lockout # of guesses needed

Offline
[36, 37, 43]

Brute-force >109

No
Attacker
power

Cracked%,

Dictionary-based >109 # of guesses needed,
Probability-based >109 Attacking time†

†Attacking time = guesses needed × attacker power (i.e., how many times of pass-
word guesses can be computed per second).

‡ We provide the rationality of selecting 104 as the online threshold in Appendix A.

strength scores to benefit from each guessing model’s advan-

tages (see Sec. 4.2 for more details). Their results show that,

in terms of Kullback-Leibler divergence, MultiPSM [19] out-

performs NIST-PSM [12], Yahoo-PSM and Google-PSM in

the brute-force attack, dictionary-based attack and dictionary

with rules attack scenarios. Despite this, it is still unknown

the performance of MultiPSM [19] in more effective proba-

bility guessing scenarios (e.g., Markov [37]). Similarly, it is

also unknown whether MultiPSM [19] can provide accurate

strength evaluation results in online guessing (the primary

threat that users need to mitigate [39, 40]).

3 Systematic evaluation framework

3.1 Architecture and adversary model
Without loss of generality, we consider password-based au-

thentication with a client-server architecture. Each user U first

registers at the server S, and S keeps U’s password (in a salted

hash as recommended [31]). When the underlying authentica-

tion protocol (e.g., OPAQUE [41]) is secure, the adversary A
has to obtain U’s password to break U’s account (e.g., through

guessing, keylogging and shoulder surfing). In this work, we

mainly explore the trawling guessing attacks for three reasons:

(1) Other threats (e.g., keylogging) are unrelated to password

strength; (2) Mainstream PSMs (e.g., [14, 16–19, 25]) are

designed to help users generate secure passwords that can

withstand trawling guessing attacks; (3) Due to the sensitive

nature of personal data, it is highly controversial for sites

to collect and maintain the user’s personal information (and

passwords leaked from other sites). Trawling guessing attacks

aim to crack as many passwords as possible, not to crack the

password of a specific user. According to where the attack is

performed, trawling guessing scenarios can be divided into

online and offline attacks. The basic information of the two

kinds of attacks is shown in Table 1.

In online guessing scenarios, the attacker A checks her

guesses by constantly attempting to login as legitimate users,

while an offline attacker checks her guesses by searching for

collisions of password hashes on the hardware she controls.

Therefore, a well-designed server S can reduce A’s advantage

by limiting the login rate [5, 44] (see Appendix A for more

details), forcing users to reset their passwords when the failed

attempts exceed a threshold [44], and activating multi-factor

authentication mechanisms. On the contrary, in offline guess-

ing scenarios, the attacker A has already obtained all the data

that can be used to locally verify her guesses: It is usually

a salt-hashed password file obtained through database leaks.

Here, rate-limiting (at the server side) is inapplicable, and A
is only constrained by her local computing resources and the

time allowed [17, 40, 45].

Different application scenarios may suffer from different

kinds of guessing attacks. For instance, e-banking is more

prone to online guessing attacks than offline attacks, because

the backend bank server is generally better guarded than com-

mon sites and its password files are less likely to be leaked;

In contrast, portals like Yahoo are more likely to suffer offline
guessing attacks, because their backend servers/systems are

so complex that it is virtually impossible to keep them safe.

Actually, Yahoo has suffered at least three major user account

data breaches, with more than 3 billion victims [46].

For offline guessing, traditional heuristic attacks mainly

include brute-force and dictionary-based attacks, and they

have been adopted by automatic password-cracking tools

such as John the Ripper (JtR) [47] and HashCat [48]. In 2009,

Weir et al. [36] proposed a seminal probability-based guess-

ing algorithm, and it can crack 28%∼129% more passwords

than JtR [47]. Since then, several probability-based guess-

ing algorithms (e.g., [18, 21, 24, 37]) have been proposed,

which have higher cracking rates than traditional heuristic at-

tacks. However, these algorithms cannot substitute traditional

(brute-force and dictionary-based) attacks because the latter

are faster, cheaper and easier to deploy [11, 38, 49]. Thus, a

powerful realistic attacker is likely to adopt both traditional

and advanced probability-based attacks.

As the attacker in different guessing scenarios suffers from

essentially different constraints, the focus of a PSM should

also differ accordingly. In the online guessing scenario where

the number of guesses is limited, a PSM should accurately

detect popular passwords (also the preferred guessing pass-

words of attackers), especially the most popular passwords

(e.g., 123456). In offline guessing scenarios, a PSM needs to

prevent easy-to-crack passwords (including but not limited

to popular passwords and their simple variants) from register-

ing as much as possible, reducing the number of passwords

an attacker can successfully crack within given computing

resources. As different guessing scenarios entail the attacker

A with different abilities and resources, a sound PSM should

reflect the extent to which a password would consume A’s

resources in the given scenario. This implies that the accu-

racy of PSMs should be evaluated with different criteria in

different guessing scenarios, giving RQ1 a negative answer.

3.2 Guessing strategies
Since a realistic attacker would implement guessing in line

with her abilities and resources [39], we consider the follow-

ing most typical attackers with specific guessing strategies:

In online guessing, an attacker can only perform very lim-

ited guessing attempts due to the protection measures (e.g.,

risk-based account lockout [50]) deployed on the server. Since

the protection measures are quite diverse, the exact value of

950 32nd USENIX Security Symposium USENIX Association

Typical attackers

Brute-force attacker
Dictionary-based attacker
Probability-based attacker
Powerful combined attacker

Offline guessing

, , , Kullback-Leibler
divergence (KL)

, , , Precision (Prec)

, , ,
Reconciled Precision
(Prec Secu)

Weighted Spearman
correlation coefficient
(WSpearman)

WSpearman on top-104

passwords in the sample set
WSpearman on top-104

passwords in the test set

, , , Password Score
Distribution (PSD)

Metrics

Cracked passwords

Uncracked passwords
Distinct or not?

Non-binned PSM

Binned PSM
How does accuracy change?

Misjudge strong to weak

Misjudge weak to strong
How does the direction affect?

Offline guessing

Metric: Time
Fraction of guessed
passwords after a
period of time

Trawling guessing scenarios

Allowed 109guesses
Offline guessing

Metric: Time
Fraction of guessed
passwords after a
period of time

Allowed 109guesses

General attacker
ignorant of the target
distribution,
Efficient attacker
knowledgeable of the
target distribution

Online guessingIdeal rank

Evaluated rank
Similar or not?

General attacker
ignorant of the target
distribution,
Efficient attacker
knowledgeable of the
targeg t distribution

Online guessing
Allowed 104guesses
Online guessing

Metric: Guess
Number of correctly
evaluated passwords
within limited attempts

Figure 2: Our proposed systematic evaluation framework for measuring PSM accuracy.
Figure 3: PSM scatter plot of 10,000 pass-

words randomly selected from 000webhost.

the online guessing threshold T depends on the target sys-

tem’s risk analysis results. Without loss of generality, we set

T =104 according to our manual test (see Appendix A) and

rule-of-thumb recommendations in [17, 39, 40, 51]. Given T ,

for an attacker well-informed of the target password distribu-

tion, her sensible strategy is to try the most popular passwords

(e.g., top-104) in the known distribution [4]. We call her a

knowledgeable attacker. In contrast, for an attacker unaware

of the target distribution, her sensible strategy is to traverse

common popular passwords [4, 21] (e.g., constructed from

leaked password corpus), and we call her a general attacker.

In offline guessing scenarios, it is not difficult for attackers

to make more than billions of guesses by using GPUs [52,53].

Generally, offline password attacks fall into three main groups:

brute-force, dictionary-based and probability-based attacks.

A brute-force attacker performs an exhaustive search over

all possible passwords in a given search space, and she will

soon reach the limit of her computational budget (e.g., money

and time) when the sought password is long or has multiple

charsets [47]. A dictionary-based attacker typically generates

a guess list that contains diversified wordlists (e.g., common

natural words, numeric patterns and first names) and candidate

passwords extended through a predefined mangling ruleset

[47,48]. A probability-based attacker attempts to describe the

target password distribution by parametric probability models

(e.g., Markov [37]), then search the entire key space in the

descending order of probability to produce guesses. Note that

real-world attackers are likely to try all these three guessing

strategies to achieve higher cracking rates, and we refer to

such a powerful attacker as the combined attacker.

Due to the intrinsically different characteristics of various

guessing strategies, the guessabilities/strength of the same

password in different scenarios will inevitably have a large

gap. Even using the same training data, guessability results

per password can differ by many orders of magnitude be-

tween approaches. For example, for an attacker who adopts

JtR [47] with Tianya as the wordlist, she can hit the password

111222tianya after 10 guessing attempts (see Table 10 in

the full version of this paper at https://bit.ly/3xYjsUl
for details); However, for an attacker using the Markov algo-

rithm, even if she adopts the Tianya dataset as the training set,

it will take her 83,120 attempts to hit 111222tianya. Such

a large gap in guessability estimates is due to different pass-

word guessing models used by attackers, which define which

guesses should be tried and in which order [11,39]. Therefore,

the answer to RQ2 is negative: There is not a single silver

bullet metric to evaluate PSM in different guessing strategies.

We, for the first time, propose a systematic evaluation
framework containing four different dimensioned criteria to

measure PSM accuracy (see Fig. 2). Further, this framework

can be extended to targeted guessing scenarios after minor

modification. More specifically, in targeted online guessing
scenarios, one can modify the ideal PSM with respect to each

user (instead of the entire user group in trawling guessing

scenarios); In targeted offline guessing scenarios, one can

directly add targeted guessing strategies (e.g., [5,40]) without

proposing new metrics or altering the framework.

3.3 Metrics for online guessing
Measuring password strength hinges on determining the order

in which an attacker would make guesses. Due to the limited

attempts allowed in online guessing scenarios (e.g., ≤104; see

Appendix A), guessing passwords in the order of decreasing

probability is the optimal strategy [16, 21]. Consequently,

popular passwords are weaker because they are tried before

unpopular ones. That is, the higher the frequency, the lower the

strength. Based on such an optimal guessing strategy, an ideal
PSM can be regarded as a good benchmark for evaluating

PSM accuracy in online guessing scenarios, for it uses the

frequency of passwords in a real-world dataset to indicate their

strength [10,16,17]. In such a case, the accuracy of a PSM can

be measured as its distance from the ideal PSM, by calculating

the correlation between its evaluated strength rank list and the

referred rank list of the ideal PSM. The more accurate a PSM

is, the ranking of its output of password strength/probability

will be closer to the ranking of the ideal PSM. Under this

rationale, Kendall and Spearman correlations have long been

used to rate PSM accuracy [10, 16, 17].

Classic correlation coefficients (e.g., Spearman and

Kendall) are not suitable for measuring the accuracy of

PSMs because they mistakenly treat all passwords as equally

weighted data points [10]. Since the strength evaluation error

of frequent passwords will impact more accounts, it is neces-

sary to weight the correlation coefficients. After comparing

19 weighted metrics, Golla and Dürmuth [10] revealed that

weighted Spearman correlation coefficient (WSpearman) is

USENIX Association 32nd USENIX Security Symposium 951

currently the most ideal metric to measure the accuracy of

PSM for online guessing scenarios. Hence, we use WSpear-

man to measure PSM accuracy in online scenarios. The range

of WSpearman is [0,1], and the higher the value, the more

accurate the PSM in online guessing scenarios.

�Weighted Spearman correlation coefficient
To the best of our knowledge, there has been no publicly-

known method for calculating the WSpearman. Accordingly,

we investigate six different methods and experimentally an-

alyze their rationality for evaluating PSM accuracy (see Ap-

pendix B in the full version of this paper for details). We

prefer the best one from [54], which is also adopted in [10].

We define the weighted rank vectors of the ideal PSM and

the tested PSM as X and Y, respectively. The i-th (1≤ i ≤n)

members of X and Y are called xi and yi. Then WSpearman

is calculated as

WSpearman =

∑n
i=1 [wi(xi − x̄)(yi − ȳ)]√∑n

i=1[wi(xi − x̄)2]
∑n

i=1[wi(yi − ȳ)2]
, (1)

where wi is the weight, equal to the i-th password frequency,

x̄ and ȳ are the weighted means of X and Y respectively (see

Appendix B for more details).

Note that, Golla and Dürmuth [10] mainly report discrete,

numerical WSpearman values of tested passwords with two

specific ranks (i.e., 1,000-th and 10,000-th of their sample

set). Their approach is hard to provide the whole picture of

WSpearman values of tested passwords at every rank. For

instance, it is unknown how the WSpearman value changes

as the password ranking increases. Besides, under different

online guessing thresholds, the accuracy ranking of PSMs will

change, so discrete Wspearman values are unlikely to provide

much valuable reference for administrators to select a proper

PSM on demand. Thus, we show WSpearman values of tested

passwords vary with the whole rank scale in the form of a

curve (rather than discrete values), see Fig. 4 here and Fig. 9 in

the full version of this paper at https://bit.ly/3xYjsUl.

3.4 Metrics for offline guessing
As shown in Table 1, an attacker can perform large-scale

(usually>109) guesses under offline guessing scenarios. Thus,

unlike online scenarios, she does not care about whether any

specific guess is hit or not, but pursues a higher cracking rate

on the whole under the constraints of computing resources and

time. Under this circumstance, the main focus of a PSM is to

accurately distinguish passwords that are easy to be cracked.

Specifically, a good PSM shall give differentiated strength

ratings between the cracked and remaining (uncracked) pass-

words, so we use KL-divergence to quantify such differences

to measure the PSM accuracy in offline scenarios.

Notably, the strength of an unpopular password cannot

be estimated by its frequency [10, 17, 21]. The password

probability distributions (see Fig. 3) output by fuzzyPSM

[17] and PCFG-PSM [25] substantiate this: for a password

with count=1, the password guessing probability ranges from

10−47 to 10−5, meaning that an unpopular password is not

necessarily a secure password. In such a circumstance, the

ideal PSM is no longer a good reference in offline scenarios.

�Kullback-Leibler divergence
KL-divergence [55] (also known as relative entropy), mea-

sures how different one probability distribution is from an-
other (benchmark) probability distribution, and its range is
[0,∞). For PSM accuracy, higher KL-divergence reflects bet-
ter distinguishing ability (i.e., accuracy) of a PSM. Given
two discrete password strength distributions P and Q, the
KL-divergence from Q to P is defined as

KL (P ‖ Q) =
∑

i

P(i) · log
P(i)
Q(i)

. (2)

We calculate KL-divergences of three offline guess-

ing strategies, including brute-force, dictionary-based and

probability-based guessing, covering the most representatives

of main-stream guessing ideas in reality. Moreover, we pro-

pose a powerful attacker (denoted as a combined attacker)

who will take full advantage of various attacks to obtain a

higher coverage rate, and calculate the corresponding KL-

divergence. However, this realistic attacker is out of the con-

sideration of Galbally et al. [23]. Particularly, they ignored the

more threatening probability-based guessing, which has been

shown to be more effective than all attack strategies they con-

sidered (i.e., brute-force guessing, dictionary guessing and

dictionary with rules guessing [11, 22]). Summing up, we

consider the attacker who adopts a single attacking strategy

(i.e., brute-force, dictionary-based or probability-based) and

a combined strategy, and calculate the corresponding four

KL-divergence respectively to evaluate PSM accuracy, which

is more realistic and systematic.

�Precision and PrecisionSecurity

Well-performed academic PSMs (e.g., [16–18, 25]) usually

adopt fine-grained password probabilities or guess numbers

as strength feedback. However, this is not friendly to users’

intuition of password strength [56]. In contrast, commercial

PSMs (e.g., [14, 15, 26]) generally take coarse-grained but

easy-to-understand binning/scoring feedback (e.g., [Weak,

Fair, Good, Strong]; see Fig. 1) [7, 10, 56, 57]. Therefore, a

new question arises: How will the PSM accuracy change in re-

sponse when a fine-grained feedback (of a PSM) is converted

into a coarse-grained score/bin.

To address this question, we introduce the Precision metric

for multi-class classification to evaluate the accuracy of a

converted PSM. Specifically, an accurate scoring PSM will

rate the strength of a secure password as a higher score (and

that of an insecure password as a lower score). Thus, we

mainly explore the most representative passwords with the

lowest and highest scores. This is because the former is often

rejected for being too weak, reflecting the baseline strength

that the site will tolerate [2, 27, 32]; The latter one with the

highest score represents the site’s highest expectations for

password strength. The more accurate a PSM is, the more

passwords with the lowest score will be cracked, and the fewer

952 32nd USENIX Security Symposium USENIX Association

passwords with the highest score will be cracked.
We denote the set of passwords with the lowest score as L,

where the number of the cracked passwords and the remaining
uncracked ones are NCL and NRL respectively; and the set of
passwords with the highest score as H, where the number of
the cracked passwords and the uncracked ones are NCH and
NRH respectively. The weight of L is defined as

WL =
NRL +NCL

NRL +NCL +NRH +NCH
, (3)

and the weight of H is

WH =
NRH +NCH

NRL +NCL +NRH +NCH
. (4)

Thus Precision is calculated as

Precision = WL ·
NCL

NRL +NCL
+WH · NRH

NRH +NCH

=
NCL +NRH

NRL +NCL +NRH +NCH
.

(5)

We note that strength misjudgments in different directions
(e.g., weak→strong or strong→weak) would have varied se-
curity impacts. Specifically, the strong→weak misjudgment
is prone to impose a burden (frustration/fatigue) on users and
thus reduce PSM usability [27]. In contrast, the weak→strong
misjudgment will mislead the user that her weak password
is strong enough, which has a much more negative security
impact than strong→weak misjudgment. Thus, a PSM should
strive to prioritize the reduction of the weak→strong misjudg-
ments. Comparatively, the misjudgment of medium-strength
passwords has a much smaller impact. To deal with this, we
propose the reconciled Precision metric (i.e., PrecisionSecurity)
to characterize the impacts of strength misjudgments in dif-
ferent directions on PSM accuracy:

PrecisionSecurity = β ·WL ·
NCL

NRL +NCL
+(1−β) ·WH · NRH

NRH +NCH
.

(6)
Assigning a higher weight to events with a higher risk (or

more likely to occur) is a common approach in risk manage-

ment and decision-making under uncertainty [58]. For linear

weighting, the value 0.8 is widely preferred [59–61]. Without

loss of generality, we also set the reconciled misjudgment

parameter β=0.8 corresponding to the more serious misjudg-

ment weak→strong, which indicates a four times higher sig-

nificance than the strong→weak misjudgment. It is worth

noting that the value of β can be adjusted according to the

system’s risk perceived and usability analysis, and how to

optimize it is out of our scope.

4 Experimental methodology
We now show the basic information about our password

datasets, introduce twelve state-of-the-art PSMs for compari-

son, and detail our experimental setups.

4.1 Datasets and ethical considerations
Our experiments are built on 14 widely used real-world pass-

word datasets (see details in Table 2). These datasets have

different password strengths, languages and services, and have

been widely used in relevant research on PSM design and eval-

uation (e.g., [10,13,14,17]). We select passwords with lengths

no longer than 30 and only contain ASCII characters for eval-

uation, following the same preprocessing method in prior

studies (e.g. [17, 18, 24]). This is because non-ASCII pass-

words and length>30 passwords are unlikely to be chosen

by users, they may be junk information or randomly gener-

ated by password managers [24], while PSMs are designed to

evaluate user-chosen passwords. In all, 0.00%∼2.71% (avg.

0.43%) of passwords are removed from the original datasets.

Our testing sets are quite diverse, covering services with

various security requirements. For instance, CSDN requires

passwords to be with length≥8, and 000webhost requires

passwords with length≥6 and at least a letter and a digit

(see Appendix D in the full paper for more details). Besides,

since the language is an important factor that affects password

strength [24, 62, 63], our work evaluates passwords from both

English and Chinese sites, filling the gap in [10, 27] that only
focus on how PSMs perform on English passwords.

Though publicly available and widely used [10, 17, 24, 37,

38], these datasets are sensitive. We store and process them

on computers disconnected to the Internet, and only report the

aggregated statistics to ensure that no identifiable information

can be linked to the corresponding victim.

4.2 Leading PSMs to be evaluated
The effectiveness and practicality of our framework are

demonstrated and examined by rating 12 leading academic

and industrial PSMs. The selection of these 12 PSMs is based

on the preliminary results of 45 meters (81 variants) stud-

ied in [10], 50 meters studied in [32] and 22 meters studied

in [64]. Each of them is a representative of one PSM family in

terms of the deployability, design idea, training method and

time, storage space, blocklist adoption, feedback form, and

quantization (see Table 3). Below are some necessary details.

PCFG-PSM/fuzzyPSM. Weir et al. [36] proposed a seminal

password guessing model based on probabilistic context-free

grammars (PCFG). Houshmand and Aggarwal [25] then put

forward PCFG-PSM that estimates a password’s probability

for users to choose them. Considering users’ ubiquitous pass-

word reuse behaviors, Wang et al. [17] designed fuzzyPSM on

the basis of the fuzzy-PCFG algorithm. At the training stage,

fuzzyPSM [17] parses each password pair in the training

sets, and learns which and how mangling rules are employed

by users to construct new passwords from their old ones.

As the server generally does not have users’ old passwords,

fuzzyPSM [17] overcomes this problem by approximation:

it requires a relatively weak training set and an additional

stronger training set with languages, services and password

policies similar to the target website.

MultiPSM. Galbally et al. [19] believed that “no password

strength metric by itself is better than all other metrics for

every possible password”. Their MultiPSM [19] combines

USENIX Association 32nd USENIX Security Symposium 953

Table 2: Basic information about the fourteen real-world password datasets (PWs stands for passwords).†

Language Dataset Web service Leaked time Original PWs Miscellany Length>30 Removed % After cleaning Unique PWs Role

Chinese

Tianya Social forum Dec. 2011 31,761,424 860,183 5 2.71% 30,901,241 12,898,437 Training set
Dodonew E-commerce Dec. 2011 16,283,140 10,774 13,475 0.15% 16,258,891 10,135,260 Test set
Taobao E-commerce Jan. 2012 15,073,116 0 86 0.00% 15,073,030 11,634,170 Training set B
CSDN Programmer forum Dec. 2011 6,428,632 0 355 0.01% 6,428,277 4,037,605 Test set
TPYDL IT portal Dec. 2011 5,444,441 0 26 0.00% 5,444,415 2,884,441 Training set B
Weibo Social forum Dec. 2011 4,730,662 0 420 0.01% 4,730,242 2,828,618 Test set
Renren Social forum Dec. 2011 3,257,831 0 19 0.00% 3,257,812 1,904,776 Training set B

English

Rockyou Social forum Dec. 2009 32,603,387 18,377 3,140 0.07% 32,581,870 14,257,653 Training set
LinkedIn Professional social May 2016 54,638,863 0 17,154 0.03% 54,621,709 24,681,306 Test set
Twitter Social forum June 2016 40,669,963 0 282,149 0.69% 40,387,814 10,583,709 Training set B
000webhost Website service Oct. 2015 15,299,590 0 955 0.01% 15,298,635 10,583,709 Test set
Hostinger Website service May 2015 15,299,590 0 955 0.01% 15,298,635 717,641 Training set B
Yahoo Web portal July 2012 453,491 10,657 0 2.35% 442,834 337,136 Test set
Gmail Email Sep. 2014 4,926,650 0 3,120 0.06% 4,923,530 3,132,028 Training set B

† To characterize users’ password reuse behaviors, fuzzyPSM [17] requires two training sets: a relatively weak password dataset, called training set A and a relatively strong training set B.

Table 3: Basic information about the leading PSMs for comparison (PW stands for password; Tr for training).
Source Leading PSM Deployed in Design idea Tr method Storage (MB)† Blocklist Feedback form Quantization‡

Academic

fuzzyPSM [17] Server Attack algorithm (fuzzy-PCFG) Adaptive 198.66 × PW probability N/A
MultiPSM [19] Server Multimodal Adaptive 75.10 � Fusion score N/A
PCFG-PSM [25] Server Attack algorithm (PCFG) Adaptive 108.54 × PW probability N/A
Markov-PSM [16] Server Attack algorithm (Markov) Adaptive 101.23 × PW probability N/A
RNN-PSM [18] Server/Client Attack algorithm (RNN) Adaptive 20.12 × PW probability N/A
LPSE [13] Client Rules (Vector similarity) Static N/A × Vector similarity Q3
CNN-PSM [20] Server Probabilistic models (CNN) Adaptive 36.00 × PW probability N/A

Industrial

Zxcvbn [14] Client Pattern detection Static N/A � Guess number Q5
KeePSM [15] Client Pattern detection Static N/A � Entropy Q5
12306-PSM Client Rules N/A N/A × Rating Q3
Microsoft-PSM [26] Client Rules N/A N/A × Rating Q4

† The results shown here are measured with the canonical Rockyou dataset (see Table 2) as the training set.
‡ Q3=[Weak, Medium, Strong]; Q4=[Very weak, Weak, Strong, Perfect]; Q5=[Very weak, Weak, Medium, Strong, Perfect].

the scores provided by a blocklist, a brute-forceable password

detection mechanism, and two heterogeneous Markov chains

into the final fusion as the final multimodal strength feed-

back. In our evaluation, we adopt their executable graphical

application JRC-PaStMe [65].

Markov-PSM. Castelluccia et al. [16] designed an adaptive

PSM based on the Markov model. Then Ma et al. [37] im-

proved Markov with normalization and smoothing techniques.

We adopt the setting recommended by Wang et al. [24]: 4-

order Markov with End-symbol Normalization and Laplace

Smoothing (with δ=0.01 as suggested in [37]).

RNN-PSM. Melicher et al. [18] presented a probabilistic

model based on Recurrent Neural Networks (i.e., RNN-PSM)

to measure password guessability. RNN-PSM [18] predicts

the next character of a password fragment and outputs the

probability. It outperforms its counterparts under large guess

numbers (usually≥1010 [18, 22]).

LPSE. Guo and Zhang [13] employed two kinds of simi-

larity to measure the strength of a given password, namely

cosine-length similarity and password edit distance. Unlike

other rule-based PSMs (e.g., 12306-PSM), LPSE [13] rep-

resents a password by a vector containing password charset

and length. Then, it evaluates password strength by calcu-

lating the similarity between the two vectors of the user’s

password and the standard strong password (randomly gener-

ated, length≥16). We choose the recommended cosine length

metric of LPSE [13] for evaluation.

CNN-PSM. Pasquini et al. [20] proposed an interpretable

probabilistic PSM, using a lightweight deep learning frame-

work from Convolutional Neural Network. We call it CNN-

PSM. In particular, CNN-PSM [20] disentangles the security

contribution of each character in the password, and provides

explicit fine-grained character-level strength feedback. But

as shown in Table 3, CNN-PSM [20] requires much more

(overwhelming) computing resources and training time than

other PSMs (such as RNN-PSM [18]).

Zxcvbn. This PSM has been adopted by well-known services

such as Dropbox and WordPress [14]. It decomposes an en-

tered password into several patterns that may overlap, and then

estimates the number of guesses required by the attacker to

hit the password, and outputs the strength score. However, the

original Zxcvbn [14] is primarily designed for English users

(so we call it ZxcvbnE), ignoring users in other languages.

Thus, we replace some of its built-in English dictionaries with

the corresponding Chinese dictionaries (see Appendix E in

the full version of this paper for more details), and get the

modified ZxcvbnC to explore RQ4.

KeePSM. KeePSM is the built-in PSM of the popular pass-

word manager KeePass [15]. KeePSM [15] expresses the

password strength as an entropy score in bits and a colored

progress bar. Similar to Zxcvbn [14], KeePSM [15] detects

specific patterns of a given password. Then, it takes an opti-

mal static entropy encoder to calculate the minimum encod-

ing cost of pattern combinations. Compared to other PSMs,

KeePSM [15] is somehow too strict. For example, a random

password O*IghdA9i?P1 containing 12 characters of four

charsets is only rated as 78 bits (rate it as “weak”).

12306-PSM/Microsoft-PSM. 12306.cn is the official tick-

eting website of China Railway, and is used by six hundred

million users in their real names. 12306-PSM rates users’ pass-

words into three levels: A “weak” password is with length≤7

and composed only of letters, digits or the underscore char-

954 32nd USENIX Security Symposium USENIX Association

acter ‘_’; A “strong” password contains mixed-case letters,

digits and at least one ‘_’; the remaining passwords are labeled

as “medium”. Microsoft-PSM has been adopted by popular

services such as Outlook and Skype. Microsoft-PSM divides

passwords into four levels: “very weak”, “weak” and “strong”

if the password length is < 8, within 8∼14 and >14, respec-

tively; a “strong” password will be upgraded to “perfect” if it

contains 2+ charsets. Such heuristic rule-based PSMs mainly

consider password composition, are far from accurate and of-

ten provide misleading feedback for weak passwords [27, 64].

4.3 Experimental setup
Among the 12 PSMs to be evaluated, five of them (i.e.,

Markov-PSM [16], MultiPSM [19], PCFG-PSM [25], RNN-

PSM [18], and CNN-PSM [20]) need one training set, and one

(i.e., fuzzyPSM [17]) needs two training sets. To make our

experiments as realistic as possible, our choices of the training

set(s) for a given test set (simulating the target site) adhere

to three rules: (1) They never come from the same service;

(2) They are of the same language; and (3) The training set(s)

shall be as large as possible. Rule (1) prevents our experiments

from the overfitting issue, while rules (2) and (3) ensure the

effectiveness of each algorithm. This gives rise to the dataset

setup in Table 2. Two training sets (i.e., Tianya and Rockyou)

are used by all six PSMs, and four additional datasets are used

as Training set B (simulating password reuse behaviors) for

fuzzyPSM [17]. Our training sets are also widely used in

various PSM-related literature [10, 13, 14, 17].

For a fair comparison, we further make sure that all 12

PSMs work on the same test set, and manage to obtain their

codes shared (implemented) by the original authors or di-

rectedly from target sites. For all parameters, we follow the

best recommendations of the original authors. We adopt the

entire dataset for training for the six attack algorithm-based

PSMs (see Table 3). This is because, for such PSMs, their

accuracy is related to the training set size. Particularly, we

explored the impact of training set size on PSM accuracy (see

Appendix F of the full paper for detailed experimental results).

We find that compared with PSMs trained with sub-sample

(i.e., smaller) datasets, the PSMs trained with the entire dataset

perform better in both online and offline scenarios.

4.3.1 Online guessing scenarios
According to rule-of-thumb recommendations of [39, 40, 51]

(with no concrete, real-world empirical evidence) and our

manual test (see Appendix A), we choose 104 as the online

guessing threshold. The ideal strength ranking of a popu-
lar password can be approximated as its frequency ranking

of a large enough password corpus [10, 17, 21]. However,

this straightforward idea is hard to apply to approximate the

strength of unpopular passwords [4]. To mitigate approxima-

tion errors, we first select passwords with frequency≥10 (as

recommended by [10]) from each target password dataset to

form the set D. Then, we use D as the basis of the test set,

and adopt two different strategies to select testing passwords

from D for accuracy comparison in online scenarios:

� For knowledgeable online attacker. Since many sites

(e.g., Yahoo [46], Twitter [66]) have leaked their user pass-

words more than once, a powerful (yet realistic) attacker can

learn the actual password distribution of the targeted website.

Due to limited guess attempts allowed, the attacker will prior-

itize the most popular passwords of this distribution within

the throttling threshold. Thus, we take the top-104 popular

passwords in D as the test set to calculate WSpearman.

� For general online attacker. For a general attacker un-

aware of the target password distribution, her sensible strategy

is to traverse common popular passwords (rather than the most

popular ones) of the target site. The general attacker is further

confined to submitting passwords in the target password set

for online guessing, while any real attacker does not have

(but can only approximate) this ability. That is, our general at-

tacker has the upper-bound capabilities of all online attackers

who are unaware of the target distribution. To characterize

her behavior, we randomly select 104 passwords from D as

the test set and calculate the WSpearman value.

PSMs that feedback coarse-grained bins/scores (e.g., 12306

-PSM and Microsoft-PSM) often measure passwords with

obviously different strengths to have the same strength

level/score. However, under the experimental method in which

the ideal PSM is the benchmark, such PSMs seem easier

to evaluate popular passwords accurately. This is because

they have orders of magnitude of fewer strength options (e.g.,

[weak, medium, strong]) than PSMs whose feedback is fine-

grained password probabilities or guesses. To explore whether

this phenomenon leads to an unfair evaluation of PSMs under

the WSpearman metric, we construct an artificial Pseudo-
PSM, which has only one strength rating, representing the

extreme case of coarse-grained PSMs. That is, Pseudo-PSM

rates the strength of all passwords with the same score (and

thus is highly inaccurate). If its WSpearman is always very

high, this indicates that our WSpearman metric cannot fairly

evaluate coarse-grained PSM accuracy; If its WSpearman is

always close to 0, it indicates no correlation between the pass-

word strength given by Pseudo-PSM and the ideal PSM. That

is, our adopted WSpearman metric can effectively measure

these coarse-grained PSMs (e.g., Microsoft-PSM [26], 12306-

PSM , including apparently unreasonable Pseudo-PSM). Our

experimental results well fit the latter case (see Fig. 4), in-

dicating our adopted Wspearman has avoided giving coarse-

grained PSMs an inappropriate advantage.

4.3.2 Offline guessing scenarios
We consider four most representative offline attackers (or

strategies) and their configurations are as follows:

� For brute-force offline attacker. The guess number of the

brute-force attack is related to password charset and length.

We follow the method in [23] to implement 1012 guesses.

USENIX Association 32nd USENIX Security Symposium 955

� For dictionary-based offline attacker. We select the fa-

mous JtR [47] as the dictionary-based guessing tool, adopt the

training set in Table 2 as the wordlist, and conduct 109 guesses.

As for the mangling rules, following the recommendation of

Ur et al. [11], we choose Spiderlabs ruleset [67].

� For probability-based offline attacker. We train 4-gram

Markov [37] (using end-symbol normalization and Laplace

Smoothing) suggested by Wang et al. [24] on our training sets,

and generate 109 guesses in decreasing order of probability.

� For combined offline attacker. This attacker is powerful

enough to conduct the above three guessing attacks simultane-

ously to achieve a higher cracking rate, so we take the union

of the above three generated sets as her guessing set.

Under each guessing strategy, we calculate the strength

distributions of the cracked passwords and the remaining (un-

cracked) passwords, and use KL-divergence to evaluate the

differences between the two distributions to measure PSM

accuracy. Particularly, the higher the KL-divergence, the more

accurate the PSM is in offline guessing scenarios.

To simulate the transformation from fine-grained strength

feedback (e.g., entropy, guess number or probability) to easy-

to-understand (widely used) bins/scores, we take the follow-

ing methods to convert the output of PSMs: (1) For PSMs with

their own scoring/binning strategies (i.e., LPSE [13], Zxcvbn

[14], KeePSM [15], 12306-PSM and Microsoft-PSM), we

directly take their scoring results; (2) Regarding probability-

based fuzzyPSM [17], PCFG-PSM [25], Markov-PSM [16]

and RNN-PSM [18], we first use the Monte Carlo method [35]

to calculate the guess number of each testing password, and

then obtain the strength scores of testing passwords using

the guess number-score conversion method of Zxcvbn [14],

namely: <103 (score 0), 103∼106 (score 1), 106∼108 (score

2), 108∼1010 (score 3) and >1010 (score 4); (3) MultiPSM

[19] outputs a fusion score from 0 to 10 as the strength. We lin-

early map this score to an integer from 0 to 4 as the converted

score for the sake of comparison; and (4) CNN-PSM [20]

does not conform to the probability model, so the Monte

Carlo method [35] is inapplicable. As a solution, we divide

the password probability interval 10−200∼1 evenly into five

parts, corresponding to the strength scores 0∼4. We choose a

score range 0∼4 because this is the strength scale setting for

most commercial PSMs [27, 32].

To measure the accuracy of converted PSMs with the feed-

back of coarse-grained bins/scores, we calculate Precision

and PrecisionSecurity (see Sec. 3.4). The higher the metrics,

the fewer misjudgments of password strength and the more

accurate the PSM examined.

5 Experimental results and analysis

We now provide a comprehensive, comparative evaluation of

the accuracy of 11 leading PSMs as listed in Table 3, as well

as our modified ZxcvbnC (see Sec. 4.2).

5.1 Results in online guessing scenarios
As explicated in Sec. 3, we take WSpearman as the metric to

evaluate PSM accuracy under the general and knowledgeable

guessing strategies in online guessing scenarios. The results

on Dodonew, Weibo and LinkedIn are shown in Fig. 4. Due

to space constraints, the results on CSDN, 000webhost and

Yahoo are shown in Fig. 9 of the full paper.

As defined in Sec. 3.2, the knowledgeable attacker is well-

informed of the target password distribution, and she will

prioritize the most popular passwords (e.g., top-104) of this

distribution [4, 21]. Almost all PSMs (excluding LPSE [13],

KeePSM [15] and RNN-PSM [18]) can accurately evaluate

these extremely popular passwords under the knowledgeable

guessing strategy, so the WSpearman value usually starts

around 1.0 (see Fig. 4). In contrast, the WSpearman value is

significantly lower under the general guessing strategy where

the attacker is unaware of the target password distribution.

FuzzyPSM [17] always performs the best in online guess-

ing scenarios. Under the knowledgeable guessing strategy, its

WSpearman is always greater than 0.5, usually the highest.

Under the general guessing strategy, it still has a significant

advantage in accuracy over all other PSMs. The intrinsic rea-

son behind its good performance is that fuzzyPSM [17] can

well capture users’ password reuse behavior without users’

old/leaked passwords (while all other PSMs cannot).

For pattern detection-based PSMs, the WSpearman val-

ues of ZxcvbnC and ZxcvbnE [14] are significantly higher

than KeePSM [15]. The reason is that Zxcvbn [14] has

a comprehensive set of methods for detecting/recognizing

common patterns in weak passwords, including keyboard

patterns, dates and names, etc. In online guessing sce-

narios, ZxcvbnC performs better than ZxcvbnE [14] on

Chinese datasets, while the opposite is true on English

datasets. For example, ZxcvbnC measures the 18th-ranked

password woaini1314 (which is a popular password that

means “I love you forever” in Chinese Pinyin) in Dodonew

as guess_number=63. However, ZxcvbnE [14] evaluates its

strength as guess_number=85,143,792. The significant gap

between these two guess numbers suggests the necessity of

adapting the dictionaries of a pattern detection-based PSM to

the language of the targeted service. This suggests that the

performance of pattern-based PSMs are language dependent.

We further explore whether this holds on six attack algorithm-

based PSMs (see Table 3), and find they all perform worse

on services in languages different from which it is originally

designed for (see Appendix F in the full version of this paper

for details). This answers RQ4.

Among attack algorithm-based PSMs, fuzzyPSM [17] per-

forms slightly better than Markov-PSM [16] and RNN-PSM

[18], significantly better than PCFG-PSM [25]. Though both

fuzzyPSM [17] and PCFG-PSM [25] are based on the PCFG

algorithm [36], fuzzyPSM [17] captures real users’ password

reuse behaviors and common modification methods in its

fuzzy-PCFG algorithm, which is the essential reason for its

956 32nd USENIX Security Symposium USENIX Association

(a) Knowledgeable strategy, tr: Tianya, ts: Dodonew (b) Knowledgeable strategy, tr: Tianya, ts: Weibo (c) Knowledgeable strategy, tr: Rockyou, ts: LinkedIn

(d) General strategy, tr: Tianya, ts: Dodonew (e) General strategy, tr: Tianya, ts: Weibo (f) General strategy, tr: Rockyou, ts: LinkedIn

Figure 4: Weighted spearman correlation coefficient of state-of-the-art PSMs in online guessing scenarios (tr: Training set; ts: Test set).

high accuracy. However, in most cases, attack algorithm-based

PSMs (except for fuzzyPSM [17]) perform slightly worse than

pattern detection-based ZxcvbnC and ZxcvbnE [14]. This is

mainly because the former has a lower ability in measuring

short (or simple-composed) passwords and does not deploy

the blocklist or dictionary to detect common weak passwords.

On the contrary, ZxcvbnE [14] and ZxcvbnC are good at

characterizing such passwords due to their built-in popular-

password dictionaries. Although MultiPSM [19] fuses a block-

list module and two heterogeneous Markov modules, its per-

formance is worse than that of the single-model Markov-

PSM [16] in the online guessing scenario. This implies that

its heuristic fusion strength score does not fully exploit the

advantages of each constituent module.

The accuracy of CNN-PSM [20] is mediocre under the

knowledgeable guessing strategy, but it seems to be worse

under the general guessing strategy (WSpearman<0.5). This

suggests that CNN-PSM [20] can more accurately measure

top-ranked passwords than measure common ones. The ad-

vanced rule-based LPSE [13] usually performs not very well,

indicating that its heuristic construction of password vectors

is somewhat unreasonable, or its adopted cosine-length simi-

larity is not suitable. Rule-based 12306-PSM and Microsoft-

PSM simply output the heuristic strength bin/score of a pass-

word instead of the fine-grained password probability or guess

number. In online scenarios, these PSMs usually perform the

worst, indicating that the crude rule-based PSMs are far from

accurate. For instance, they do not rate the popular password

111222tianya (rank=10 in Tianya dataset; see Table 10 in

the full paper) as weak, just because it is composed of two

charsets and its length=12. The WSpearman value of Pseudo-

PSM is almost 0. This in turn demonstrates that the correction

strategies in our adopted WSpearman have avoided giving

coarse-grained PSMs an inappropriate advantage.

Summary. In online guessing scenarios, fuzzyPSM [17] per-

forms the best, followed by Zxcvbn [14]. Pattern-based and

attack-algorithm-based PSMs need to be adapted for evaluat-

ing passwords in different languages.

5.2 Results in offline guessing scenarios
Among our proposed three metrics for offline scenarios (see

Sec. 3.4), KL-divergence can reveal the distinguishing ability

of a PSM; Precision can measure PSM accuracy when its

non-binned strength feedback is transformed to widely used

bins/scores; and PrecisionSecurity can characterize the impacts

of misjudgments in different directions on PSM accuracy. The

higher the metric value, the more accurate the PSM is under

the corresponding offline strategy.

5.2.1 KL-divergence
In Table 4, we summarize the KL-divergence of leading PSMs

under various attacking strategies, and identify the best PSM

under each guessing strategy with the background color. For

brute-force, MultiPSM [19] performs the best, because it con-

tains a brute-force detection model. Rule-based LPSE [13]

and Microsoft-PSM are also noteworthy: Their KLB f a are

the second and only lower than MultiPSM [19] in most

cases. This is mainly because these rule-based PSMs evaluate

password strength by password complexity (i.e., length and

charsets), which just defines the password space for brute-

force guessing [68]. That is, the intrinsic mechanisms of rule-

based PSMs and brute-force attacks are interlinked.

USENIX Association 32nd USENIX Security Symposium 957

Table 4: KL-divergence of leading PSMs in offline guessing scenarios. Multi-

PSM [19] performs best under brute-force and combined guessing strategies.†

Chinese English
PSM KL

Dodonew CSDN Weibo LinkedIn 000web. Yahoo

KLB f a 1.0788 2.5179 3.1533 0.8308 0.9268 0.7865

KLDic 2.1009 6.7767 0.9021 3.0155 4.3028 3.7928

KLProb 1.2467 1.1164 0.4478 1.3486 2.4993 1.5537
fuzzyPSM [17]

KLAll 1.6193 3.1912 3.9749 2.2784 2.1186 3.3429

KLB f a 7.8006 2.0598 1.1105 8.5515 10.8753 6.4370

KLDic 0.3519 0.2727 0.1161 0.5221 1.0597 0.2488

KLProb 1.6762 1.8614 1.1436 5.4648 2.0630 2.0235
MultiPSM [19]

KLAll 8.8994 7.2047 5.3692 7.5933 4.6160 3.9984

KLB f a 3.0046 1.4362 2.3564 2.2791 2.3951 1.2541

KLDic 5.5556 5.9258 1.1966 3.4309 3.0581 1.8182

KLProb 0.5047 1.1080 1.0369 1.2626 1.4452 0.9729
PCFG-PSM [25]

KLAll 4.4277 2.3542 5.2805 6.0787 6.5533 2.9720

KLB f a 1.2793 2.7560 3.8787 1.1933 0.9148 0.9439

KLDic 3.0063 6.6061 3.8439 1.1163 1.6300 1.0145

KLProb 2.0506 2.0341 0.7793 6.9454 6.9880 6.7100
Markov-PSM [16]

KLAll 2.2533 3.4217 3.8988 5.8993 1.3360 2.3893

KLB f a 0.6410 0.9677 1.1538 1.0628 0.9133 0.6623

KLDic 1.8715 2.9528 1.5388 3.4172 5.6578 2.0859

KLProb 0.9765 1.6174 0.9335 2.6606 3.0942 1.7423
RNN-PSM [18]

KLAll 1.1992 1.5318 2.8269 4.1227 3.2999 6.3708

KLB f a 8.6483 6.7929 3.6468 4.0480 1.7946 1.3838

KLDic 0.6029 0.6291 0.3974 0.3833 0.5417 0.3120

KLProb 0.3492 0.4390 0.3814 1.8581 1.1519 1.2526
LPSE [13]

KLAll 6.7505 1.8783 0.9242 6.7797 6.5693 4.6571

KLB f a 1.2415 1.7885 1.3490 0.3299 0.7236 0.5631

KLDic 4.1313 6.3760 4.1089 2.2732 2.6128 2.6266

KLProb 0.3446 0.6661 0.5040 1.1542 2.5521 1.7725
CNN-PSM [20]

KLAll 3.0218 3.3403 2.8551 3.5520 2.1229 2.4907

KLB f a 2.1916 3.6398 2.9347 1.1732 1.7442 1.1001

KLDic 2.6813 5.8958 2.7036 1.0440 2.1223 2.0496

KLProb 0.7428 1.1549 0.7512 0.9996 1.7949 1.2733
ZxcvbnC

KLAll 2.8681 3.8673 4.4639 1.6443 2.0144 2.3132

KLB f a 2.8831 4.2145 2.7957 1.4231 1.5154 1.2219

KLDic 4.3938 7.6722 4.0757 2.0382 3.7266 2.8444

KLProb 0.9770 1.5533 1.1632 1.3931 1.8223 1.4169
ZxcvbnE [14]

KLAll 4.3930 4.6782 5.4262 4.7708 2.6660 2.6944

KLB f a 2.5697 2.2666 3.9500 2.8319 2.2526 2.8474

KLDic 1.0812 2.0236 0.8438 0.1939 0.5237 0.3673

KLProb 0.2886 0.4965 0.9081 1.0141 0.9805 0.9177
KeePSM [15]

KLAll 2.2322 2.6261 3.9691 1.6662 0.8765 1.3227

KLB f a 1.6920 1.6607 0.3271 0.6190 1.6402 0.3176

KLDic 0.2456 0.3219 0.1479 0.1504 0.1692 0.2607

KLProb 0.0058 0.0127 0.0080 0.1873 0.4803 0.0319
12306-PSM

KLAll 1.4990 1.3592 0.2232 0.3698 0.8558 0.2026

KLB f a 3.7802 0.2433 0.3576 3.6622 5.6669 3.2280

KLDic 0.6652 0.0574 0.1811 0.4127 0.4552 0.0112

KLProb 0.0545 0.0364 0.0688 0.9957 0.8549 0.1223
Microsoft-PSM

KLAll 3.3667 0.2370 0.2617 2.7974 3.0522 2.6380

†KL=KL-divergence; Bfa=Brute-force attack; Dic=Dictionary-based guessing;
Prob=Probability-based guessing; All=The combined guessing. A line with back-
ground color means the corresponding PSM is the best under the given strategy.

Under the dictionary-based guessing strategy, ZxcvbnE
[14] is quite accurate, benefiting from its well-designed pat-

tern detection mechanism, which covers common popular

passwords and various password mangling rules (e.g., leet

and reverse) as well as patterns (e.g., keyboard pattern, birth-

day). Unlike online guessing scenarios, our modified ZxcvbnC
does not show an advantage compared to ZxcvbnE [14] on

Chinese datasets under dictionary-based attacks. It is believed

that, ZxcvbnC will be more accurate on Chinese sites, by fur-

ther modifying its dictionaries according to Chinese users’

password construction habits.

In probability-based attacks, Markov-PSM [16] performs

the best as expected, because such attacks use the Markov

model [37]. Similarly, MultiPSM [19] contains two hetero-

Table 5: Precision of leading PSMs with the feedback of (transformed)

bins/scores in offline guessing scenarios. LPSE [13], ZxcvbnE [14], Markov-

PSM [16] and MultiPSM [19] perform the best under brute-force, dictionary-

based, probability-based and combined guessing strategies, respectively.†

Chinese English
PSM Prec

Dodonew CSDN Weibo LinkedIn 000web. Yahoo

PrecB f a 0.6593 0.7356 0.9622 0.8099 0.9136 0.9182
PrecDic 0.8320 0.8828 0.7896 0.8118 0.9722 0.9941
PrecProb 0.7636 0.7042 0.1239 0.8738 0.9575 0.9750

fuzzyPSM [17]

PrecAll 0.6842 0.7631 0.9811 0.7544 0.9604 0.9569

PrecB f a 0.8738 0.8608 0.9582 0.9676 0.6753 0.8721
PrecDic 0.6134 0.6435 0.6653 0.9598 0.9358 0.9791
PrecProb 0.3248 0.1462 0.1736 0.8842 0.9189 0.8433

MultiPSM [19]

PrecAll 0.9971 0.9917 0.9978 0.9962 0.9918 0.9975

PrecB f a 0.9331 0.8492 0.8829 0.9122 0.9507 0.9057
PrecDic 0.9706 0.9793 0.7531 0.9523 0.9792 0.9460
PrecProb 0.3522 0.9895 0.2680 0.9886 0.9891 0.9945

PCFG-PSM [25]

PrecAll 0.9241 0.8305 0.8136 0.8747 0.9344 0.8594

PrecB f a 0.5706 0.5967 0.9214 0.6284 0.8954 0.7478
PrecDic 0.7933 0.8058 0.8520 0.5314 0.9519 0.6039
PrecProb 0.9333 0.9534 0.6133 0.9900 0.9991 0.9799

Markov-PSM [16]

PrecAll 0.5647 0.6038 0.9181 0.4347 0.8707 0.5056

PrecB f a 0.6514 0.6425 0.5042 0.8778 0.9527 0.9180
PrecDic 0.9535 0.9359 0.7356 0.9682 0.9961 0.9667
PrecProb 0.9050 0.8540 0.7709 0.8609 0.9580 0.8537

RNN-PSM [18]

PrecAll 0.6270 0.6301 0.4788 0.8715 0.9503 0.9796

PrecB f a 1.0000 1.0000 0.5467 0.9999 0.9998 0.9992
PrecDic 0.3505 0.6817 0.3272 0.5878 0.7074 0.6786
PrecProb 0.2349 0.6326 0.0986 0.8030 0.7956 0.8243

LPSE [13]

PrecAll 0.9993 0.9866 0.5465 0.9974 0.9968 0.9755

PrecB f a 0.6975 0.7272 0.7046 0.7142 0.2628 0.5030
PrecDic 0.4363 0.4505 0.4425 0.7951 0.2505 0.4415
PrecProb 0.1963 0.0656 0.1274 0.6746 0.2675 0.4129

CNN-PSM [20]

PrecAll 0.7966 0.7869 0.7475 0.9231 0.4199 0.6666

PrecB f a 0.8926 0.8912 0.9586 0.8251 0.8707 0.9162
PrecDic 0.8485 0.9206 0.8159 0.8404 0.9827 0.9711
PrecProb 0.3210 0.2329 0.1856 0.8268 0.9728 0.9367

ZxcvbnC

PrecAll 0.9866 0.9794 0.9938 0.8831 0.9866 0.9943

PrecB f a 0.9561 0.9326 0.9752 0.9191 0.6990 0.9206
PrecDic 0.9254 0.9325 0.8770 0.9609 0.9866 0.9796
PrecProb 0.2639 0.1055 0.1942 0.9160 0.9385 0.9216

ZxcvbnE [14]

PrecAll 0.9881 0.9802 0.9970 0.9962 0.9976 0.9986

PrecB f a 0.6622 0.6939 0.9085 0.6967 0.2375 0.4374
PrecDic 0.4281 0.4853 0.5685 0.7807 0.3105 0.3785
PrecProb 0.2232 0.0879 0.1679 0.6598 0.2953 0.3510

KeePSM [15]

PrecAll 0.7805 0.7753 0.9678 0.9158 0.4442 0.5766

PrecB f a 0.9105 0.8295 0.4205 0.6799 0.9406 0.9978
PrecDic 0.2400 0.2859 0.2519 0.4339 0.3958 0.8217
PrecProb 0.1208 0.0657 0.0655 0.4389 0.5917 0.9210

12306-PSM

PrecAll 0.9341 0.8643 0.4320 0.7403 0.9399 0.9995

PrecB f a 0.9979 0.9985 0.5161 0.9952 0.9822 0.9937
PrecDic 0.5596 0.3134 0.3082 0.6488 0.4385 0.7556
PrecProb 0.1531 0.1345 0.0837 0.7743 0.5624 0.8476

Microsoft-PSM

PrecAll 0.9982 0.9929 0.5164 0.9948 0.9806 0.9937

† Prec=Precision; Other abbreviations are the same with Table 4. A line with back-
ground color means the corresponding PSM is the best under the given strategy.

geneous Markov modules and obtains the higher KLProb on

English datasets. Attack algorithm-based RNN-PSM [18] per-

forms slightly better than PCFG-PSM [25], but both of them

perform quite mediocre. This can be explained by the fact that

though RNN is better than Markov in large guesses (usually

≥ 1010) [18], and PCFG is better in small guesses [24], but

none is always better than Markov.

As expected, MultiPSM [19] generally performs the best

under the combined guessing strategy (denoted as All). This is

because MultiPSM [19] includes the brute-force password de-

tection mechanism, blocklist, and two heterogeneous Markov

models [37], consistent with our two (single) guessing strate-

gies. The final multimodal score of these modules, which can

reflect the password strength under the combined attacks.

958 32nd USENIX Security Symposium USENIX Association

Table 6: PrecisionSecurity of leading PSMs with the feedback of (transformed)

bins/scores in offline guessing scenarios. MultiPSM [19] is still the most

accurate PSM under brute-force and combined guessing strategies.†

Chinese English
PSM PrecSec

Dodonew CSDN Weibo LinkedIn 000web. Yahoo

PrecSec
B f a 0.2993 0.3226 0.7526 0.2772 0.2139 0.3551

PrecSec
Dic 0.3228 0.3576 0.6121 0.2861 0.2586 0.3907

PrecSec
Prob 0.2066 0.1582 0.0736 0.2915 0.2452 0.3767

fuzzyPSM [17]

PrecSec
All 0.3249 0.3462 0.7702 0.2791 0.2571 0.3868

PrecSec
B f a 0.7978 0.7519 0.4118 0.7809 0.7303 0.7930

PrecSec
Dic 0.4884 0.5142 0.5270 0.7666 0.7235 0.7832

PrecSec
Prob 0.2574 0.1163 0.1336 0.7061 0.7100 0.6745MultiPSM [19]

PrecSec
All 0.7883 0.7836 0.7923 0.7987 0.7729 0.7988

PrecSec
B f a 0.5760 0.1749 0.6153 0.3078 0.1913 0.1878

PrecSec
Dic 0.5751 0.2008 0.5245 0.3134 0.1970 0.1958

PrecSec
Prob 0.0717 0.1979 0.0582 0.3183 0.1986 0.2055

PCFG-PSM [25]

PrecSec
All 0.5742 0.1712 0.6014 0.3003 0.1881 0.1785

PrecSec
B f a 0.1732 0.2026 0.3295 0.2845 0.2009 0.3108

PrecSec
Dic 0.2047 0.2407 0.2686 0.2672 0.2203 0.2922

PrecSec
Prob 0.2017 0.1833 0.1732 0.3375 0.2209 0.3425

Markov-PSM [16]

PrecSec
All 0.1796 0.2156 0.3331 0.2523 0.2056 0.2764

PrecSec
B f a 0.1588 0.1543 0.3561 0.2476 0.1959 0.7231

PrecSec
Dic 0.2174 0.2118 0.3675 0.2679 0.2051 0.7651

PrecSec
Prob 0.1919 0.1964 0.1554 0.2738 0.2057 0.7682

RNN-PSM [18]

PrecSec
All 0.1543 0.1539 0.3533 0.2514 0.1960 0.7780

PrecSec
B f a 0.7748 0.4265 0.4191 0.7554 0.4563 0.6329

PrecSec
Dic 0.2555 0.1779 0.2437 0.4272 0.2240 0.3905

PrecSec
Prob 0.1630 0.1377 0.0608 0.5980 0.2932 0.4942

LPSE [13]

PrecSec
All 0.7747 0.4239 0.4191 0.7549 0.4557 0.6284

PrecSec
B f a 0.5580 0.5817 0.5636 0.5713 0.1951 0.4023

PrecSec
Dic 0.3490 0.3604 0.3540 0.6361 0.1852 0.3532

PrecSec
Prob 0.1570 0.0524 0.1019 0.5397 0.1989 0.3303

CNN-PSM [20]

PrecSec
All 0.6373 0.6295 0.5980 0.7385 0.3208 0.5333

PrecSec
B f a 0.6983 0.6399 0.7586 0.6306 0.2743 0.6610

PrecSec
Dic 0.6599 0.6580 0.6442 0.6534 0.3687 0.7073

PrecSec
Prob 0.2376 0.1064 0.1398 0.6316 0.3560 0.6773

ZxcvbnC

PrecSec
All 0.7739 0.7107 0.7869 0.6876 0.3719 0.7260

PrecSec
B f a 0.7560 0.7253 0.7679 0.7314 0.3725 0.7027

PrecSec
Dic 0.7314 0.7237 0.6890 0.7670 0.6053 0.7506

PrecSec
Prob 0.2030 0.4632 0.1431 0.7290 0.5645 0.7035

ZxcvbnE [14]

PrecSec
All 0.7900 0.7742 0.7867 0.7953 0.6095 0.7649

PrecSec
B f a 0.5297 0.5551 0.7268 0.5573 0.1900 0.3499

PrecSec
Dic 0.3425 0.3883 0.4548 0.6245 0.2484 0.3028

PrecSec
Prob 0.1785 0.0703 0.1343 0.5278 0.2362 0.2808

KeePSM [15]

PrecSec
All 0.6244 0.6202 0.7742 0.7326 0.3553 0.4613

PrecSec
B f a 0.7250 0.6603 0.3360 0.5419 0.6981 0.7981

PrecSec
Dic 0.1886 0.2255 0.2011 0.3451 0.2627 0.6573

PrecSec
Prob 0.0934 0.0493 0.0519 0.3492 0.4200 0.7367

12306-PSM

PrecSec
All 0.7440 0.6882 0.3451 0.5903 0.6988 0.7995

PrecSec
B f a 0.6968 0.6880 0.7613 0.7728 0.5150 0.6976

PrecSec
Dic 0.4471 0.2071 0.2455 0.5041 0.2976 0.6025

PrecSec
Prob 0.1219 0.0622 0.0659 0.6044 0.3963 0.6762

Microsoft-PSM

PrecSec
All 0.7981 0.7508 0.4121 0.7812 0.7320 0.7930

†PrecSec=PrecisionSecurity; Other abbreviations are the same with Table 4. Back-
ground color indicates the corresponding PSM is the best under the given strategy.

Summary. In offline scenarios, MultiPSM [19] generally

performs the best. Markov-PSM [16] and Zxcvbn [14] are the

most accurate PSMs under probability-based and dictionary-

based guessing, respectively.

5.2.2 Precision and PrecisionSecurity

Commercial PSMs (e.g., 12306-PSM) usually adopt intuitive

color bars with bins/scores as feedback to promote users’ un-

derstanding of password strength [7, 10, 56, 57]. A natural

question arises: What is the status quo when transforming the

feedback of a well-performing non-binned academic PSM

into an easy-to-understand (widely used) bins/scores [10]. To

this end, we apply the conversion method in Sec. 4.3.2 and ob-

tain the intuitive score distribution figures of the cracked and

remaining (uncracked) passwords. Due to space constraints,

here we only show the score distributions on Weibo under the

combined guessing strategy in Fig. 5. For the distributions on

Weibo and LinkedIn under the other typical offline guessing

strategies, see Figs. 14 and 15 in the full paper1.

As mentioned in Sec. 3.2, the focus of PSMs in offline

guessing scenarios is preventing weak passwords from regis-

tering successfully as much as possible, reducing the number

of passwords an attacker can successfully crack with limited

computing resources. In this direction, an accurate scoring

PSM shall follow: A higher score corresponds to a smaller

proportion of the cracked passwords and a larger proportion

of the remaining passwords. In a score distribution figure,

the upper and lower parts of the X-axis are score distribu-

tions of the cracked and remaining (un-cracked) passwords.

Under this criterion, Markov-PSM [16] and RNN-PSM [18]

perform better. Specifically, KeePSM [15] has a particularly

high proportion of passwords with score=0 (i.e., very weak),

indicating that its strength evaluation method is overly strict.

CNN-PSM [20] is also slightly strict, which reminds us that

our score conversion method (i.e., linear mapping) for CNN-

PSM [20] may need to be adjusted.

Further, to precisely quantify PSM accuracy when its fine-

grained strength feedback is transformed to a coarse-grained

score, we adopt our proposed Precision and show the re-

sults in Table 5. We also calculate our designed reconciled

PrecisionSecurity value for each PSM, considering the security

impact of strength misjudgments in different directions on

PSM accuracy, and show the results in Table 6.

Regarding Precision, LPSE [13], ZxcvbnE [14] and

Markov-PSM [16] perform the best under brute-force,

dictionary-based and probability-based attacks, respectively.

It is surprising because the non-binned LPSE [13] has a rel-

atively low KL-divergence under all four offline guessing

strategies. But the binned-LPSE’s [13] Precision is markedly

higher than its counterparts under brute-force attacks, when

its feedback is converted to scores. One possible reason is

that scoring can, to some extent, mitigate strength misjudg-

ments of a fine-grained PSM, if the score conversion method

is suitable. We confirmed this conjecture through experiments

and see Sec. 6 for more details.

Regarding PrecisionSecurity, MultiPSM [19] is the most ac-

curate PSM under brute-force guessing, and ZxcvbnE shows

its advantage under dictionary-based and probability-based

guessing strategies. Especially, MultiPSM [19] still has the

highest Precision and PrecisionSecurity under the combined

attacks, indicating that our adopted score conversion method

has good robustness in offline guessing scenarios.

6 Insights and suggestions
In this section, we share some insights obtained from our

experiments, and provide a few workable suggestions to help

1In Figs. 5, 14 and 15, some seemingly empty bins correspond to tiny

proportions of passwords and cannot be noticeably observed.

USENIX Association 32nd USENIX Security Symposium 959

Figure 5: Password score distributions (on Weibo) of leading PSMs under the combined guessing strategy. The larger fractions of cracked low-score and

remaining high-score passwords indicate a more accurate PSM. For more results on Weibo and LinkedIn, see Figs. 14 and 15 in the full version of this paper.

design a more accurate, practical, and reliable PSM.

� Adaptive score conversion methods can be used to fa-
cilitate PSM application.

Commercial PSMs often quantify password strength with

coarse-grained 3∼5 bins/scores (see Fig. 1) [27,32,64]. Even

in the absence of guidance, such PSMs can still provide users

with a concrete, intuitive indication of when they are doing

well or bad [6, 69]. Academic PSMs (e.g., fuzzyPSM [17])

are more accurate than commercial PSMs, and often take fine-

grained probability, guess number, or entropy as strength feed-

back. Such probability or guess number can finely reflect how

subtle changes in a password affect its strength [10, 20, 27].

However, due to the lack of the “existing motivator” (whether

the password is “weak”, “medium,” or “strong”) [8], it is

difficult for users to understand such abstract feedback intu-

itively. Therefore, an adaptive score conversion method (i.e.,

fine-grained feedback→coarse-grained feedback) is helpful

for the vast majority of non-expert users, and is expected to

facilitate the adoption of more accurate academic PSMs.

When attempting to convert the fine-grained strength feed-

back of academic PSMs into understandable (but coarse-

grained) scores, a key concern is whether this conversion will

lead to accuracy reduction. Our evaluation results in Sec. 5.2

show that the non-binned LPSE [13] performs poorly (with

lower KL-divergence), but surprisingly, its binned version has

higher Precision and PrecisionSecurity than its counterparts

under brute-force guessing attacks. This implies that a score

conversion method can partially mitigate the inaccuracies of

some fine-grained PSMs in offline guessing. Furthermore, we

confirm this conjecture by comparing the KL-divergence of

fine-grained PSMs and their binned versions (see Sec. 4.3.2

for conversion methods), and the results are summarized in Ta-

ble 12 of the full apaper. Table 12 shows that the performance

of binned fuzzyPSM [17] and binned LPSE [13] increases

over corresponding fine-grained versions under the combined

strategy, when they evaluate English passwords.

We now further explore whether score conversion still

works in online guessing scenarios. Since our results on dif-

ferent test sets are similar/robust, here we only show the result

on the knowledgeable guessing strategy using the LinkedIn

dataset in Fig. 6 (see more results in Fig. 10 of the full paper).

By comparing Fig. 6 with Fig. 4(c), one can find that, overall,

Figure 6: WSpearman correlation coefficient of 12 binned-PSMs under the

knowledgeable online guessing strategy (tr: Rockyou, ts: LinkedIn). See

more results in Fig. 10 of the full paper at https://bit.ly/3xYjsUl.

the binned RNN-PSM [18] performs better than their corre-

sponding non-binned versions, while binned fuzzyPSM [17]

and Zxcvbn [14] degrades. Our results call for effective, adap-

tive score conversion methods to balance PSMs’ accuracy and

feedback granularity, and to facilitate their application. In par-

ticular, our proposed Precision and PrecisionSecurity can well

quantify the accuracy of converted PSMs. In summary, we an-

swer RQ5 with concrete evidence that proper adaptive score

conversion methods can, to some extent, mitigate inaccurate

strength evaluation of a fine-grained PSM by quantization,

and may facilitate the popularity of academic PSMs.

� PSMs can be effectively integrated to perform better.
Essentially, password strength should indicate the effort the

attacker has to pay to guess the password. However, with the

continuous advancement of computing technologies and the

increasing diversity of guessing scenarios as well as guessing

strategies, attackers often adopt various guessing methods

[19, 49]. Therefore, the estimation of guessing effort (i.e.,

password strength) varies greatly depending on password

guessing scenarios (and strategies) considered [18, 38, 64].

A desirable PSM should always provide accurate strength

feedback in every guessing scenario and strategy. However,

PSM designers usually only evaluate their proposed PSM

under a specific guessing scenario (or strategy) that they pri-

marily concern, and claim that this PSM is superior to other

PSMs (e.g., [13, 17, 19]). Such unsystematic and unfair evalu-

ations would confuse web administrators. According to our

results in Sec. 5, none of the existing leading PSMs is exclu-

sively better than the others. For example, fuzzyPSM [17]

960 32nd USENIX Security Symposium USENIX Association

Figure 7: Weighted spearman correlation coefficient of Integrated-PSM and

other 12 PSMs under the knowledgeable online guessing strategy (tr: Rock-

you, ts: LinkedIn). See Fig. 11 of the full paper for more results.

performs the best in online guessing, while Zxcvbn [14] is the

most accurate PSM under dictionary-based offline guessing.

By combining the advantages of different strength evalu-

ation methods, it is possible to design a hybrid strength me-

ter that can overcome the shortcomings of individual PSMs.

Galbally et al. [19] took the first step. Their proposed Multi-

PSM [19, 23] has two heterogeneous Markov modules. Be-

sides, the built-in blocklist and brute-force detection mech-

anisms of MultiPSM [19, 23] can identify many popular

passwords. Unfortunately, we find that there is still a con-

siderable gap between MultiPSM [19] and the most accurate

fuzzyPSM [17] in online guessing scenarios (see Sec. 5.1).

Our evaluation results in Sec. 5 show that fuzzyPSM [17]

performs the best in online guessing scenarios, for it adopts

the sophisticated password reuse detection algorithm (i.e.,

fuzzy-PCFG) to more accurately capture users’ “clever” mod-

ification behaviors [5, 14, 17], while the blocklist and dictio-

nary detection mechanisms in MultiPSM cannot. Therefore,

properly integrating the online-best fuzzyPSM [17] into the

offline-best MultiPSM [19] will hopefully significantly im-

prove MultiPSM’s accuracy in online guessing scenarios.

Through a preliminary exploration, we show the feasibility

of the above conjecture. To construct an Integrated-PSM, we

perform a simple yet effective operation on the outputs of Mul-

tiPSM [19] (denoted as StrengthMulti(·)) and fuzzyPSM [17]

(denoted as Strengthfuzzy(·)). More specifically, the pass-

word strength output by the Integrated-PSM is calculated

as StrengthInteg(·) = StrengthMulti(·)− lg
(
Strengthfuzzy(·)

)
.

The higher the StrengthInteg(·), the higher the password

strength. The intuitions underlying this heuristic formula to

calculate StrengthInteg(·) are that: (1) FuzzyPSM [17] outputs

the password probability p ∈[0, 1] as its feedback, while Mul-

tiPSM [19] takes the multimodal score s ∈[0, 10] as its feed-

back and the strength increasing trend of its output is the op-

posite of fuzzyPSM [17]; (2) To make Strengthfuzzy(·)=p∈[0,

1] have a similar scale (i.e., no order of magnitude difference)

and the same monotonicity with StrengthMulti(·)=s ∈[1, 10],

a viable solution is to take − lg
(
Strengthfuzzy(·)

)
as the out-

put of the fuzzyPSM module of the Integrated-PSM.

We have evaluated this Integrated-PSM in the online guess-

ing scenario (see Fig. 7; more results are shown in Fig. 11 of

the full version of this paper). Though simple, this Integrated-

PSM does significantly outperform all examined PSMs in

online guessing scenarios, including fuzzyPSM [17] and Mul-

tiPSM [19], especially in online knowledgeable strategy. We

further evaluate its effectiveness in the offline guessing sce-

nario by comparing its KL-divergence with other examined

PSMs (see Table 13 in the full paper). Table 13 shows that,

in most cases, Integrated-PSM has a higher KL-divergence

under brute-force, probability-based and combined attacks

compared with its components, i.e., fuzzyPSM [17] and Mul-

tiPSM [19]. This implies that our integration method will

not lead to a significant loss of accuracy of PSM in offline

guessing scenarios. Summing up, integrating the advantages

of different PSMs is a practical way to improve the accuracy

of password strength evaluation.

� PSMs need to be modified and adapted to accommo-
date different languages.

It has been well known that English and Chinese passwords

have significant differences in characteristics [24, 37, 62, 63].

In this regard, it is unsuitable to apply the existing PSMs orig-

inally designed for English-speaking users (e.g., Zxcvbn [14])

to passwords chosen by non-English speakers. Fortunately,

pattern detection-based PSM (e.g., Zxcvbn [14]) can be sim-

ply tuned to be more effective, since they do not require a

time-consuming and computationally expensive training pro-

cess. Within limited modification cost, we replace specific dic-

tionaries (i.e., common passwords, surnames and first names)

in Zxcvbn [14] with appropriate Chinese dictionaries to con-

struct ZxcvbnC (see Appendix E in the full version of this

paper). Compared with the original Zxcvbn [14], ZxcvbnC can

more accurately evaluate Chinese password strength under

online guessing scenarios. To further improve Zxcvbn [14], es-

pecially in offline guessing scenarios, we recommend adding

appropriate dictionaries (such as common Chinese words).

These recommendations can also be applied to modify other

pattern-based PSMs to accommodate different languages.

By exploiting the knowledge of the target user’s linguistic

background, attackers can speed up password guessing and

achieve higher cracking rates [40,63,70,71]. Wang et al. [24]

have confirmed this and recommended that password guessing

algorithms should be trained on datasets similar to the target

password, by considering the confounding factors in the order

of language, service, and password policies. Naturally, this

principle can be applied to configure or train PSMs based on

attack algorithms (such as fuzzyPSM [17]) to ensure accuracy.

To support this, we conduct a cross-language evaluation to

explore the performance of six attack algorithm-based PSMs.

Specifically, we use Tianya-trained PSMs to evaluate pass-

words from English speakers, and Rockyou-trained PSMs to

evaluate passwords from Chinese speakers, then calculate the

corresponding Wspearman values and KL-divergence (see

Appendix F of the full paper for detailed results).

By comparing Fig. 4 here, Figs. 9 and 12 of the full paper,

we can see that the change of training sets’ language reduces

the accuracy of six tested PSMs to different degrees in on-

USENIX Association 32nd USENIX Security Symposium 961

line scenarios. In the offline guessing scenario, the language

change in the training set reduces the overall KL-divergence

value of all tested PSMs, indicating that these PSMs cannot

accurately distinguish between cracked and uncracked pass-

words (see Table 14 of the full paper). All this suggests that

well-designed PSMs need to be configured and adapted to

accommodate different languages.

7 Conclusion
In this paper, we have provided a negative answer to the ques-

tion of whether there is a single metric that can thoroughly

(and fairly) measure the accuracy of a password strength me-

ter (PSM). Accordingly, we, for the first time, proposed a

systematic evaluation framework composed of four different

dimensioned criteria to measure PSM accuracy in various

guessing scenarios and strategies. Considering the ubiquitous

usage and crucial role of PSMs, we believe that a thorough

and fair evaluation of the accuracy of PSMs is of practical sig-

nificance, and our work takes a substantial step forward and

will trigger research interest in PSM design and evaluation.

Acknowledgment
The authors are grateful to the shepherd and anonymous re-

viewers for their invaluable comments. Ding Wang is the cor-

responding author. This research was in part supported by the

National Natural Science Foundation of China under Grants

Nos. 62222208 and 62172240, and Natural Science Founda-

tion of Tianjin, China under Grant No. 21JCZDJC00190. See

the full version of this paper at https://bit.ly/3xYjsUl.

References
[1] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth, E. M. Redmiles,

and B. Ur, ““what was that site doing with my facebook password?”:

Designing password-reuse notifications,” in Proc. ACM CCS 2018.

[2] K. Lee, S. Sjöberg, and A. Narayanan, “Password policies of most top

websites fail to follow best practices,” in Proc. SOUPS 2022.

[3] Z. Huang, E. Ayday, J. Hubaux, and A. Juels, “GenoGuard: Protecting

genomic data against brute-force attacks,” in Proc. IEEE S&P 2015.

[4] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in

passwords,” IEEE Trans. Inform. Foren. Secur., vol. 12, no. 11, pp.

2776–2791, 2017.

[5] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential

stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[6] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,

T. P. admin Richard Shay, T. Vidas, L. Bauer, N. Christin, and L. F.

Cranor, “How does your password measure up? The effect of strength

meters on password creation,” in Proc. USENIX SEC 2012, pp. 65–80.

[7] J. Tan, L. Bauer, N. Christin, and L. F. Cranor, “Practical recommen-

dations for stronger, more usable passwords combining minimum-

strength, minimum-length, and blocklist requirements,” in Proc. ACM
CCS 2020, pp. 1407–1426.

[8] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Her-

ley, “Does my password go up to eleven?: The impact of password

meters on password selection,” in Proc. ACM CHI 2013.

[9] S. Van Acker, D. Hausknecht, W. Joosen, and A. Sabelfeld, “Password

meters and generators on the web: From large-scale empirical study to

getting it right,” in Proc. CODASPY 2015, pp. 253–262.

[10] M. Golla and M. Dürmuth, “On the accuracy of password strength

meters,” in Proc. ACM CCS 2018, pp. 1567–1582.

[11] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,

D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring

real-world accuracies and biases in modeling password guessability,”

in Proc. USENIX SEC 2015, pp. 463–481.

[12] W. Burr, D. Dodson, R. Perlner, and et al., “NIST SP800-63: Electronic

authentication guideline,” NIST, Reston, VA, Tech. Rep., April 2006.

[13] Y. Guo and Z. Zhang, “LPSE: Lightweight password-strength esti-

mation for password meters,” Comput. Secur., vol. 73, pp. 507–518,

2018.

[14] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation,” in

Proc. USENIX SEC 2016, pp. 157–173.

[15] D. Reichl, KeePass, version 1.26/2.23: Password Quality Estimation,

July 2015, http://keepass.info/help/kb/pw_quality_est.html.

[16] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-

strength meters from markov models,” in Proc. NDSS 2012, pp. 1–14.

[17] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzyPSM: A new password

strength meter using fuzzy probabilistic context-free grammars,” in

Proc. IEEE/IFIP DSN 2016, pp. 595–606.

[18] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,

and L. F. Cranor, “Fast, lean, and accurate: Modeling password guess-

ability using neural networks,” in Proc. USENIX SEC 2016, pp. 1–17.

[19] J. Galbally, I. Coisel, and I. Sanchez, “A new multimodal approach for

password strength estimation - Part I: Theory and algorithms,” IEEE
Trans. Inf. Forensics Secur., vol. 12, no. 12, pp. 2829–2844, 2017.

[20] D. Pasquini, G. Ateniese, and M. Bernaschi, “Interpretable probabilistic

password strength meters via deep learning,” in Proc. ESORICS 2020.

[21] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus

of 70 million passwords,” in Proc. IEEE S&P 2012, pp. 538–552.

[22] Q. Dong, C. Jia, F. Duan, and D. Wang, “RLS-PSM: A robust and

accurate password strength meter based on reuse, leet and separation,”

IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4988–5002, 2021.

[23] J. Galbally, I. Coisel, and I. Sanchez, “A new multimodal approach for

password strength estimation - Part II: Experimental evaluation,” IEEE
Trans. Inf. Forensics Secur., vol. 12, no. 12, pp. 2845–2860, 2017.

[24] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-

security: Understanding passwords of Chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1555.

[25] S. Houshmand and S. Aggarwal, “Building better passwords using

probabilistic techniques,” in Proc. ACSAC 2012, pp. 109–118.

[26] Microsoft registration, https://account.microsoft.com/.

[27] X. de Carné de Carnavalet and M. Mannan, “From very weak to very

strong: Analyzing password-strength meters,” in Proc. NDSS 2014.

[28] F. Bergadano, B. Crispo, and G. Ruffo, “High dictionary compression

for proactive password checking,” ACM Trans. Inf. Syst. Secur., vol. 1,

no. 1, pp. 3–25, 1998.

[29] M. Bishop and D. V. Klein, “Improving system security via proactive

password checking,” Comput. Secur., vol. 14, no. 3, pp. 233–249, 1995.

[30] J. J. Yan, “A note on proactive password checking,” in Proc. ACM
NSPW 2001, pp. 127–135.

[31] P. A. Grassia, E. M. Newton, and R. A. P. et al., “NIST SP 800-63B

Digital identity guidelines: Authentication and lifecycle management,”

June 2017, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.

SP.800-63b.pdf.

962 32nd USENIX Security Symposium USENIX Association

[32] D. Wang and P. Wang, “The emperor’s new password creation policies:

An evaluation of leading web services and the effect of role in resisting

against online guessing,” in Proc. ESORICS 2015, pp. 456–477.

[33] M. Weir, S. Aggarwal, M. P. Collins, and H. Stern, “Testing metrics

for password creation policies by attacking large sets of revealed pass-

words,” in Proc. ACM CCS 2010, pp. 162–175.

[34] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,

N. Christin, L. F. Cranor, and J. López, “Guess again (and again and

again): Measuring password strength by simulating password-cracking

algorithms,” in Proc. IEEE S&P 2012, pp. 523–537.

[35] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation:

Fast and reliable password checking,” in Proc. ACM CCS 2015.

[36] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password

cracking using probabilistic context-free grammars,” in Proc. IEEE
S&P 2009, pp. 391–405.

[37] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password

models,” in Proc. IEEE S&P 2014, pp. 689–704.

[38] D. Pasquini, M. Cianfriglia, G. Ateniese, and M. Bernaschi, “Reducing

bias in modeling real-world password strength via deep learning and

dynamic dictionaries,” in Proc. USENIX SEC 2021, pp. 821–838.

[39] D. Florêncio, C. Herley, and P. C. van Oorschot, “An administrator’s

guide to internet password research,” in Proc. USENIX LISA 2014.

[40] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online

password guessing: An underestimated threat,” in Proc. ACM CCS
2016, pp. 1242–1254.

[41] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: An asymmetric PAKE

protocol secure against pre-computation attacks,” in Proc. EURO-
CRYPT 2018, vol. 10822, pp. 456–486.

[42] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled

web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[43] R. Veras, C. Collins, and J. Thorpe, “A large-scale analysis of the

semantic password model and linguistic patterns in passwords,” ACM
Trans. Priv. Secur., vol. 24, no. 3, pp. 1–21, 2021.

[44] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Giacinto, “Who

are you? A statistical approach to measuring user authenticity,” in Proc.
NDSS 2016, pp. 1–15.

[45] D. Florêncio, C. Herley, and P. C. van Oorschot, “Pushing on string:

The “don’t care” region of password strength,” Commun. ACM, vol. 59,

no. 11, pp. 1–9, 2016.

[46] S. Larson, Yahoo’s 2013 Email Hack Actually Compromised Three
Billion Accounts, Oct. 2017, https://money.cnn.com/2017/10/03/

technology/business/yahoo-breach-3-billion-accounts/index.html.

[47] P. Alexander, John the Ripper community build (1.9.0-bleeding jumbo),
2019, http://www.openwall.com/john/.

[48] S. J, Hashcat, 2018, https://hashcat.net/hashcat/.

[49] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, “Reasoning ana-

lytically about password-cracking software,” in IEEE S&P 2019.

[50] S. Wiefling, M. Dürmuth, and L. L. Iacono, “More than just good

passwords? A study on usability and security perceptions of risk-based

authentication,” in Proc. ACSAC 2020, pp. 203–218.

[51] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and

generate honeywords,” in Proc. IEEE S&P 2022, pp. 966–983.

[52] D. Goodin, “Anatomy of a hack: How crackers ran-

sack passwords like “qeadzcwrsfxv1331”,” May 2013,

https://arstechnica.com/information-technology/2013/05/

how-crackers-make-minced-meat-out-of-your-passwords/.

[53] M. Hachman, “How to create strong, secure passwords by learning how

to crack them,” May 2021, https://www.pcworld.com/article/394029/

how-to-create-strong-secure-passwords.html.

[54] wCorr: Weighted Correlations, 2021, https://cran.r-project.org/web/

packages/wCorr/index.html.

[55] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
of Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[56] M. Ciampa, “A comparison of password feedback mechanisms and

their impact on password entropy,” Inf. Manag. Comput. Secur., vol. 21,

no. 5, pp. 344–359, 2013.

[57] A. Vance, D. Eargle, K. Ouimet, and D. W. Straub, “Enhancing pass-

word security through interactive fear appeals: A web-based field ex-

periment,” in Proc. HICSS 2013, pp. 2988–2997.

[58] B. Ezell, C. J. Lynch, and P. T. Hester, “Methods for weighting de-

cisions to assist modelers and decision analysts: A review of ratio

assignment and approximate techniques,” Applied Sciences, vol. 11,

no. 21, p. 10397, 2021.

[59] W. H. Hsu, L. S. Kennedy, and S.-F. Chang, “Video search reranking

through random walk over document-level context graph,” in Proc.
ACM MM 2007, pp. 971–980.

[60] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm

optimization,” in Proc. EP 1998, pp. 591–600.

[61] T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu, “Sketch2photo:

Internet image montage,” ACM Trans. Graphics, vol. 28, no. 5, pp. 1–

10, 2009.

[62] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis of chinese

web passwords,” in Proc. USENIX SEC 2014, pp. 559–574.

[63] S. Ji, S. Yang, X. Hu, W. Han, Z. Li, and R. A. Beyah, “Zero-sum pass-

word cracking game: A large-scale empirical study on the crackability,

correlation, and security of passwords,” IEEE Trans. Dependable Secur.
Comput., vol. 14, no. 5, pp. 550–564, 2017.

[64] X. de Carné de Carnavalet and M. Mannan, “A large-scale evaluation

of high-impact password strength meters,” ACM Trans. Inform. Syst.
Secur., vol. 18, no. 1, 2015.

[65] Password strength meter, 2019, https://github.com/ec-jrc/jrcpastme.

[66] M. X. Heiligenstein, Twitter Data Breaches: Full Time-
line Through 2023, Jan. 2023, https://firewalltimes.com/

twitter-data-breach-timeline/.

[67] SpiderLabs/KoreLogic-Rules, 2012, https://github.com/SpiderLabs/

KoreLogic-Rules.

[68] C. Neskey, Are Your Passwords in the Green?, https://www.hivesystems.

io/blog/are-your-passwords-in-the-green.

[69] S. Furnell, “Assessing password guidance and enforcement on leading

websites,” Comput. Fraud Secur., vol. 2011, no. 12, pp. 10–18, 2011.

[70] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level

password guessing: Towards modeling refined password composition

representations,” in Proc. ACM CCS 2020, pp. 5–20.

[71] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,

“Improving password guessing via representation learning,” in Proc.
IEEE S&P 2021, pp. 1382–1399.

[72] J. Blocki and W. Zhang, “DALock: Password distribution-aware throt-

tling.”

[73] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin, “A measurement study

of authentication rate-limiting mechanisms of modern websites,” in

Proc. ACSAC 2018, pp. 89–100.

[74] P. Wang, H. Gao, Q. Rao, S. Luo, Z. Yuan, and Z. Shi, “A security analy-

sis of CAPTCHAs with large character sets,” IEEE Trans. Dependable
Secur. Comput., vol. 18, no. 6, pp. 2953–2968, 2021.

[75] Y. Gao, H. Gao, S. Luo, Y. Zi, S. Zhang, W. Mao, P. Wang, Y. Shen,

and J. Yan, “Research on the security of visual reasoning CAPTCHA,”

in Proc. USENIX 2021, pp. 3291–3308.

[76] M. I. Hossen, Y. Tu, M. F. Rabby, M. N. Islam, H. Cao, and X. S. Hei,

“An object detection based solver for Google’s image reCAPTCHA v2,”

in Proc. RAID 2020, pp. 269–284.

[77] D. Wang, H. Cheng, P. Wang, J. Yan, and X. Huang, “A security analysis

of honeywords,” in Proc. NDSS 2018, pp. 1–15.

USENIX Association 32nd USENIX Security Symposium 963

A Online guessing threshold
To resist online password guessing, services are recommended

to deploy rate-limiting mechanisms, such as account lockout

and login throttling [31]. Account lockout policy aims at

resisting potential online guessing attacks, by disabling the

account for a preset period of time [50]. Login throttling aims

to prevent high-rate login attempts, by using CAPTCHA, mo-

bile phone verification code, etc [72]. However, the adversary

could bypass lockout by changing the IP address or clearing

the browser cookies [73]. Worse, most CAPTCHA systems

can be easily solved by automated tools [74, 75], so the rate-

limiting mechanism fails to play its expected role in the real

world. As revealed by Lu et al. [73], 131 out of 182 (72%)

investigated high-profile sites “allow frequent, unsuccessful

login attempts without account lockout or login throttling”

and for these sites, attackers can achieve an attack rate higher

than 85 login attempts per day (significantly more than the

NIST recommended threshold of 100 attempts for 30 days).

Table 7: Rate-limit mechanisms of Alexa top-10 websites and estimated

number of login attempts per day and month.†

Alexa
rank Website Rate-limiting mechanisms

Attempts
per day

Attempts
per month

1 Google
After 15 consecutive fail logins,

solving CAPTCHA for subsequent login is required.
1,440 43,200

2 Baidu
After 10 consecutive fail logins,

solving CAPTCHA for subsequent login is required.
1,440 43,200

3 Facebook Allow only 20 consecutive failed logins per hour. 480 14,400

4 Bilibili Allow only 10 consecutive failed logins per hour. 240 7,200

5 Reddit Allow only 10 consecutive failed logins in 10 minutes. 720 21,600

6 QQ Solve CAPTCHA for each login. 1,440 43,200

7 Bing Allow only 10 consecutive failed logins per hour. 240 7,200

8 Yahoo Solve re-CAPTCHA for each login. 1,440 43,200

9 Twitter Allow only 15 consecutive failed logins per hour. 360 10,800

10 Amazon Allow only 5 consecutive failed logins per hour. 120 3,600

† We set the interval between consecutive guesses as 1 min, and use this interval to estimate
the number of login attempts allowed per day and month. In reality, various automated tools
can help attackers shorten the interval (even to 19.93s [76]), so an attacker can submit more
guessing attempts (compared with the number listed in this table) per day and month.

Since the authentication system has to balance online guess-

ing attacks and denial-of-service (DoS) attacks, the failed lo-

gin threshold T should not be too small or too large [39]. With-

out loss of generality, we set T = 104 according to [33,39,42],

and this threshold T = 104 has been widely preferred, see

[5, 51, 77]. To further support our threshold selection, we

manually investigate the rate-limit mechanisms of sites2 with

Alexa rank top-10, collect the rate-limit mechanism of each

site and examine the maximum number of online guessing

attempts allowed (see Table 7). During the testing process,

we strictly followed ethical guidelines: We use accounts cre-

ated by ourselves (no other users’ accounts are involved) for

testing, and all login attempts are manually submitted to the

website to avoid overwhelming normal requests and perfor-

mance degradation to the web servers.

According to Table 7, we find that all of the investigated

sites allow more than 103 guessing attempts in a month. Dis-

turbingly, even these high-profile sites do not properly im-

plement the rate-limiting mechanisms, and are vulnerable to

2https://www.expireddomains.net/alexa-top-websites/,

accessed on Aug. 20, 2022.

diverse online guessing attacks. Among these ten websites,

Amazon adopts the strictest lockout policy, allowing only five

failed login attempts in one hour. Even so, an attacker can

still submit 3,600 guessing attempts in a month. Without loss

of generality, we set the online guessing threshold T = 104.

B Formulas of our adopted weighted Spear-
man correlation coefficient

The weighted Spearman correlation coefficient (WSpearman)

refers to the weighted Pearson coefficient of two weighted

rank vectors. Generally, for an unweighted rank vector, the

highest rank value is 1, the second-highest rank value is 2, and

so on until the nth value. The rank values of elements with the

same value should be the same. A feasible method is to use the

mean of all tied ranks. For n tied elements with the same value,

the vector of the tied ranks is v = [a j +1,a j +2, . . . ,a j +n]T ,

and their ranks are the same, which are

rank j =
1

n

n∑

i=1

(
a j + i

)
=

1

n
[na j +

n(n+1)

2
] = a j +

n+1

2
. (7)

However, for a weighted rank vector, the weighted rank

of a single element is calculated by two items. For the jth
element, the rank is

rank j = a j +b j. (8)

The first item a j is the sum of the weights of all elements

which are less than or equal to the ranked value (ξ j), and it is

calculated as

a j =
n∑

i=1

wi1
(
ξi < ξ j

)
, (9)

where 1(·) is the indicator function which is 1 when the

condition is true and 0 otherwise, wi is the ith weight, and

ξi and ξ j are the ith and jth values to be ranked, respec-

tively. The second item b j is designed to deal with elements

with the same value. Considering the weight, for n tied ele-

ments with the same value, the vector of their tied ranks is

v = [a j +w1,a j +w1+w2, . . . ,a j +
∑n

k=1 wk]
T . Nevertheless,

if we still take the mean of v to calculate the ranks of these

tied elements (i.e., Eq. 7), the ordering of their weights will

have a significant impact on the above results. To correct this

deviation,

b j =
n+1

2
w̄ j (10)

is adopted as the overall mean of all possible permutations of

the weights of n tied elements, where w̄ j is the mean weight

of these tied elements with the ranks

rank j = a j +
n+1

2
w̄ j. (11)

It is evident if w j=1 for all j, Eq. 8 is equivalent to Eq. 11.

Through the above Eqs. 8, 9 and 10, one can calculate

the weighted rank vectors of the ideal PSM and the tested

PSM, and then obtain the corresponding WSpearman using

Eq. 1. To our knowledge, how to calculate the WSpearman

remains an open question in password research, and see why

we choose the above method in Appendix C of the full paper.

964 32nd USENIX Security Symposium USENIX Association

